1
|
Haughton J, Cotter SL, Parnell WJ, Shearer T. Bayesian inference on a microstructural, hyperelastic model of tendon deformation. J R Soc Interface 2022; 19:20220031. [PMID: 35582809 PMCID: PMC9114946 DOI: 10.1098/rsif.2022.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
Microstructural models of soft-tissue deformation are important in applications including artificial tissue design and surgical planning. The basis of these models, and their advantage over their phenomenological counterparts, is that they incorporate parameters that are directly linked to the tissue's microscale structure and constitutive behaviour and can therefore be used to predict the effects of structural changes to the tissue. Although studies have attempted to determine such parameters using diverse, state-of-the-art, experimental techniques, values ranging over several orders of magnitude have been reported, leading to uncertainty in the true parameter values and creating a need for models that can handle such uncertainty. We derive a new microstructural, hyperelastic model for transversely isotropic soft tissues and use it to model the mechanical behaviour of tendons. To account for parameter uncertainty, we employ a Bayesian approach and apply an adaptive Markov chain Monte Carlo algorithm to determine posterior probability distributions for the model parameters. The obtained posterior distributions are consistent with parameter measurements previously reported and enable us to quantify the uncertainty in their values for each tendon sample that was modelled. This approach could serve as a prototype for quantifying parameter uncertainty in other soft tissues.
Collapse
Affiliation(s)
- James Haughton
- Department of Mathematics, University of Manchester, Manchester M13 9PL, UK
| | - Simon L. Cotter
- Department of Mathematics, University of Manchester, Manchester M13 9PL, UK
| | - William J. Parnell
- Department of Mathematics, University of Manchester, Manchester M13 9PL, UK
| | - Tom Shearer
- Department of Mathematics, University of Manchester, Manchester M13 9PL, UK
- Department of Materials, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
2
|
Liu G, Valvo V, Ahn SW, Thompson D, Deans K, Kang JW, Bhagavatula S, Dominas C, Jonas O. A Two-Photon Microimaging-Microdevice System for Four-Dimensional Imaging of Local Drug Delivery in Tissues. Int J Mol Sci 2021; 22:11752. [PMID: 34769180 PMCID: PMC8584268 DOI: 10.3390/ijms222111752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Advances in the intratumor measurement of drug responses have included a pioneering biomedical microdevice for high throughput drug screening in vivo, which was further advanced by integrating a graded-index lens based two-dimensional fluorescence micro-endoscope to monitor tissue responses in situ across time. While the previous system provided a bulk measurement of both drug delivery and tissue response from a given region of the tumor, it was incapable of visualizing drug distribution and tissue responses in a three-dimensional (3D) way, thus missing the critical relationship between drug concentration and effect. Here we demonstrate a next-generation system that couples multiplexed intratumor drug release with continuous 3D spatial imaging of the tumor microenvironment via the integration of a miniaturized two-photon micro-endoscope. This enables optical sectioning within the live tissue microenvironment to effectively profile the entire tumor region adjacent to the microdevice across time. Using this novel microimaging-microdevice (MI-MD) system, we successfully demonstrated the four-dimensional imaging (3 spatial dimensions plus time) of local drug delivery in tissue phantom and tumors. Future studies include the use of the MI-MD system for monitoring of localized intra-tissue drug release and concurrent measurement of tissue responses in live organisms, with applications to study drug resistance due to nonuniform drug distribution in tumors, or immune cell responses to anti-cancer agents.
Collapse
Affiliation(s)
- Guigen Liu
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA; (G.L.); (V.V.); (S.W.A.); (D.T.); (K.D.); (S.B.); (C.D.)
| | - Veronica Valvo
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA; (G.L.); (V.V.); (S.W.A.); (D.T.); (K.D.); (S.B.); (C.D.)
| | - Sebastian W. Ahn
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA; (G.L.); (V.V.); (S.W.A.); (D.T.); (K.D.); (S.B.); (C.D.)
| | - Devon Thompson
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA; (G.L.); (V.V.); (S.W.A.); (D.T.); (K.D.); (S.B.); (C.D.)
| | - Kyle Deans
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA; (G.L.); (V.V.); (S.W.A.); (D.T.); (K.D.); (S.B.); (C.D.)
| | - Jeon Woong Kang
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Sharath Bhagavatula
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA; (G.L.); (V.V.); (S.W.A.); (D.T.); (K.D.); (S.B.); (C.D.)
| | - Christine Dominas
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA; (G.L.); (V.V.); (S.W.A.); (D.T.); (K.D.); (S.B.); (C.D.)
| | - Oliver Jonas
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA; (G.L.); (V.V.); (S.W.A.); (D.T.); (K.D.); (S.B.); (C.D.)
| |
Collapse
|
3
|
Abstract
Recent developments within micro-computed tomography (μCT) imaging have combined to extend our capacity to image tissue in three (3D) and four (4D) dimensions at micron and sub-micron spatial resolutions, opening the way for virtual histology, live cell imaging, subcellular imaging and correlative microscopy. Pivotal to this has been the development of methods to extend the contrast achievable for soft tissue. Herein, we review the new capabilities within the field of life sciences imaging, and consider how future developments in this field could further benefit the life sciences community.
Collapse
Affiliation(s)
- Shelley D Rawson
- The Henry Royce Institute and School of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Jekaterina Maksimcuka
- The Henry Royce Institute and School of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Philip J Withers
- The Henry Royce Institute and School of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Sarah H Cartmell
- The Henry Royce Institute and School of Materials, The University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|