1
|
Ming S, Zhang Y, Lin K, Zhao J, Zhang Y. Large-fused-ring-based D-A type electrochromic polymer with magenta/yellowish green/cyan three-color transitions. Phys Chem Chem Phys 2023; 25:1970-1976. [PMID: 36541439 DOI: 10.1039/d2cp04987b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Large-fused-ring-based conjugated polymers possess wide application prospects in optoelectronic devices due to their high charge transport and wide optical absorption. In this paper, three low-bandgap donor-acceptor (D-A) type polymers PBIT-X (X = 1, 2, 3) based on alkylated benzodithiophene and tris(thienothiophene) as donors and thiadiazol-quinoxaline as an acceptor were synthesized via Stille coupling polymerization at different (donor/acceptor) D/A molar feed ratios. The band gaps of PBIT-1, PBIT-2, PBIT-3 were 1.10 eV, 1.04 eV and 1.02 eV, respectively. Spectroelectrochemistry studies showed that the three D-A type polymers have dual bands located in visible and near-infrared regions in the neutral state. The three D-A type polymers possess good electrochromic properties, such as an optical contrast of 56% and response time of 0.3 s. In particular, PBIT-3 could achieve three color changes from magenta to yellowish green to cyan during the oxidation process. The results indicate that these D-A type conjugated polymers based on large fused-ring units exhibit multiple color changes, endowing them with huge potential applications in visible and near-infrared electrochromic devices.
Collapse
Affiliation(s)
- Shouli Ming
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.
| | - Yuling Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.
| | - Kaiwen Lin
- Department of Materials and Food, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, P. R. China
| | - Jinsheng Zhao
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.
| | - Yan Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.
| |
Collapse
|
2
|
Ming S, Du Y, Zhao J, Zhang Y. Covering visible light region of fused rings-based D-A type electrochromic polymer with high-coloration efficiency. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
3
|
Ming S, Zhen S, Zhang H, Zhang Z, Lu B, Zhao J, Nie G, Xu J. Solvent-soluble thiophene-benzene based electrochromic polymers as electrode materials for supercapacitor. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
4
|
Ming S, Zhen S, Zhang H, Han X, Zhang Y, Xu J, Zhao J. Electrochromic polymer with asymmetric substituents – Inhibit aggregation and modify respond speed. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
5
|
Zhang L, Zhan W, Dong Y, Yang T, Zhang C, Ouyang M, Li W. Liquid/Liquid Interfacial Suzuki Polymerization Prepared Novel Triphenylamine-Based Conjugated Polymer Films with Excellent Electrochromic Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20810-20820. [PMID: 33886266 DOI: 10.1021/acsami.1c02745] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Preparing conjugated polymer films via interfacial Suzuki polymerization is a promising method for obtaining desirable electrochromic materials with desired structures. Here, a series of aryl boronic esters and triphenylamine-based aryl bromides were applied as precursors, and several polymer films were finally obtained via the liquid/liquid interfacial Suzuki polymerization reaction under mild conditions. FT-IR, UV, and Raman as well as electrochemistry, SEM, and EDS results all provide strong evidence for the formation of the desired polymer structures. Among them, the TPA-Wu (containing triphenylamine and alkyl-fluorene) film exhibits the best film-forming quality. Besides, these polymer films were applied in electrochromic applications. The results show that electrochromic properties can be affected by the quality of film formation. It is worth mentioning that the TPA-Wu film could achieve excellent electrochromic properties with reversible multicolor changes from transparent yellow to orange-red to blue-green under varying potentials. Compared to other triphenylamine-based electrochromic materials, the TPA-Wu film possessed the most desirable coloring efficiency, higher optical contrast, and shorter switching time. This work provides an existing general approach of liquid/liquid interfacial Suzuki polymerization for constructing conjugated polymer films toward electrochromic applications.
Collapse
Affiliation(s)
- Ling Zhang
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Wang Zhan
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Yujie Dong
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Tao Yang
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Cheng Zhang
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Mi Ouyang
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Weijun Li
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
6
|
A Conjugated Copolymer Bearing Imidazolium-based Ionic Liquid: Electrochemical Synthesis and Electrochromic Properties. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-021-2525-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Lv X, Yang Y, Xu L, Li J, Xu Z, Zhu R, Wright DS, Zhang C. An all-solid-state polymeric electrochromic device based on two well-matched electrodes with fast switching time and excellent cycling stability. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Lv X, Xu X, Zhang Y, Wright DS, Zhang Y, Zhang C. Highly transparent TiO 2 nanowires as charge-balancing layers for assembling electrochromic devices: effect of thickness on electrode potentials and electrochromic performance. NANOTECHNOLOGY 2020; 31:355201. [PMID: 32408277 DOI: 10.1088/1361-6528/ab932a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
TiO2 nanowires with high transparency and good ion storage capacity were explored as the charge-balancing layers for assembling electrochromic devices (ECDs). Increase thickness of TiO2 nanowires layer lowers the driving potential of the entire ECDs accompanied with reduced potential at the EC layer electrode, which further leads to decreased optical contrast and switching speed of the ECDs. Meanwhile, it can be found that the EC layer electrodes possess larger charge densities than those of TiO2 nanowire electrodes during the electrochemical redox process of these ECDs. However, the intrinsic injection and extraction charge densities of each single electrode are similar, which appears that the intrinsic charge balance of EC layer and TiO2 nanowires electrodes play more important role in the cycling stability of the ECDs. ECD with an optimum thickness of the TiO2 nanowires layer exhibits good electrochromic properties in term of high optical contrast (∼45%), fast switching speed (3.23 s) and excellent cycling stability (which has nearly no decay after 5000 cycles). This study explores the effects of thickness of TiO2 Nanowires layer on electrode potentials and electrochromic properties of electrochromic devices (ECDs), providing a potentially new direction for the preparation of ECDs with good integrated performance.
Collapse
Affiliation(s)
- Xiaojing Lv
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
9
|
Zheng R, Wang Y, Pan J, Malik HA, Zhang H, Jia C, Weng X, Xie J, Deng L. Toward Easy-to-Assemble, Large-Area Smart Windows: All-in-One Cross-Linked Electrochromic Material and Device. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27526-27536. [PMID: 32423198 DOI: 10.1021/acsami.0c02337] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Conventional electrochromic devices with a sandwich structure consist of multiple interfaces, which enhance electron trapping on the interfaces. Furthermore, crack generation in the electrochromic layer is inevitable due to repeated ion insertion and extraction during the service process. These problems increase the fabrication complexity and lead to poor performance and stability, which are severely limiting and prime concerns for the future development of the electrochromism field. Here, a strategy of synthesizing an all-in-one self-healing electrochromic material, TAFPy-MA, is presented, which has been utilized for the fabrication of a high-reliability, large-scale, and easy-assembly smart electrochromic window. The all-in-one self-healing electrochromic material can undergo in situ redox reactions with Li+ ions to reduce resistance transfer and avoid interface obstacles, and the reversible Diels-Alder cross-linking network structure can heal the cracks to improve the reliability of the electrochromic layer. High ion diffusivity (1.13 × 10-5 cm2 s-1), rapid color switching (3.9/3.7 s), high coloration efficiency (413 cm2 C-1), excellent stability (sustains 88.7% after 1000 cycles) and reliability (crack can be healed in 110 s), and large-scale smart windows (30 × 35 cm2) are achieved using the all-in-one electrochromic material, which exhibits fascinating and promising features for a wide range of applications in buildings, airplanes, etc.
Collapse
Affiliation(s)
- Rongzong Zheng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Yi Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Jianbo Pan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Haseeb Ashraf Malik
- State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Hongping Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Chunyang Jia
- State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Xiaolong Weng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Jianliang Xie
- State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Longjiang Deng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| |
Collapse
|
10
|
Lv X, Bi Q, Tameev A, Zhang Y, Qian L, Ouyang M, Zhang C. A new green‐to‐transmissive polymer with electroactive poly(3,4‐ethylene dioxythiophene):poly(styrene sulfonate) as an interface layer for achieving high‐performance electrochromic device. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Xiaojing Lv
- International Science and Technology Cooperation Base of Energy Materials and Application, College of Chemical EngineeringZhejiang University of Technology Hangzhou People's Republic of China
| | - Qian Bi
- International Science and Technology Cooperation Base of Energy Materials and Application, College of Chemical EngineeringZhejiang University of Technology Hangzhou People's Republic of China
| | - Alexey Tameev
- The Laboratory for Electronic and Photonic Processes in Polymer NanomaterialsA.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences Moscow Russia
| | - Yujian Zhang
- Department of Materials ChemistryHuzhou University Huzhou People's Republic of China
| | - Liang Qian
- International Science and Technology Cooperation Base of Energy Materials and Application, College of Chemical EngineeringZhejiang University of Technology Hangzhou People's Republic of China
| | - Mi Ouyang
- International Science and Technology Cooperation Base of Energy Materials and Application, College of Chemical EngineeringZhejiang University of Technology Hangzhou People's Republic of China
| | - Cheng Zhang
- International Science and Technology Cooperation Base of Energy Materials and Application, College of Chemical EngineeringZhejiang University of Technology Hangzhou People's Republic of China
| |
Collapse
|
11
|
Zheng R, Huang T, Zhang Z, Sun Z, Niu H, Wang C, Wang W. Novel polyimides containing flexible carbazole blocks with electrochromic and electrofluorescencechromic properties. RSC Adv 2020; 10:6992-7003. [PMID: 35493867 PMCID: PMC9049831 DOI: 10.1039/c9ra10515h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 01/18/2020] [Indexed: 12/03/2022] Open
Abstract
A series of polyimides (PIs) were prepared by polycondensation of a diamine monomer with five anhydrides (1,2,4,5-benzenetetracarboxylic anhydride (BTA), 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTD), 3,3',4,4'-biphenyltetracarboxylic dianhydride (BTD), 4-[(1,3-dihydro-1,3-dioxo-5-isobenzofuranyl)oxy]-1,3-isobenzofurandione (DDII), and 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BPTD)), which have anodic electrochromic (EC) properties. These PIs not only show good solubility and thermal stability, but also demonstrate stable electrochemical oxidation behavior and good EC properties, and the highest retained electroactivity reaches 99% after 600 cycles. In addition, the series of PIs exhibit excellent electrofluorescencechromic (EFC) properties. Therefore, the novel materials will contribute to the application of EC or EFC displays in the future.
Collapse
Affiliation(s)
- Rongrong Zheng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Department of Macromolecular Science and Engineering, School of Chemical, Chemical Engineering and Materials, Heilongjiang University Harbin 150080 P. R. China
| | - Tao Huang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Department of Macromolecular Science and Engineering, School of Chemical, Chemical Engineering and Materials, Heilongjiang University Harbin 150080 P. R. China
| | - Zhipeng Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Department of Macromolecular Science and Engineering, School of Chemical, Chemical Engineering and Materials, Heilongjiang University Harbin 150080 P. R. China
| | - Zhiyao Sun
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Department of Macromolecular Science and Engineering, School of Chemical, Chemical Engineering and Materials, Heilongjiang University Harbin 150080 P. R. China
| | - Haijun Niu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Department of Macromolecular Science and Engineering, School of Chemical, Chemical Engineering and Materials, Heilongjiang University Harbin 150080 P. R. China
| | - Cheng Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Department of Macromolecular Science and Engineering, School of Chemical, Chemical Engineering and Materials, Heilongjiang University Harbin 150080 P. R. China
| | - Wen Wang
- School of Materials Science and Engineering, Harbin Institute of Technology Harbin 150080 P. R. China
| |
Collapse
|
12
|
Jena SR, Choudhury J. A fast-switching electrochromic device with a surface-confined 3D metallo-organic coordination assembly. Chem Commun (Camb) 2020; 56:559-562. [PMID: 31829325 DOI: 10.1039/c9cc06920h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Demonstrated herein is a fast (<1 s)-switching solid-state electrochromic device (t = 0.49 s for coloration and 0.90 s for bleaching), fabricated with a novel imidazolium-linked [Fe(terpyridine)2]2+ chromophore-based surface-confined three dimensional metallo-organic coordination assembly. The device also exhibits promising electrochromic attributes such as high coloration efficiency (η = 275 cm2 C-1), moderate operating voltage (from -2 V to +3.2 V) and transmittance contrast (ΔT = 40%), and high cycling stability (up to 4500 cycles).
Collapse
Affiliation(s)
- Satya Ranjan Jena
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462 066, India.
| | | |
Collapse
|
13
|
Yang G, Zhang YM, Cai Y, Yang B, Gu C, Zhang SXA. Advances in nanomaterials for electrochromic devices. Chem Soc Rev 2020; 49:8687-8720. [DOI: 10.1039/d0cs00317d] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review article systematically highlights the recent advances regarding the design, preparation, performance and application of new and unique nanomaterials for electrochromic devices.
Collapse
Affiliation(s)
- Guojian Yang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
- College of Chemistry
| | - Yu-Mo Zhang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
- College of Chemistry
| | - Yiru Cai
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Baige Yang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
- College of Chemistry
| | - Chang Gu
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
- College of Chemistry
| | - Sean Xiao-An Zhang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
- College of Chemistry
| |
Collapse
|
14
|
Chu T, Yue H, Zhao Y, Du H, Zhang Y, Han X, Zhao J, Zhang J. Synthesis and characterization of D-A type conjugated electrochromic polymers with cross-linked structure employing a novel and multi-functionalized molecular as the acceptor unit. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Mrinalini M, Prasanthkumar S. Recent Advances on Stimuli‐Responsive Smart Materials and their Applications. Chempluschem 2019; 84:1103-1121. [DOI: 10.1002/cplu.201900365] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/25/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Madoori Mrinalini
- Polymers & Functional Materials DivisionCSIR-Indian Institute of Chemical Technology (IICT) Tarnaka Hyderabad- 500007, Telangana India
- Academy of Scientific and Innovation Research (AcSIR) Kamla Nehru Nagar, Ghaziabad Uttar Pradesh 201002 India
| | - Seelam Prasanthkumar
- Polymers & Functional Materials DivisionCSIR-Indian Institute of Chemical Technology (IICT) Tarnaka Hyderabad- 500007, Telangana India
- Academy of Scientific and Innovation Research (AcSIR) Kamla Nehru Nagar, Ghaziabad Uttar Pradesh 201002 India
| |
Collapse
|
16
|
Yellow-to-blue switching of indole[3,2-b]carbazole-based electrochromic polymers and the corresponding electrochromic devices with outstanding photopic contrast, fast switching speed, and satisfactory cycling stability. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.02.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Kuai Y, Li W, Dong Y, Wong WY, Yan S, Dai Y, Zhang C. Multi-color electrochromism from coordination nanosheets based on a terpyridine-Fe(ii) complex. Dalton Trans 2019; 48:15121-15126. [PMID: 31559982 DOI: 10.1039/c9dt02980j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A new metal complex electrochromic nanosheet with multiple color electrochromism, fast switching speed and excellent cyclic stability was prepared controllably by the liquid–liquid interface self-assembly method.
Collapse
Affiliation(s)
- Yu Kuai
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Weijun Li
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Yujie Dong
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology & Chemical Technology
- The Hong Kong Polytechnic University
- P. R. China
| | - Shuanma Yan
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Yuyu Dai
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Cheng Zhang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| |
Collapse
|
18
|
Zhang L, Luo F, Li W, Yan S, Chen Z, Zhao R, Ren N, Wu Y, Chen Y, Zhang C. Conjugation-broken thiophene-based electropolymerized polymers with well-defined structures: effect of conjugation lengths on electrochromic properties. Phys Chem Chem Phys 2019; 21:24092-24100. [DOI: 10.1039/c9cp04308j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present work highlights the links between electrochromic properties and conjugation-broken thiophene polymers with well-defined structures.
Collapse
Affiliation(s)
- Ling Zhang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology
- International Technology Cooperation Base of Energy Material and Application
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
| | - Feifei Luo
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology
- International Technology Cooperation Base of Energy Material and Application
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
| | - Weijun Li
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology
- International Technology Cooperation Base of Energy Material and Application
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
| | - Shuanma Yan
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology
- International Technology Cooperation Base of Energy Material and Application
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
| | - Zhangxin Chen
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology
- International Technology Cooperation Base of Energy Material and Application
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
| | - Ruiyang Zhao
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao
- P. R. China
| | - Ning Ren
- Zhejiang Chaowei Chuangyuan Industrial Co. LTD
- XingChang
- P. R. China
| | - Yizhao Wu
- Zhejiang Chaowei Chuangyuan Industrial Co. LTD
- XingChang
- P. R. China
| | - Yuliang Chen
- Zhejiang Chaowei Chuangyuan Industrial Co. LTD
- XingChang
- P. R. China
| | - Cheng Zhang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology
- International Technology Cooperation Base of Energy Material and Application
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
| |
Collapse
|