1
|
Laturski AE, Dulay MT, Perry JL, DeSimone JM. Transfection via RNA-Based Nanoparticles: Comparing Encapsulation vs Adsorption Approaches of RNA Incorporation. Bioconjug Chem 2025; 36:367-376. [PMID: 39999074 DOI: 10.1021/acs.bioconjchem.5c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Historically, RNA delivery via nanoparticles has primarily relied on encapsulation, as demonstrated by lipid nanoparticles in SARS-CoV-2 vaccines. Concerns about RNA degradation on nanoparticle surfaces initially limited the exploration of adsorption-based approaches. However, recent advancements have renewed interest in adsorption as a viable alternative. This Viewpoint explores the approaches of RNA incorporation in nanoparticles, comparing encapsulation, adsorption, and the combination of encapsulation and adsorption, and presents a framework to guide the selection of the most suitable strategy based on general characteristics.
Collapse
Affiliation(s)
- Amy E Laturski
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Maria T Dulay
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Jillian L Perry
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7575, United States
| | - Joseph M DeSimone
- Department of Chemical Engineering and Department of Radiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Weiss S, Decker S, Kugler C, Gómez LB, Fasching H, Benisch D, Alioglu F, Ferencz L, Birkfeld T, Ilievski F, Baumann V, Duran A, Dusinovic E, Follrich N, Milenkovic S, Mihalicokova D, Paunov D, Singeorzan K, Zehetmayer N, Zivanonvic D, Lächelt U, Boersma A, Rülicke T, Sami H, Ogris M. Accelerated Endosomal Escape of Splice-Switching Oligonucleotides Enables Efficient Hepatic Splice Correction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9000-9018. [PMID: 39873730 PMCID: PMC11826512 DOI: 10.1021/acsami.4c19340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/01/2025] [Accepted: 01/14/2025] [Indexed: 01/30/2025]
Abstract
Splice-switching oligonucleotides (SSOs) can restore protein functionality in pathologies and are promising tools for manipulating the RNA-splicing machinery. Delivery vectors can considerably improve SSO functionality in vivo and allow dose reduction, thereby addressing the challenges of RNA-targeted therapeutics. Here, we report a biocompatible SSO nanocarrier, based on redox-responsive disulfide cross-linked low-molecular-weight linear polyethylenimine (cLPEI), for overcoming multiple biological barriers from subcellular compartments to en-route serum stability and finally in vivo delivery challenges. Intracellularly responsive cross-links of cLPEI significantly accelerated the endosomal escape and offered efficient SSO release to the cell's nucleus, thereby leading to high splice correction in vitro. In vivo performance of cLPEI-SSOs was investigated in a novel transgenic mouse model for splice correction, spatiotemporal tracking of SSO delivery in wild-type mice, and biodistribution in a colorectal cancer peritoneal metastasis model. A single intravenous application of 5 mg kg-1 cLPEI-SSOs induced splice correction in liver, lung, kidney, and bladder, giving functional protein, which was validated by RT-PCR. Near-infrared (NIR) fluorescence imaging and X-ray computed tomography revealed improved organ retention and reduced renal excretion of SSOs. NIR microscopy demonstrated the accumulation of SSOs in angiogenic tumors within the pancreas. Successful nuclear delivery of SSOs was observed in the hepatocytes. Thus, cLPEI nanocarriers resulted in highly efficient splice correction in vivo, highlighting the critical role of the enhanced SSO bioavailability.
Collapse
Affiliation(s)
- Silvia Weiss
- Faculty
of Life Sciences, Department of Pharmaceutical Sciences, Laboratory
of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Simon Decker
- Faculty
of Life Sciences, Department of Pharmaceutical Sciences, Laboratory
of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Christoph Kugler
- Faculty
of Life Sciences, Department of Pharmaceutical Sciences, Laboratory
of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Laura Bocanegra Gómez
- Faculty
of Life Sciences, Department of Pharmaceutical Sciences, Laboratory
of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Helene Fasching
- Faculty
of Life Sciences, Department of Pharmaceutical Sciences, Laboratory
of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Denise Benisch
- Faculty
of Life Sciences, Department of Pharmaceutical Sciences, Laboratory
of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Fatih Alioglu
- Faculty
of Life Sciences, Department of Pharmaceutical Sciences, Laboratory
of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Levente Ferencz
- Faculty
of Life Sciences, Department of Pharmaceutical Sciences, Laboratory
of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Theresa Birkfeld
- Faculty
of Life Sciences, Department of Pharmaceutical Sciences, Laboratory
of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Filip Ilievski
- Faculty
of Life Sciences, Department of Pharmaceutical Sciences, Laboratory
of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Volker Baumann
- Faculty
of Life Sciences, Department of Pharmaceutical Sciences, Laboratory
of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Alina Duran
- Faculty
of Life Sciences, Department of Pharmaceutical Sciences, Laboratory
of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Enes Dusinovic
- Faculty
of Life Sciences, Department of Pharmaceutical Sciences, Laboratory
of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Nadine Follrich
- Faculty
of Life Sciences, Department of Pharmaceutical Sciences, Laboratory
of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Sandra Milenkovic
- Faculty
of Life Sciences, Department of Pharmaceutical Sciences, Laboratory
of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Dajana Mihalicokova
- Faculty
of Life Sciences, Department of Pharmaceutical Sciences, Laboratory
of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Daniel Paunov
- Faculty
of Life Sciences, Department of Pharmaceutical Sciences, Laboratory
of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Karla Singeorzan
- Faculty
of Life Sciences, Department of Pharmaceutical Sciences, Laboratory
of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Nikolaus Zehetmayer
- Faculty
of Life Sciences, Department of Pharmaceutical Sciences, Laboratory
of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Dejan Zivanonvic
- Faculty
of Life Sciences, Department of Pharmaceutical Sciences, Laboratory
of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Ulrich Lächelt
- Faculty
of Life Sciences, Department of Pharmaceutical Sciences, Laboratory
of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Auke Boersma
- Institute
of In-Vivo and In-Vitro Models, Biomodels Austria, Department of Biomedical
Sciences, University of Veterinary Medicine
Vienna, Veterinärplatz
1, A-1210 Vienna, Austria
| | - Thomas Rülicke
- Department
of Biomedical Sciences and Pathobiology, University of Veterinary Medicine Vienna and Ludwig Boltzmann Institute
for Hematology and Oncology, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Haider Sami
- Faculty
of Life Sciences, Department of Pharmaceutical Sciences, Laboratory
of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Manfred Ogris
- Faculty
of Life Sciences, Department of Pharmaceutical Sciences, Laboratory
of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
3
|
Clarissa EM, Karmacharya M, Choi H, Kumar S, Cho YK. Nature Inspired Delivery Vehicles for CRISPR-Based Genome Editing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2409353. [PMID: 39901476 DOI: 10.1002/smll.202409353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/16/2025] [Indexed: 02/05/2025]
Abstract
The advent of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based genome editing technologies has opened up groundbreaking possibilities for treating a wide spectrum of genetic disorders and diseases. However, the success of these technologies relies heavily on the development of efficient and safe delivery systems. Among the most promising approaches are natural and synthetic nanocarrier-mediated delivery systems, including viral vectors, extracellular vesicles (EVs), engineered cellular membrane particles, liposomes, and various nanoparticles. These carriers enhance the efficacy of the CRISPR system by providing a unique combination of efficiency, specificity, and reduced immunogenicity. Synthetic carriers such as liposomes and nanoparticles facilitate CRISPR delivery with high reproducibility and customizable functions. Viral vectors, renowned for their high transduction efficiency and broad tropism, serve as powerful vehicles for delivering CRISPR components to various cell types. EVs, as natural carriers of RNA and proteins, offer a stealth mechanism to evade immune detection, allowing for the targeted delivery of genome editors with minimal off-target effects. Engineered cellular membrane particles further improve delivery by simulating the cellular environment, enhancing uptake, and minimizing immune response. This review explores the innovative integration of CRISPR genome editors with various nanocarrier systems, focusing on recent advancements, applications, and future directions in therapeutic genome editing.
Collapse
Affiliation(s)
- Elizabeth Maria Clarissa
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Mamata Karmacharya
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Hyunmin Choi
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Sumit Kumar
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| |
Collapse
|
4
|
Greitens C, Leroux JC, Burger M. The intracellular visualization of exogenous DNA in fluorescence microscopy. Drug Deliv Transl Res 2024; 14:2242-2261. [PMID: 38526634 PMCID: PMC11208204 DOI: 10.1007/s13346-024-01563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 03/27/2024]
Abstract
In the development of non-viral gene delivery vectors, it is essential to reliably localize and quantify transfected DNA inside the cell. To track DNA, fluorescence microscopy methods are commonly applied. These mostly rely on fluorescently labeled DNA, DNA binding proteins fused to a fluorescent protein, or fluorescence in situ hybridization (FISH). In addition, co-stainings are often used to determine the colocalization of the DNA in specific cellular compartments, such as the endolysosomes or the nucleus. We provide an overview of these DNA tracking methods, advice on how they should be combined, and indicate which co-stainings or additional methods are required to draw precise conclusions from a DNA tracking experiment. Some emphasis is given to the localization of exogenous DNA inside the nucleus, which is the last step of DNA delivery. We argue that suitable tools which allow for the nuclear detection of faint signals are still missing, hampering the rational development of more efficient non-viral transfection systems.
Collapse
Affiliation(s)
- Christina Greitens
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland.
| | - Michael Burger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
5
|
Steffens RC, Thalmayr S, Weidinger E, Seidl J, Folda P, Höhn M, Wagner E. Modulating efficacy and cytotoxicity of lipoamino fatty acid nucleic acid carriers using disulfide or hydrophobic spacers. NANOSCALE 2024; 16:13988-14005. [PMID: 38984864 DOI: 10.1039/d4nr01357c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Double pH-responsive xenopeptides comprising polar ionizable succinoyl tetraethylene pentamine (Stp) motifs and lipophilic ionizable lipoamino fatty acids (LAFs) were recently found to efficiently transfect mRNA and pDNA at low doses. However, potency was often accompanied with cytotoxicity at higher doses. Insertion of bioreducible disulfide building blocks (ssbb) or non-reducible hydrophobic spacers between polar and apolar ionizable domains of LAF-Stp carriers should mitigate toxicity of xenopeptides. Carriers showed stable nucleic acid complexation and endosomal pH-dependent lytic activities, both of which were abolished after reductive cleavage of ssbb-containing carriers. For pDNA, U-shaped carriers with one Stp and two LAF units or bundle carriers with two Stps and four LAFs displayed highest potency. For mRNA, best transfection was achieved with bundle carriers with one Stp and four LAFs. Both the ssbb and hydrophobic spacer containing analogs displayed improved metabolic activity, reduced membrane damage, and improved cell growth. The ssbb carriers were most beneficial regarding living cell count and low apoptosis rates. Mechanistically, inserted spacers decelerated the transfection kinetics and altered the requirement of endosomal protonation. Overall, mRNA and pDNA carriers with improved biocompatibility have been designed, with their high potency illustrated in transfection of various cell lines including low passage number colon carcinoma cells.
Collapse
Affiliation(s)
- Ricarda C Steffens
- Pharmaceutical Biotechnology, Department of Pharmacy, LMU Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
- Center for NanoScience (CeNS), LMU Munich, 80799 Munich, Germany
| | - Sophie Thalmayr
- Pharmaceutical Biotechnology, Department of Pharmacy, LMU Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
- CNATM - Cluster for Nucleic Acid Therapeutics Munich, Germany
| | - Eric Weidinger
- Pharmaceutical Biotechnology, Department of Pharmacy, LMU Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Johanna Seidl
- Pharmaceutical Biotechnology, Department of Pharmacy, LMU Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
- CNATM - Cluster for Nucleic Acid Therapeutics Munich, Germany
| | - Paul Folda
- Pharmaceutical Biotechnology, Department of Pharmacy, LMU Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Miriam Höhn
- Pharmaceutical Biotechnology, Department of Pharmacy, LMU Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, LMU Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
- Center for NanoScience (CeNS), LMU Munich, 80799 Munich, Germany
- CNATM - Cluster for Nucleic Acid Therapeutics Munich, Germany
| |
Collapse
|
6
|
Yan H, Wang J, He X, Yu D, Qiu Y, Liao Y, Xie X. A quadruple-stimuli responsive supramolecular hydrogel constructed from a poly(acrylic acid) derivative and β-cyclodextrin dimer. SOFT MATTER 2024; 20:5343-5350. [PMID: 38904343 DOI: 10.1039/d4sm00507d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The fabrication of stimulus-responsive supramolecular hydrogels as smart materials has attracted much attention in recent years. However, the multi-stimuli responsiveness often requires complicated chemical synthesis and rational molecular design. Herein, a quadruple-stimuli responsive supramolecular hydrogel was designed through the host-guest interaction between a β-CD dimer and a methoxy-azobenzene (mAzo) and ferrocene (Fc) grafted poly(acrylic acid) derivative, as well as through the electrostatic interaction of negatively charged carboxyl side groups. Owing to the dynamic properties of the host-guest and electrostatic interactions, reversible sol-gel transition can be triggered by various stimuli, including temperature, light irradiations, pH changes and chemical redox reagents. As a result, the release of rhodamine B loaded in the hydrogel can be accelerated by green light irradiation, oxidizing agents and low pH, demonstrating potential applications in biomedical materials.
Collapse
Affiliation(s)
- Hongchao Yan
- School of Materials Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Juan Wang
- School of Electrical Engineering and Automation, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Xichan He
- School of Materials Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Dongsheng Yu
- School of Materials Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Yuan Qiu
- Key Laboratory of Material Chemistry for Energy Conversion and Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yonggui Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiaolin Xie
- Key Laboratory of Material Chemistry for Energy Conversion and Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
7
|
Taghdiri M, Mussolino C. Viral and Non-Viral Systems to Deliver Gene Therapeutics to Clinical Targets. Int J Mol Sci 2024; 25:7333. [PMID: 39000440 PMCID: PMC11242246 DOI: 10.3390/ijms25137333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology has revolutionized the field of gene therapy as it has enabled precise genome editing with unprecedented accuracy and efficiency, paving the way for clinical applications to treat otherwise incurable genetic disorders. Typically, precise genome editing requires the delivery of multiple components to the target cells that, depending on the editing platform used, may include messenger RNA (mRNA), protein complexes, and DNA fragments. For clinical purposes, these have to be efficiently delivered into transplantable cells, such as primary T lymphocytes or hematopoietic stem and progenitor cells that are typically sensitive to exogenous substances. This challenge has limited the broad applicability of precise gene therapy applications to those strategies for which efficient delivery methods are available. Electroporation-based methodologies have been generally applied for gene editing applications, but procedure-associated toxicity has represented a major burden. With the advent of novel and less disruptive methodologies to deliver genetic cargo to transplantable cells, it is now possible to safely and efficiently deliver multiple components for precise genome editing, thus expanding the applicability of these strategies. In this review, we describe the different delivery systems available for genome editing components, including viral and non-viral systems, highlighting their advantages, limitations, and recent clinical applications. Recent improvements to these delivery methods to achieve cell specificity represent a critical development that may enable in vivo targeting in the future and will certainly play a pivotal role in the gene therapy field.
Collapse
Affiliation(s)
- Maryam Taghdiri
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, 79106 Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, 79106 Freiburg, Germany
- Ph.D. Program, Faculty of Biology, University of Freiburg, 79106 Freiburg, Germany
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, 79106 Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
8
|
BenDavid E, Ramezanian S, Lu Y, Rousseau J, Schroeder A, Lavertu M, Tremblay JP. Emerging Perspectives on Prime Editor Delivery to the Brain. Pharmaceuticals (Basel) 2024; 17:763. [PMID: 38931430 PMCID: PMC11206523 DOI: 10.3390/ph17060763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Prime editing shows potential as a precision genome editing technology, as well as the potential to advance the development of next-generation nanomedicine for addressing neurological disorders. However, turning in prime editors (PEs), which are macromolecular complexes composed of CRISPR/Cas9 nickase fused with a reverse transcriptase and a prime editing guide RNA (pegRNA), to the brain remains a considerable challenge due to physiological obstacles, including the blood-brain barrier (BBB). This review article offers an up-to-date overview and perspective on the latest technologies and strategies for the precision delivery of PEs to the brain and passage through blood barriers. Furthermore, it delves into the scientific significance and possible therapeutic applications of prime editing in conditions related to neurological diseases. It is targeted at clinicians and clinical researchers working on advancing precision nanomedicine for neuropathologies.
Collapse
Affiliation(s)
- Eli BenDavid
- Laboratory of Biomaterials and Tissue Engineering, Department of Chemical Engineering, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada;
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
- Laboratory of Nanopharmacology and Pharmaceutical Nanoscience, Faculty of Pharmacy, Laval University, Québec, QC G1V 4G2, Canada
- Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Sina Ramezanian
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| | - Yaoyao Lu
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| | - Joël Rousseau
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel;
| | - Marc Lavertu
- Laboratory of Biomaterials and Tissue Engineering, Department of Chemical Engineering, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada;
| | - Jacques P. Tremblay
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| |
Collapse
|
9
|
Fang T, Chen G. Non-viral vector-based genome editing for cancer immunotherapy. Biomater Sci 2024; 12:3068-3085. [PMID: 38716572 DOI: 10.1039/d4bm00286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Despite the exciting promise of cancer immunotherapy in the clinic, immune checkpoint blockade therapy and T cell-based therapies are often associated with low response rates, intrinsic and adaptive immune resistance, and systemic side effects. CRISPR-Cas-based genome editing appears to be an effective strategy to overcome these unmet clinical needs. As a safer delivery platform for the CRISPR-Cas system, non-viral nanoformulations have been recently explored to target tumor cells and immune cells, aiming to improve cancer immunotherapy on a gene level. In this review, we summarized the efforts of non-viral vector-based CRISPR-Cas-mediated genome editing in tumor cells and immune cells for cancer immunotherapy. Their design rationale and specific applications were highlighted.
Collapse
Affiliation(s)
- Tianxu Fang
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| |
Collapse
|
10
|
Hu S, Liang Y, Chen J, Gao X, Zheng Y, Wang L, Jiang J, Zeng M, Luo M. Mechanisms of hydrogel-based microRNA delivery systems and its application strategies in targeting inflammatory diseases. J Tissue Eng 2024; 15:20417314241265897. [PMID: 39092451 PMCID: PMC11292707 DOI: 10.1177/20417314241265897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/18/2024] [Indexed: 08/04/2024] Open
Abstract
Hydrogels, composed of three-dimensional polymer networks, are excellent delivery carriers and have been extensively employed in the biomedical field. Inflammation acts as a protective mechanism to prevent harmful substances from entering living organisms, but chronic, long-lasting inflammation can cause oxidative stress, which damages tissue and organs and adversely affects patients' quality of life. The aberrant expression of microRNAs (miRNAs) has been found to play a significant part in the etiology and progression of inflammatory diseases, as suggested by growing evidence. Numerous hydrogels that can act as gene carriers for the intracellular delivery of miRNA have been described during ongoing research into innovative hydrogel materials. MiRNA hydrogel delivery systems, which are loaded with exogenous miRNA inhibitors or mimics, enable targeted miRNA intervention in inflammatory diseases and effectively prevent environmental stressors from degrading or inactivating miRNA. In this review, we summarize the classification of miRNA hydrogel delivery systems, the basic strategies and mechanisms for loading miRNAs into hydrogels, highlight the biomedical applications of miRNA hydrogel delivery systems in inflammatory diseases, and share our viewpoints on potential opportunities and challenges in the promising region of miRNA delivery systems. These findings may provide a new theoretical basis for the prevention and treatment of inflammation-related diseases and lay the foundation for clinical translation.
Collapse
Affiliation(s)
- Shaorun Hu
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Yu Liang
- Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jinxiang Chen
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Xiaojun Gao
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Youkun Zheng
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Liqun Wang
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Min Zeng
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Mao Luo
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| |
Collapse
|
11
|
Lin M, Wang X. Natural Biopolymer-Based Delivery of CRISPR/Cas9 for Cancer Treatment. Pharmaceutics 2023; 16:62. [PMID: 38258073 PMCID: PMC10819213 DOI: 10.3390/pharmaceutics16010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Over the last decade, the clustered, regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has become the most promising gene editing tool and is broadly utilized to manipulate the gene for disease treatment, especially for cancer, which involves multiple genetic alterations. Typically, CRISPR/Cas9 machinery is delivered in one of three forms: DNA, mRNA, or ribonucleoprotein. However, the lack of efficient delivery systems for these macromolecules confined the clinical breakthrough of this technique. Therefore, a variety of nanomaterials have been fabricated to improve the stability and delivery efficiency of the CRISPR/Cas9 system. In this context, the natural biopolymer-based carrier is a particularly promising platform for CRISPR/Cas9 delivery due to its great stability, low toxicity, excellent biocompatibility, and biodegradability. Here, we focus on the advances of natural biopolymer-based materials for CRISPR/Cas9 delivery in the cancer field and discuss the challenges for their clinical translation.
Collapse
Affiliation(s)
| | - Xueyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Feng S, Xie X, Liu J, Li A, Wang Q, Guo D, Li S, Li Y, Wang Z, Guo T, Zhou J, Tang DYY, Show PL. A potential paradigm in CRISPR/Cas systems delivery: at the crossroad of microalgal gene editing and algal-mediated nanoparticles. J Nanobiotechnology 2023; 21:370. [PMID: 37817254 PMCID: PMC10563294 DOI: 10.1186/s12951-023-02139-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/03/2023] [Indexed: 10/12/2023] Open
Abstract
Microalgae as the photosynthetic organisms offer enormous promise in a variety of industries, such as the generation of high-value byproducts, biofuels, pharmaceuticals, environmental remediation, and others. With the rapid advancement of gene editing technology, CRISPR/Cas system has evolved into an effective tool that revolutionised the genetic engineering of microalgae due to its robustness, high target specificity, and programmability. However, due to the lack of robust delivery system, the efficacy of gene editing is significantly impaired, limiting its application in microalgae. Nanomaterials have become a potential delivery platform for CRISPR/Cas systems due to their advantages of precise targeting, high stability, safety, and improved immune system. Notably, algal-mediated nanoparticles (AMNPs), especially the microalgae-derived nanoparticles, are appealing as a sustainable delivery platform because of their biocompatibility and low toxicity in a homologous relationship. In addition, living microalgae demonstrated effective and regulated distribution into specified areas as the biohybrid microrobots. This review extensively summarised the uses of CRISPR/Cas systems in microalgae and the recent developments of nanoparticle-based CRISPR/Cas delivery systems. A systematic description of the properties and uses of AMNPs, microalgae-derived nanoparticles, and microalgae microrobots has also been discussed. Finally, this review highlights the challenges and future research directions for the development of gene-edited microalgae.
Collapse
Affiliation(s)
- Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| | - Xin Xie
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Junjie Liu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Aifang Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Qianqian Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Dandan Guo
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Shuxuan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Yalan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Zilong Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Tao Guo
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| | - Jin Zhou
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China.
| | - Doris Ying Ying Tang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
13
|
Shchaslyvyi AY, Antonenko SV, Tesliuk MG, Telegeev GD. Current State of Human Gene Therapy: Approved Products and Vectors. Pharmaceuticals (Basel) 2023; 16:1416. [PMID: 37895887 PMCID: PMC10609992 DOI: 10.3390/ph16101416] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
In the realm of gene therapy, a pivotal moment arrived with Paul Berg's groundbreaking identification of the first recombinant DNA in 1972. This achievement set the stage for future breakthroughs. Conditions once considered undefeatable, like melanoma, pancreatic cancer, and a host of other ailments, are now being addressed at their root cause-the genetic level. Presently, the gene therapy landscape stands adorned with 22 approved in vivo and ex vivo products, including IMLYGIC, LUXTURNA, Zolgensma, Spinraza, Patisiran, and many more. In this comprehensive exploration, we delve into a rich assortment of 16 drugs, from siRNA, miRNA, and CRISPR/Cas9 to DNA aptamers and TRAIL/APO2L, as well as 46 carriers, from AAV, AdV, LNPs, and exosomes to naked mRNA, sonoporation, and magnetofection. The article also discusses the advantages and disadvantages of each product and vector type, as well as the current challenges faced in the practical use of gene therapy and its future potential.
Collapse
Affiliation(s)
- Aladdin Y. Shchaslyvyi
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Zabolotnogo Str., 03143 Kyiv, Ukraine; (S.V.A.); (M.G.T.); (G.D.T.)
| | | | | | | |
Collapse
|
14
|
Zheng Q, Wang W, Zhou Y, Mo J, Chang X, Zha Z, Zha L. Synthetic nanoparticles for the delivery of CRISPR/Cas9 gene editing system: classification and biomedical applications. Biomater Sci 2023; 11:5361-5389. [PMID: 37381725 DOI: 10.1039/d3bm00788j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Gene editing has great potential in biomedical research including disease diagnosis and treatment. Clustered regularly interspaced short palindromic repeats (CRISPR) is the most straightforward and cost-effective method. The efficient and precise delivery of CRISPR can impact the specificity and efficacy of gene editing. In recent years, synthetic nanoparticles have been discovered as effective CRISPR/Cas9 delivery vehicles. We categorized synthetic nanoparticles for CRISPR/Cas9 delivery and discribed their advantages and disadvantages. Further, the building blocks of different kinds of nanoparticles and their applications in cells/tissues, cancer and other diseases were described in detail. Finally, the challenges encountered in the clinical application of CRISPR/Cas9 delivery materials were discussed, and potential solutions were provided regarding efficiency and biosafety issues.
Collapse
Affiliation(s)
- Qi Zheng
- International Immunology Centre, Anhui Agricultural University, Hefei 230036, P. R. China.
| | - Weitao Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China.
| | - Yuhang Zhou
- International Immunology Centre, Anhui Agricultural University, Hefei 230036, P. R. China.
| | - Jiayin Mo
- International Immunology Centre, Anhui Agricultural University, Hefei 230036, P. R. China.
| | - Xinyue Chang
- International Immunology Centre, Anhui Agricultural University, Hefei 230036, P. R. China.
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China.
| | - Lisha Zha
- International Immunology Centre, Anhui Agricultural University, Hefei 230036, P. R. China.
| |
Collapse
|
15
|
Yang W, Mixich L, Boonstra E, Cabral H. Polymer-Based mRNA Delivery Strategies for Advanced Therapies. Adv Healthc Mater 2023; 12:e2202688. [PMID: 36785927 PMCID: PMC11469255 DOI: 10.1002/adhm.202202688] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/31/2023] [Indexed: 02/15/2023]
Abstract
Messenger RNA (mRNA)-based therapies offer great promise for the treatment of a variety of diseases. In 2020, two FDA approvals of mRNA-based vaccines have elevated mRNA vaccines to global recognition. However, the therapeutic capabilities of mRNA extend far beyond vaccines against infectious diseases. They hold potential for cancer vaccines, protein replacement therapies, gene editing therapies, and immunotherapies. For realizing such advanced therapies, it is crucial to develop effective carrier systems. Recent advances in materials science have led to the development of promising nonviral mRNA delivery systems. In comparison to other carriers like lipid nanoparticles, polymer-based delivery systems often receive less attention, despite their unique ability to carefully tune their chemical features to promote mRNA protection, their favorable pharmacokinetics, and their potential for targeting delivery. In this review, the central features of polymer-based systems for mRNA delivery highlighting the molecular design criteria, stability, and biodistribution are discussed. Finally, the role of targeting ligands for the future of RNA therapies is analyzed.
Collapse
Affiliation(s)
- Wenqian Yang
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Lucas Mixich
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Eger Boonstra
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Horacio Cabral
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| |
Collapse
|
16
|
Hartmann D, Chowdhry R, Smith JM, Booth MJ. Orthogonal Light-Activated DNA for Patterned Biocomputing within Synthetic Cells. J Am Chem Soc 2023; 145:9471-9480. [PMID: 37125650 PMCID: PMC10161232 DOI: 10.1021/jacs.3c02350] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Indexed: 05/02/2023]
Abstract
Cell-free gene expression is a vital research tool to study biological systems in defined minimal environments and has promising applications in biotechnology. Developing methods to control DNA templates for cell-free expression will be important for precise regulation of complex biological pathways and use with synthetic cells, particularly using remote, nondamaging stimuli such as visible light. Here, we have synthesized blue light-activatable DNA parts that tightly regulate cell-free RNA and protein synthesis. We found that this blue light-activated DNA could initiate expression orthogonally to our previously generated ultraviolet (UV) light-activated DNA, which we used to generate a dual-wavelength light-controlled cell-free AND-gate. By encapsulating these orthogonal light-activated DNAs into synthetic cells, we used two overlapping patterns of blue and UV light to provide precise spatiotemporal control over the logic gate. Our blue and UV orthogonal light-activated DNAs will open the door for precise control of cell-free systems in biology and medicine.
Collapse
Affiliation(s)
- Denis Hartmann
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Razia Chowdhry
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Jefferson M. Smith
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Michael J. Booth
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| |
Collapse
|
17
|
Wang Y, Wang X, Xie R, Burger JC, Tong Y, Gong S. Overcoming the Blood-Brain Barrier for Gene Therapy via Systemic Administration of GSH-Responsive Silica Nanocapsules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208018. [PMID: 36445243 DOI: 10.1002/adma.202208018] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/21/2022] [Indexed: 06/16/2023]
Abstract
CRISPR genome editing can potentially treat the root causes of many genetic diseases, including central nervous system (CNS) disorders. However, the promise of brain-targeted therapeutic genome editing relies on the efficient delivery of biologics bypassing the blood-brain barrier (BBB), which represents a major challenge in the development of CRISPR therapeutics. We created and screened a library of glutathione (GSH)-responsive silica nanocapsules (SNCs) for brain targeted delivery of biologics via systemic administration. In vivo studies demonstrate that systemically delivered SNCs conjugated with glucose and rabies virus glycoprotein peptide under glycemic control can efficiently bypass the intact BBB, enabling brain-wide delivery of various biologics including CRISPR genome editors targeting different genes in both Ai14 reporter mice and wild-type mice. In particular, up to 28% neuron editing via systemic delivery of Cre mRNA in Ai14 mice, up to 6.1% amyloid precursor protein (App) gene editing (resulting in 19.1% reduction in the expression level of intact APP), and up to 3.9% tyrosine hydroxylase (Th) gene editing (resulting in 30.3% reduction in the expression level of TH) in wild-type mice are observed. This versatile SNC nanoplatform may offer a novel strategy for the treatment of CNS disorders including Alzheimer's, Parkinson's, and Huntington's disease.
Collapse
Affiliation(s)
- Yuyuan Wang
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Xiuxiu Wang
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Ruosen Xie
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Jacobus C Burger
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Yao Tong
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Shaoqin Gong
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
18
|
Rodrigues AF, Rebelo C, Simões S, Paulo C, Pinho S, Francisco V, Ferreira L. A Polymeric Nanoparticle Formulation for Targeted mRNA Delivery to Fibroblasts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205475. [PMID: 36529964 PMCID: PMC9929262 DOI: 10.1002/advs.202205475] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/18/2022] [Indexed: 05/10/2023]
Abstract
Messenger RNA (mRNA)-based therapies offer enhanced control over the production of therapeutic proteins for many diseases. Their clinical implementation warrants formulations capable of delivering them safely and effectively to target sites. Owing to their chemical versatility, polymeric nanoparticles can be designed by combinatorial synthesis of different ionizable, cationic, and aromatic moieties to modulate cell targeting, using inexpensive formulation steps. Herein, 152 formulations are evaluated by high-throughput screening using a reporter fibroblast model sensitive to functional delivery of mRNA encoding Cre recombinase. Using in vitro and in vivo models, a polymeric nanoformulation based on the combination of 3 specific monomers is identified to transfect fibroblasts much more effectively than other cell types populating the skin, with superior performance than lipid-based transfection agents in the delivery of Cas9 mRNA and guide RNA. This tropism can be explained by receptor-mediated endocytosis, involving CD26 and FAP, which are overexpressed in profibrotic fibroblasts. Structure-activity analysis reveals that efficient mRNA delivery required the combination of high buffering capacity and low mRNA binding affinity for rapid release upon endosomal escape. These results highlight the use of high-throughput screening to rapidly identify chemical features towards the design of highly efficient mRNA delivery systems targeting fibrotic diseases.
Collapse
Affiliation(s)
- Artur Filipe Rodrigues
- CNC–Center for Neurosciences and Cell BiologyUniversity of CoimbraCoimbra3000‐517Portugal
| | - Catarina Rebelo
- CNC–Center for Neurosciences and Cell BiologyUniversity of CoimbraCoimbra3000‐517Portugal
- Faculty of MedicinePólo das Ciências da SaúdeUnidade CentralUniversity of CoimbraCoimbra3000‐354Portugal
| | - Susana Simões
- CNC–Center for Neurosciences and Cell BiologyUniversity of CoimbraCoimbra3000‐517Portugal
| | - Cristiana Paulo
- CNC–Center for Neurosciences and Cell BiologyUniversity of CoimbraCoimbra3000‐517Portugal
| | - Sónia Pinho
- CNC–Center for Neurosciences and Cell BiologyUniversity of CoimbraCoimbra3000‐517Portugal
| | - Vítor Francisco
- CNC–Center for Neurosciences and Cell BiologyUniversity of CoimbraCoimbra3000‐517Portugal
| | - Lino Ferreira
- CNC–Center for Neurosciences and Cell BiologyUniversity of CoimbraCoimbra3000‐517Portugal
- Faculty of MedicinePólo das Ciências da SaúdeUnidade CentralUniversity of CoimbraCoimbra3000‐354Portugal
| |
Collapse
|
19
|
Winkeljann B, Keul DC, Merkel OM. Engineering poly- and micelleplexes for nucleic acid delivery - A reflection on their endosomal escape. J Control Release 2023; 353:518-534. [PMID: 36496051 PMCID: PMC9900387 DOI: 10.1016/j.jconrel.2022.12.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
For the longest time, the field of nucleic acid delivery has remained skeptical whether or not polycationic drug carrier systems would ever make it into clinical practice. Yet, with the disclosure of patents on polyethyleneimine-based RNA carriers through leading companies in the field of nucleic acid therapeutics such as BioNTech SE and the progress in clinical studies beyond phase I trials, this aloofness seems to regress. As one of the most striking characteristics of polymer-based vectors, the extraordinary tunability can be both a blessing and a curse. Yet, knowing about the adjustment screws and how they impact the performance of the drug carrier provides the formulation scientist committed to its development with a head start. Here, we equip the reader with a toolbox - a toolbox that should advise and support the developer to conceptualize a cutting-edge poly- or micelleplex system for the delivery of therapeutic nucleic acids; to be specific, to engineer the vector towards maximum endosomal escape performance at minimum toxicity. Therefore, after briefly sketching the boundary conditions of polymeric vector design, we will dive into the topic of endosomal trafficking. We will not only discuss the most recent knowledge of the endo-lysosomal compartment but further depict different hypotheses and mechanisms that facilitate the endosomal escape of polyplex systems. Finally, we will combine the different facets introduced in the previous chapters with the fundamental building blocks of polymer vector design and evaluate the advantages and drawbacks. Throughout the article, a particular focus will be placed on cellular peculiarities, not only as an additional barrier, but also to give inspiration to how such cell-specific traits might be capitalized on.
Collapse
Affiliation(s)
- Benjamin Winkeljann
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, 81377 Munich, Germany,Center for NanoScience (CeNS), Ludwig-Maximilians-University Munich, 80799 Munich, Germany
| | - David C. Keul
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, 81377 Munich, Germany
| | - Olivia M. Merkel
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, 81377 Munich, Germany,Center for NanoScience (CeNS), Ludwig-Maximilians-University Munich, 80799 Munich, Germany,Corresponding author at: Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Haus B, 81377 München, Germany
| |
Collapse
|
20
|
Fang T, Cao X, Ibnat M, Chen G. Stimuli-responsive nanoformulations for CRISPR-Cas9 genome editing. J Nanobiotechnology 2022; 20:354. [PMID: 35918694 PMCID: PMC9344766 DOI: 10.1186/s12951-022-01570-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/22/2022] [Indexed: 12/07/2022] Open
Abstract
The CRISPR-Cas9 technology has changed the landscape of genome editing and has demonstrated extraordinary potential for treating otherwise incurable diseases. Engineering strategies to enable efficient intracellular delivery of CRISPR-Cas9 components has been a central theme for broadening the impact of the CRISPR-Cas9 technology. Various non-viral delivery systems for CRISPR-Cas9 have been investigated given their favorable safety profiles over viral systems. Many recent efforts have been focused on the development of stimuli-responsive non-viral CRISPR-Cas9 delivery systems, with the goal of achieving efficient and precise genome editing. Stimuli-responsive nanoplatforms are capable of sensing and responding to particular triggers, such as innate biological cues and external stimuli, for controlled CRISPR-Cas9 genome editing. In this Review, we overview the recent advances in stimuli-responsive nanoformulations for CRISPR-Cas9 delivery, highlight the rationale of stimuli and formulation designs, and summarize their biomedical applications.
Collapse
Affiliation(s)
- Tianxu Fang
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.,Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Xiaona Cao
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.,Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada.,School of Nursing, Tianjin Medical University, Tianjin, China
| | - Mysha Ibnat
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.,Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada. .,Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada.
| |
Collapse
|
21
|
Grimme CJ, Hanson MG, Corcoran LG, Reineke TM. Polycation Architecture Affects Complexation and Delivery of Short Antisense Oligonucleotides: Micelleplexes Outperform Polyplexes. Biomacromolecules 2022; 23:3257-3271. [PMID: 35862267 DOI: 10.1021/acs.biomac.2c00338] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we examine the complexation and biological delivery of a short single-stranded antisense oligonucleotide (ASO) payload with four polymer derivatives that form two architectural variants (polyplexes and micelleplexes): a homopolymer poly(2-dimethylaminoethyl methacrylate) (D), a diblock polymer poly(ethylene glycol)methylether methacrylate-block-poly(2-dimethylaminoethyl methacrylate) (ObD), and two micelle-forming variants, poly(2-dimethylaminoethyl methacrylate)-block-poly(n-butyl methacrylate) (DB) and poly(ethylene glycol)methylether methacrylate-block-poly(2-dimethylaminoethyl methacrylate)-block-poly(n-butyl methacrylate) (ObDB). Both polyplexes and micelleplexes complexed ASOs, and the incorporation of an Ob brush enhances colloidal stability. Micellplexes are templated by the size and shape of the unloaded micelle and that micelle-ASO complexation is not sensitive to formulation/mixing order, allowing ease, versatility, and reproducibility in packaging short oligonucleotides. The DB micelleplexes promoted the largest gene silencing, internalization, and tolerable toxicity while the ObDB micelleplexes displayed enhanced colloidal stability and highly efficient payload trafficking despite having lower cellular uptake. Overall, this work demonstrates that cationic micelles are superior delivery vehicles for ASOs denoting the importance of vehicle architecture in biological performance.
Collapse
Affiliation(s)
- Christian J Grimme
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Louis G Corcoran
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
22
|
Xie R, Wang X, Wang Y, Ye M, Zhao Y, Yandell BS, Gong S. pH-Responsive Polymer Nanoparticles for Efficient Delivery of Cas9 Ribonucleoprotein With or Without Donor DNA. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110618. [PMID: 35119139 PMCID: PMC9187620 DOI: 10.1002/adma.202110618] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/28/2022] [Indexed: 05/05/2023]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9) may offer new therapeutics for genetic diseases through gene disruption via nonhomologous end joining (NHEJ) or gene correction via homology-directed repair (HDR). However, clinical translation of CRISPR technology is limited by the lack of safe and efficient delivery systems. Here, facilely fabricated pH-responsive polymer nanoparticles capable of safely and efficiently delivering Cas9 ribonucleoprotein alone (termed NHEJ-NP, diameter = 29.4 nm), or together with donor DNA (termed HDR-NP, diameter = 33.3 nm) are reported. Moreover, intravenously, intratracheally, and intramuscularly injected NHEJ-NP induces efficient gene editing in mouse liver, lung, and skeletal muscle, respectively. Intramuscularly injected HDR-NP also leads to muscle strength recovery in a Duchenne muscular dystrophy mouse model. NHEJ-NP and HDR-NP possess many desirable properties including high payload loading content, small and uniform sizes, high editing efficiency, good biocompatibility, low immunogenicity, and ease of production, storage, and transport, making them great interest for various genome editing applications with clinical potentials.
Collapse
Affiliation(s)
- Ruosen Xie
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Xiuxiu Wang
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Yuyuan Wang
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Mingzhou Ye
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Yi Zhao
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Brian S Yandell
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Shaoqin Gong
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| |
Collapse
|
23
|
Yuan Y, Nie T, Fang Y, You X, Huang H, Wu J. Stimuli-responsive cyclodextrin-based supramolecular assemblies as drug carriers. J Mater Chem B 2022; 10:2077-2096. [PMID: 35233592 DOI: 10.1039/d1tb02683f] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclodextrins (CDs) are widely employed in biomedical applications because of their unique structures. Various biomedical applications can be achieved in a spatiotemporally controlled manner by integrating the host-guest chemistry of CDs with stimuli-responsive functions. In this review, we summarize the recent advances in stimuli-responsive supramolecular assemblies based on the host-guest chemistry of CDs. The stimuli considered in this review include endogenous (pH, redox, and enzymes) and exogenous stimuli (light, temperature, and magnetic field). We mainly discuss the mechanisms of the stimuli-responsive ability and present typical designs of the corresponding supramolecular assemblies for drug delivery and other potential biomedical applications. The limitations and perspectives of CD-based stimuli-responsive supramolecular assemblies are discussed to further promote the translation of laboratory products into clinical applications.
Collapse
Affiliation(s)
- Ying Yuan
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, P. R. China.
| | - Tianqi Nie
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Yifen Fang
- Guangzhou University of Chinese Medicine, Second Clinical School of Medicine, Guangzhou, 511436, P. R. China
| | - Xinru You
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, P. R. China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, P. R. China.
| |
Collapse
|
24
|
Ji Y, Liansheng F, Suchen Q, Han X. Stimuli-Responsive Delivery Strategies for Controllable Gene Editing in Tumor Therapeutics. J Mater Chem B 2022; 10:7694-7707. [DOI: 10.1039/d2tb01055k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CRISPR system has attracted significant interest due to its great potential in tumour therapy. Developing effective, precise and safe delivery vectors is a prerequisite for CRISPR applications. Some disease-related biological...
Collapse
|
25
|
Zhang R, Nie T, Fang Y, Huang H, Wu J. Poly(disulfide)s: From Synthesis to Drug Delivery. Biomacromolecules 2021; 23:1-19. [PMID: 34874705 DOI: 10.1021/acs.biomac.1c01210] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bioresponsive polymers have been widely used in drug delivery because of their degradability. For example, poly(disulfide)s with repeating disulfide bonds in the main chain have attracted considerable research attention. The characteristics of the disulfide bonds, including their dynamic and reversible properties and their responsiveness to stimuli such as reductants, light, heat, and mechanical force, make them ideal platforms for on-demand drug delivery. This review introduces the synthesis methods and applications of poly(disulfide)s. Furthermore, the synthesis methods of poly(disulfide)s are classified on the basis of the monomers used: oxidative step-growth polymerization with dithiols, ring-opening polymerization with cyclic disulfides, and polymerization with linear disulfides. In addition, recent advances in poly(disulfide)s for the delivery of small-molecule or biomacromolecular drugs are discussed. Quantum-dot-loaded poly(disulfide) delivery systems for imaging are also included. This review provides an overview of the various design strategies employed in the construction of poly(disulfide) platforms to inspire new applications in the field of drug delivery.
Collapse
Affiliation(s)
- Ruhe Zhang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Tianqi Nie
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yifen Fang
- Department of Cardiology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
26
|
Pan X, Veroniaina H, Su N, Sha K, Jiang F, Wu Z, Qi X. Applications and developments of gene therapy drug delivery systems for genetic diseases. Asian J Pharm Sci 2021; 16:687-703. [PMID: 35027949 PMCID: PMC8737406 DOI: 10.1016/j.ajps.2021.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 02/15/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Genetic diseases seriously threaten human health and have always been one of the refractory conditions facing humanity. Currently, gene therapy drugs such as siRNA, shRNA, antisense oligonucleotide, CRISPR/Cas9 system, plasmid DNA and miRNA have shown great potential in biomedical applications. To avoid the degradation of gene therapy drugs in the body and effectively deliver them to target tissues, cells and organelles, the development of excellent drug delivery vehicles is of utmost importance. Viral vectors are the most widely used delivery vehicles for gene therapy in vivo and in vitro due to their high transfection efficiency and stable transgene expression. With the development of nanotechnology, novel nanocarriers are gradually replacing viral vectors, emerging superior performance. This review mainly illuminates the current widely used gene therapy drugs, summarizes the viral vectors and non-viral vectors that deliver gene therapy drugs, and sums up the application of gene therapy to treat genetic diseases. Additionally, the challenges and opportunities of the field are discussed from the perspective of developing an effective nano-delivery system.
Collapse
Affiliation(s)
- Xiuhua Pan
- China Pharmaceutical University, Nanjing 211198, China
| | | | - Nan Su
- China Pharmaceutical University, Nanjing 211198, China
| | - Kang Sha
- China Pharmaceutical University, Nanjing 211198, China
| | - Fenglin Jiang
- China Pharmaceutical University, Nanjing 211198, China
| | - Zhenghong Wu
- China Pharmaceutical University, Nanjing 211198, China
| | - Xiaole Qi
- China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
27
|
Xie R, Wang Y, Gong S. External stimuli-responsive nanoparticles for spatially and temporally controlled delivery of CRISPR-Cas genome editors. Biomater Sci 2021; 9:6012-6022. [PMID: 34286726 PMCID: PMC8440484 DOI: 10.1039/d1bm00558h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The CRISPR-Cas9 system is a powerful tool for genome editing, which can potentially lead to new therapies for genetic diseases. To date, various viral and non-viral delivery systems have been developed for the delivery of CRISPR-Cas9 in vivo. However, spatially and temporally controlled genome editing is needed to enhance the specificity in organs/tissues and minimize the off-target effects of editing. In this review, we summarize the state-of-the-art non-viral vectors that exploit external stimuli (i.e., light, magnetic field, and ultrasound) for spatially and temporally controlled genome editing and their in vitro and in vivo applications.
Collapse
Affiliation(s)
- Ruosen Xie
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - Yuyuan Wang
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - Shaoqin Gong
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| |
Collapse
|
28
|
Haley RM, Gottardi R, Langer R, Mitchell MJ. Cyclodextrins in drug delivery: applications in gene and combination therapy. Drug Deliv Transl Res 2021; 10:661-677. [PMID: 32077052 DOI: 10.1007/s13346-020-00724-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gene therapy is a powerful tool against genetic disorders and cancer, targeting the source of the disease rather than just treating the symptoms. While much of the initial success of gene delivery relied on viral vectors, non-viral vectors are emerging as promising gene delivery systems for efficacious treatment with decreased toxicity concerns. However, the delivery of genetic material is still challenging, and there is a need for vectors with enhanced targeting, reduced toxicity, and controlled release. In this article, we highlight current work in gene therapy which utilizes the cyclic oligosaccharide molecule cyclodextrin (CD). With a number of unique abilities, such as hosting small molecule drugs, acting as a linker or modular component, reducing immunogenicity, and disrupting membranes, CD is a valuable constituent in many delivery systems. These carriers also demonstrate great promise in combination therapies, due to the ease of assembling macromolecular structures and wide variety of chemical derivatives, which allow for customizable delivery systems and co-delivery of therapeutics. The use of combination and personalized therapies can result in improved patient health-modular systems, such as those which incorporate CD, are more conducive to these therapy types. Graphical abstract.
Collapse
Affiliation(s)
- Rebecca M Haley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Riccardo Gottardi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Fondazione Ri.MED, Palermo, Italy
| | - Robert Langer
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
29
|
Yu C, Li L, Hu P, Yang Y, Wei W, Deng X, Wang L, Tay FR, Ma J. Recent Advances in Stimulus-Responsive Nanocarriers for Gene Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100540. [PMID: 34306980 PMCID: PMC8292848 DOI: 10.1002/advs.202100540] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/07/2021] [Indexed: 05/29/2023]
Abstract
Gene therapy provides a promising strategy for curing monogenetic disorders and complex diseases. However, there are challenges associated with the use of viral delivery vectors. The advent of nanomedicine represents a quantum leap in the application of gene therapy. Recent advances in stimulus-responsive nonviral nanocarriers indicate that they are efficient delivery systems for loading and unloading of therapeutic nucleic acids. Some nanocarriers are responsive to cues derived from the internal environment, such as changes in pH, redox potential, enzyme activity, reactive oxygen species, adenosine triphosphate, and hypoxia. Others are responsive to external stimulations, including temperature gradients, light irradiation, ultrasonic energy, and magnetic field. Multiple stimuli-responsive strategies have also been investigated recently for experimental gene therapy.
Collapse
Affiliation(s)
- Cheng Yu
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Long Li
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Pei Hu
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Yan Yang
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Wei Wei
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Xin Deng
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Lu Wang
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | | | - Jingzhi Ma
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| |
Collapse
|
30
|
Wang Y, Shahi PK, Wang X, Xie R, Zhao Y, Wu M, Roge S, Pattnaik BR, Gong S. In vivo targeted delivery of nucleic acids and CRISPR genome editors enabled by GSH-responsive silica nanoparticles. J Control Release 2021; 336:296-309. [PMID: 34174352 DOI: 10.1016/j.jconrel.2021.06.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/01/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022]
Abstract
The rapid development of gene therapy and genome editing techniques brings up an urgent need to develop safe and efficient nanoplatforms for nucleic acids and CRISPR genome editors. Herein we report a stimulus-responsive silica nanoparticle (SNP) capable of encapsulating biomacromolecules in their active forms with a high loading content and loading efficiency as well as a well-controlled nanoparticle size (~50 nm). A disulfide crosslinker was integrated into the silica network, endowing SNP with glutathione (GSH)-responsive cargo release capability when internalized by target cells. An imidazole-containing component was incorporated into the SNP to enhance the endosomal escape capability. The SNP can deliver various cargos, including nucleic acids (e.g., DNA and mRNA) and CRISPR genome editors (e.g., Cas9/sgRNA ribonucleoprotein (RNP), and RNP with donor DNA) with excellent efficiency and biocompatibility. The SNP surface can be PEGylated and functionalized with different targeting ligands. In vivo studies showed that subretinally injected SNP conjugated with all-trans-retinoic acid (ATRA) and intravenously injected SNP conjugated with GalNAc can effectively deliver mRNA and RNP to murine retinal pigment epithelium (RPE) cells and liver cells, respectively, leading to efficient genome editing. Overall, the SNP is a promising nanoplatform for various applications including gene therapy and genome editing.
Collapse
Affiliation(s)
- Yuyuan Wang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Pawan K Shahi
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xiuxiu Wang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Ruosen Xie
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Yi Zhao
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Min Wu
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Seth Roge
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Bikash R Pattnaik
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Shaoqin Gong
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53715, USA.
| |
Collapse
|
31
|
Marras AE, Ting JM, Stevens KC, Tirrell MV. Advances in the Structural Design of Polyelectrolyte Complex Micelles. J Phys Chem B 2021; 125:7076-7089. [PMID: 34160221 PMCID: PMC9282648 DOI: 10.1021/acs.jpcb.1c01258] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polyelectrolyte complex micelles (PCMs) are a unique class of self-assembled nanoparticles that form with a core of associated polycations and polyanions, microphase-separated from neutral, hydrophilic coronas in aqueous solution. The hydrated nature and structural and chemical versatility make PCMs an attractive system for delivery and for fundamental polymer physics research. By leveraging block copolymer design with controlled self-assembly, fundamental structure-property relationships can be established to tune the size, morphology, and stability of PCMs precisely in pursuit of tailored nanocarriers, ultimately offering storage, protection, transport, and delivery of active ingredients. This perspective highlights recent advances in predictive PCM design, focusing on (i) structure-property relationships to target specific nanoscale dimensions and shapes and (ii) characterization of PCM dynamics primarily using time-resolved scattering techniques. We present several vignettes from these two emerging areas of PCM research and discuss key opportunities for PCM design to advance precision medicine.
Collapse
Affiliation(s)
- Alexander E Marras
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jeffrey M Ting
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Kaden C Stevens
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew V Tirrell
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
32
|
Zhang Z, Qiu N, Wu S, Liu X, Zhou Z, Tang J, Liu Y, Zhou R, Shen Y. Dose-Independent Transfection of Hydrophobized Polyplexes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102219. [PMID: 33991017 DOI: 10.1002/adma.202102219] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/09/2021] [Indexed: 05/14/2023]
Abstract
Cationic polymers dynamically complex DNA into complexes (polyplexes). So, upon dilution, polyplexes easily dissociate and lose transfection ability, limiting their in vivo systemic gene delivery. Herein, it is found that polyplex's stability and endocytosis pathway determine its transfection dose-dependence. The polyplexes of hydrophilic polycations have dose-dependent integrity and lysosome-trafficking endocytosis; at low doses, most of these polyplexes dissociate, and the remaining few are internalized and trapped in lysosomes, abolishing their transfection ability. In contrast, the polyplexes of the polycations with optimal hydrophobicity remain integrated even at low concentrations and enter cells via macropinocytosis directly into the cytosol evading lysosomes, so each polyplex can accomplish its infection process, leading to dose-independent DNA transfection like viral vectors. Furthermore, the tuned hydrophobicity balancing the affinity of anionic poly(γ-glutamic acid) (γ-PGA) to the polyplex surface enables γ-PGA to stick on the polyplex surface as a shielding layer but peel off on the cell membrane to release the naked polyplexes for dose-independent transfection. These findings may provide guidelines for developing polyplexes that mimick a viral vector's dose-independent transfection for effective in vivo gene delivery.
Collapse
Affiliation(s)
- Zhen Zhang
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Nasha Qiu
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shuling Wu
- Department of Respiratory, The First People's Hospital of Xiaoshan, Hangzhou, 311200, China
| | - Xin Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yanpeng Liu
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| |
Collapse
|
33
|
Lyu Y, Yang C, Lyu X, Pu K. Active Delivery of CRISPR System Using Targetable or Controllable Nanocarriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005222. [PMID: 33759340 DOI: 10.1002/smll.202005222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/30/2020] [Indexed: 05/17/2023]
Abstract
Among programmable nuclease-based genome editing tools, the clustered regularly interspaced short palindromic repeats (CRISPR) system with accuracy and the convenient operation is most promising to be applied in gene therapy. The development of effective delivery carriers for the CRISPR system is the major premise to achieve practical applications. Although many nanocarrier-mediated deliveries have been reported to be safer and cheaper over the physical and viral delivery, the accumulation at disease sites or controllability with the spatial or temporal resolution are still desired on nanocarriers to reduce side effects and off-target from the CRISPR system. Therefore, the targetable and controllable nanocarriers to actively deliver the CRISPR system are summarized. The cell or even organ selective nanocarriers are introduced first, followed by the discussion of nanocarriers controlled by biochemical or physical signals. At last, the potential challenges faced by existing nanocarriers are discussed.
Collapse
Affiliation(s)
- Yan Lyu
- Cosmetic Innovation Center, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Cheng Yang
- Cosmetic Innovation Center, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiaomei Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| |
Collapse
|
34
|
Dutta K, Das R, Medeiros J, Thayumanavan S. Disulfide Bridging Strategies in Viral and Nonviral Platforms for Nucleic Acid Delivery. Biochemistry 2021; 60:966-990. [PMID: 33428850 PMCID: PMC8753971 DOI: 10.1021/acs.biochem.0c00860] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Self-assembled nanostructures that are sensitive to environmental stimuli are promising nanomaterials for drug delivery. In this class, disulfide-containing redox-sensitive strategies have gained enormous attention because of their wide applicability and simplicity of nanoparticle design. In the context of nucleic acid delivery, numerous disulfide-based materials have been designed by relying on covalent or noncovalent interactions. In this review, we highlight major advances in the design of disulfide-containing materials for nucleic acid encapsulation, including covalent nucleic acid conjugates, viral vectors or virus-like particles, dendrimers, peptides, polymers, lipids, hydrogels, inorganic nanoparticles, and nucleic acid nanostructures. Our discussion will focus on the context of the design of materials and their impact on addressing the current shortcomings in the intracellular delivery of nucleic acids.
Collapse
Affiliation(s)
- Kingshuk Dutta
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ritam Das
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jewel Medeiros
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
35
|
Xu C, Yu B, Qi Y, Zhao N, Xu F. Versatile Types of Cyclodextrin-Based Nucleic Acid Delivery Systems. Adv Healthc Mater 2021; 10:e2001183. [PMID: 32935932 DOI: 10.1002/adhm.202001183] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/23/2020] [Indexed: 12/16/2022]
Abstract
Nowadays, nucleic acid therapy has become a promising way for the treatment of various malignant diseases. Cyclodextrin (CD)-based nucleic acid delivery systems have attracted widespread attention due to the favorable chemical structures and excellent biological properties of CD. Recently, a variety of CD-based nucleic acid delivery systems has been designed according to the different functions of CD for flexible gene therapies. In this review, the construction strategies and biomedical applications of CD-based nucleic acid delivery systems are mainly focused on. The review begins with an introduction to the synthesis and properties of simple CD-grafted polycations. Thereafter, CD-related supramolecular assemblies based on different guest components are discussed in detail. Finally, different CD-based organic/inorganic nanohybrids and their relevant functions are demonstrated. It is hoped that this brief review will motivate the delicate design of CD-based nucleic acid delivery systems for potential clinical applications.
Collapse
Affiliation(s)
- Chen Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology Ministry of Education) Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 China
| | - Bingran Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology Ministry of Education) Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 China
| | - Yu Qi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology Ministry of Education) Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 China
| | - Nana Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology Ministry of Education) Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 China
| | - Fu‐Jian Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology Ministry of Education) Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
36
|
Zhang S, Shen J, Li D, Cheng Y. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics 2021; 11:614-648. [PMID: 33391496 PMCID: PMC7738854 DOI: 10.7150/thno.47007] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022] Open
Abstract
CRISPR/Cas9 genome editing has gained rapidly increasing attentions in recent years, however, the translation of this biotechnology into therapy has been hindered by efficient delivery of CRISPR/Cas9 materials into target cells. Direct delivery of CRISPR/Cas9 system as a ribonucleoprotein (RNP) complex consisting of Cas9 protein and single guide RNA (sgRNA) has emerged as a powerful and widespread method for genome editing due to its advantages of transient genome editing and reduced off-target effects. In this review, we summarized the current Cas9 RNP delivery systems including physical approaches and synthetic carriers. The mechanisms and beneficial roles of these strategies in intracellular Cas9 RNP delivery were reviewed. Examples in the development of stimuli-responsive and targeted carriers for RNP delivery are highlighted. Finally, the challenges of current Cas9 RNP delivery systems and perspectives in rational design of next generation materials for this promising field will be discussed.
Collapse
Affiliation(s)
- Song Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiangtao Shen
- The Second People's Hospital of Taizhou affiliated to Yangzhou University, Taizhou, 225500, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| |
Collapse
|
37
|
Shetty C, Noronha A, Pontarelli A, Wilds CJ, Oh JK. Dual-Location Dual-Acid/Glutathione-Degradable Cationic Micelleplexes through Hydrophobic Modification for Enhanced Gene Silencing. Mol Pharm 2020; 17:3979-3989. [DOI: 10.1021/acs.molpharmaceut.0c00767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chaitra Shetty
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada H4B 1R6
| | - Anne Noronha
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada H4B 1R6
| | - Alexander Pontarelli
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada H4B 1R6
| | - Christopher J. Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada H4B 1R6
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada H4B 1R6
| |
Collapse
|
38
|
Yan H, Qiu Y, Wang J, Jiang Q, Wang H, Liao Y, Xie X. Wholly Visible-Light-Responsive Host-Guest Supramolecular Gels Based on Methoxy Azobenzene and β-Cyclodextrin Dimers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7408-7417. [PMID: 32486643 DOI: 10.1021/acs.langmuir.0c00964] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Much attention has been paid to construct photoresponsive host-guest supramolecular gels; however, red-shifting the responsive wavelength remains a formidable challenge. Here, a wholly visible-light-responsive supramolecular gel was fabricated through the host-guest interaction between a β-cyclodextrin (β-CD) dimer and a tetra-ortho-methoxy-substituted azobenzene (mAzo) dimer (binary gelator) in DMSO/H2O (V/V = 8/2). The minimum gelation concentration of the low-molecular-weight binary gelator was 6 wt % measured via the tube inversion method. The substituted methoxy groups shifted the responsive wavelengths of trans-mAzo and cis-mAzo to the green and blue light regions, respectively. The host-guest interaction between mAzo and β-CD as the driving force for gelation was confirmed using the 1H-NMR and 2D 1H NOESY spectra. The supramolecular gel showed good self-supporting ability with a storage modulus higher than 104 Pa. The release of Rhodamine B loaded in the gel as a model drug could be controlled by green light irradiation. We envisioned the potential applications of the wholly visible-light-responsive supramolecular compounds ranging from biomedical materials to smart materials.
Collapse
Affiliation(s)
- Hongchao Yan
- Key Laboratory of Material Chemistry for Energy Conversion and Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuan Qiu
- Key Laboratory of Material Chemistry for Energy Conversion and Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jing Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qian Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yonggui Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- State Key Laboratory of Material Processing and Die&Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaolin Xie
- Key Laboratory of Material Chemistry for Energy Conversion and Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- State Key Laboratory of Material Processing and Die&Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
39
|
Sun H, Erdman W, Yuan Y, Mohamed MA, Xie R, Wang Y, Gong S, Cheng C. Crosslinked polymer nanocapsules for therapeutic, diagnostic, and theranostic applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1653. [PMID: 32618433 DOI: 10.1002/wnan.1653] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Crosslinked polymer nanocapsules (CPNCs) are hollowed nanoparticles with network-like polymeric shells stabilized by primary bonds. CPNCs have drawn broad and significant interests as nanocarriers for biomedical applications in recent years. As compared with conventional polymeric nanoparticles systems without cavity and/or crosslinking architectures, CPNCs possess significant biomedical relevant advantages, including (a) superior structural stability against environmental conditions, (b) high loading capacity and ability for region-specific loading of multiple cargos, (c) tuneable cargo release rate via crosslinking density, and (d) high specific surface area to facilitate surface adsorption, modification, and interactions. With appropriate base polymers and crosslinkages, CPNCs can be biocompatible and biodegradable. While CPNC-based biomedical nanoplatforms can possess relatively stable physicochemical properties owing to their crosslinked architectures, various biomedically relevant stimuli-responsivities can be incorporated with them through specific structural designs. CPNCs have been studied for the delivery of small molecule drugs, genes, proteins, and other therapeutic agents. They have also been investigated as diagnostic platforms for magnetic resonance imaging, ultrasound imaging, and optical imaging. Moreover, CPNCs have been utilized to carry both therapeutics and bioimaging agents for theranostic applications. This article reviews the therapeutic, diagnostic and theranostic applications of CPNCs, as well as the preparation of these CPNCs, reported in the past decade. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Haotian Sun
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - William Erdman
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Yuan Yuan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Mohamed Alaa Mohamed
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA.,Department of Chemistry, Mansoura University, Mansoura, Egypt
| | - Ruosen Xie
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yuyuan Wang
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shaoqin Gong
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chong Cheng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| |
Collapse
|
40
|
Wang Y, Shahi PK, Xie R, Zhang H, Abdeen AA, Yodsanit N, Ma Z, Saha K, Pattnaik BR, Gong S. A pH-responsive silica-metal-organic framework hybrid nanoparticle for the delivery of hydrophilic drugs, nucleic acids, and CRISPR-Cas9 genome-editing machineries. J Control Release 2020; 324:194-203. [PMID: 32380204 DOI: 10.1016/j.jconrel.2020.04.052] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 04/14/2020] [Accepted: 04/30/2020] [Indexed: 01/04/2023]
Abstract
Efficient delivery of hydrophilic drugs, nucleic acids, proteins, and any combination thereof is essential for various biomedical applications. Herein, we report a straightforward, yet versatile approach to efficiently encapsulate and deliver various hydrophilic payloads using a pH-responsive silica-metal-organic framework hybrid nanoparticle (SMOF NP) consisting of both silica and zeolitic imidazole framework (ZIF). This unique SMOF NP offers a high loading content and efficiency, excellent stability, and robust intracellular delivery of a variety of payloads, including hydrophilic small molecule drugs (e.g., doxorubicin hydrochloride), nucleic acids (e.g., DNA and mRNA), and genome-editing machineries (e.g., Cas9-sgRNA ribonucleoprotein (RNP), and RNP together with donor DNA (e.g., RNP + ssODN)). The superior drug delivery/gene transfection/genome-editing efficiencies of the SMOF NP are attributed to its pH-controlled release and endosomal escape capabilities due to the proton sponge effect enabled by the imidazole moieties in the SMOF NPs. Moreover, the surface of the SMOF NP can be easily customized (e.g., PEGylation and ligand conjugation) via various functional groups incorporated into the silica component. RNP-loaded SMOF NPs induced efficient genome editing in vivo in murine retinal pigment epithelium (RPE) tissue via subretinal injection, providing a highly promising nanoplatform for the delivery of a wide range of hydrophilic payloads.
Collapse
Affiliation(s)
- Yuyuan Wang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Pawan K Shahi
- Department of Pediatrics, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Ruosen Xie
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Huilong Zhang
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amr A Abdeen
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Nisakorn Yodsanit
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Zhenqiang Ma
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Krishanu Saha
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Bikash R Pattnaik
- Department of Pediatrics, University of Wisconsin - Madison, Madison, WI 53706, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison WI 53706, USA
| | - Shaoqin Gong
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
41
|
Gong Y, Tian S, Xuan Y, Zhang S. Lipid and polymer mediated CRISPR/Cas9 gene editing. J Mater Chem B 2020; 8:4369-4386. [DOI: 10.1039/d0tb00207k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) system is the most widely used tool for gene editing.
Collapse
Affiliation(s)
- Yan Gong
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education
- College of Life Science
- Dalian Minzu University
- Dalian
- China
| | - Siyu Tian
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education
- College of Life Science
- Dalian Minzu University
- Dalian
- China
| | - Yang Xuan
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education
- College of Life Science
- Dalian Minzu University
- Dalian
- China
| | - Shubiao Zhang
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education
- College of Life Science
- Dalian Minzu University
- Dalian
- China
| |
Collapse
|
42
|
Tan Z, Jiang Y, Ganewatta MS, Kumar R, Keith A, Twaroski K, Pengo T, Tolar J, Lodge TP, Reineke TM. Block Polymer Micelles Enable CRISPR/Cas9 Ribonucleoprotein Delivery: Physicochemical Properties Affect Packaging Mechanisms and Gene Editing Efficiency. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01645] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhe Tan
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yaming Jiang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mitra S. Ganewatta
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Allison Keith
- Department of Pediatrics, Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Kirk Twaroski
- Department of Pediatrics, Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Thomas Pengo
- University of Minnesota Informatics Institute, University Imaging Center, Minneapolis, Minnesota 55455, United States
| | - Jakub Tolar
- Department of Pediatrics, Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Timothy P. Lodge
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M. Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
43
|
Tan Z, Jiang Y, Zhang W, Karls L, Lodge TP, Reineke TM. Polycation Architecture and Assembly Direct Successful Gene Delivery: Micelleplexes Outperform Polyplexes via Optimal DNA Packaging. J Am Chem Soc 2019; 141:15804-15817. [PMID: 31553590 DOI: 10.1021/jacs.9b06218] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cellular delivery of biomacromolecules is vital to medical research and therapeutic development. Cationic polymers are promising and affordable candidate vehicles for these precious payloads. However, the impact of polycation architecture and solution assembly on the biological mechanisms and efficacy of these vehicles has not been clearly defined. In this study, four polymers containing the same cationic poly(2-(dimethylamino)ethyl methacrylate) (D) block but placed in different architectures have been synthesized, characterized, and compared for cargo binding and biological performance. The D homopolymer and its diblock copolymer poly(ethylene glycol)-block-poly(2-(dimethylamino) ethyl methacrylate) (OD) readily encapsulate pDNA to form polyplexes. Two amphiphilic block polymer variants, poly(2-(dimethylamino)ethyl methacrylate)-block-poly(n-butyl methacrylate) (DB) and poly(ethylene glycol)-block-poly(2-(dimethylamino)ethyl methacrylate)-block-poly(n-butyl methacrylate) (ODB), self-assemble into micelles, which template pDNA winding around the cationic corona to form micelleplexes. Micelleplexes were found to have superior delivery efficiency compared to polyplexes and detailed physicochemical and biological characterizations were performed to pinpoint the mechanisms by testing hypotheses related to cellular internalization, intracellular trafficking, and pDNA unpackaging. For the first time, we find that the higher concentration of amines housed in micelleplexes stimulates both cellular internalization and potential endosomal escape, and the physical motif of pDNA winding into micelleplexes, reminiscent of DNA compaction by histones in chromatin, preserves the pDNA secondary structure in its native B form. This likely allows greater payload accessibility for protein expression with micelleplexes compared to polyplexes, which tightly condense pDNA and significantly distort its helicity. This work provides important guidance for the design of successful biomolecular delivery systems via optimizing the physicochemical properties.
Collapse
Affiliation(s)
- Zhe Tan
- Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Yaming Jiang
- Department of Chemical Engineering & Materials Science , University of Minnesota , 421 Washington Avenue SE , Minneapolis , Minnesota 55455 , United States
| | - Wenjia Zhang
- Department of Chemical Engineering & Materials Science , University of Minnesota , 421 Washington Avenue SE , Minneapolis , Minnesota 55455 , United States
| | - Logan Karls
- Department of Chemical Engineering & Materials Science , University of Minnesota , 421 Washington Avenue SE , Minneapolis , Minnesota 55455 , United States
| | - Timothy P Lodge
- Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States.,Department of Chemical Engineering & Materials Science , University of Minnesota , 421 Washington Avenue SE , Minneapolis , Minnesota 55455 , United States
| | - Theresa M Reineke
- Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
44
|
Abstract
The emergence of the CRISPR-Cas9 gene editing system has brought much hope and excitement to the field of gene therapy and the larger scientific community. However, in order for CRISPR-based therapies to be translated to the clinical setting, there is an urgent need to develop optimized vectors for their delivery. The delivery vector is a crucial determinant of the therapeutic efficacy of gene editing and should be designed to accommodate various factors including the form of the payload, the physiological environment, and the potential immune responses. Recently, biomaterials have become an attractive option for the delivery of Cas9 due to their tunability, biocompatibility and increasing efficacy at drug delivery. Biomaterials offer a unique solution for creating tailored vectors to meet the demands of various applications that cannot be easily met by other delivery methods. In this review, we will discuss the various biomaterial systems that have been used to deliver Cas9 in its plasmid, mRNA and protein forms. In addition, the functions of these materials will be reviewed to understand their roles in Cas9 delivery. Finally, the immune challenges associated with Cas9 and the delivery materials will be discussed as an understanding of the immune responses along with the functions of biomaterials will ultimately guide the field in designing new delivery systems for the clinical applications of CRISPR-Cas9.
Collapse
Affiliation(s)
- Joon Eoh
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | |
Collapse
|
45
|
Wang Y, Ye M, Xie R, Gong S. Enhancing the In Vitro and In Vivo Stabilities of Polymeric Nucleic Acid Delivery Nanosystems. Bioconjug Chem 2019; 30:325-337. [PMID: 30592619 PMCID: PMC6941189 DOI: 10.1021/acs.bioconjchem.8b00749] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Gene therapy holds great promise for various medical and biomedical applications. Nonviral gene delivery systems formed by cationic polymer and nucleic acids (e.g., polyplexes) have been extensively investigated for targeted gene therapy; however, their in vitro and in vivo stability is affected by both their intrinsic properties such as chemical compositions (e.g., polymer molecular weight and structure, and N/P ratio) and a number of environmental factors (e.g., shear stress during circulation in the bloodstream, interaction with the serum proteins, and physiological ionic strength). In this review, we surveyed the effects of a number of important intrinsic and environmental factors on the stability of polymeric gene delivery systems, and discussed various strategies to enhance the stability of polymeric gene delivery systems, thereby enabling efficient gene delivery into target cells. Future opportunities and challenges of polymeric nucleic acid delivery nanosystems were also briefly discussed.
Collapse
Affiliation(s)
- Yuyuan Wang
- Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53715, United States
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, Wisconsin 53715, United States
| | - Mingzhou Ye
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, Wisconsin 53715, United States
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53715, United States
| | - Ruosen Xie
- Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53715, United States
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, Wisconsin 53715, United States
| | - Shaoqin Gong
- Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53715, United States
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, Wisconsin 53715, United States
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53715, United States
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53715, United States
| |
Collapse
|
46
|
Peng YY, Diaz-Dussan D, Kumar P, Narain R. Tumor Microenvironment-Regulated Redox Responsive Cationic Galactose-Based Hyperbranched Polymers for siRNA Delivery. Bioconjug Chem 2018; 30:405-412. [DOI: 10.1021/acs.bioconjchem.8b00785] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yi-Yang Peng
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton T6G 1H9, Alberta, Canada
| | - Diana Diaz-Dussan
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton T6G 1H9, Alberta, Canada
| | - Piyush Kumar
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, T6G 1Z2, Alberta, Canada
| | - Ravin Narain
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton T6G 1H9, Alberta, Canada
| |
Collapse
|