1
|
Chen B, Gao J, Sun H, Chen Z, Qiu X. Innovative applications of SERS in precision medicine: In situ and real-time live imaging. Talanta 2025; 294:128225. [PMID: 40327985 DOI: 10.1016/j.talanta.2025.128225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/20/2025] [Accepted: 04/24/2025] [Indexed: 05/08/2025]
Abstract
Surface-enhanced Raman scattering (SERS), a molecular spectroscopic technique with high sensitivity and specificity, has demonstrated groundbreaking potential in precision medicine in recent years. This review systematically summarizes recent advancements in SERS technology for in situ and real-time live imaging, focusing on its core value in early tumor diagnosis, intraoperative navigation, drug delivery monitoring, and dynamic pathological analysis. By optimizing nanoscale probe design-including targeted functionalization, enhanced biocompatibility, and integration with imaging systems-SERS overcomes the sensitivity and spatiotemporal resolution limitations of traditional imaging techniques, enabling precise capture and dynamic tracking of molecular events in live biological environments. The article further analyzes challenges in clinical translation, such as signal stability in complex biological environments, multimodal imaging coordination, and standardized data processing methods. Future directions for personalized therapy and intelligent integrated diagnostics are also discussed.
Collapse
Affiliation(s)
- Biqing Chen
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang, 150081, PR China.
| | - Jiayin Gao
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang, 150081, PR China
| | - Haizhu Sun
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang, 150081, PR China
| | - Zhi Chen
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang, 150081, PR China
| | - Xiaohong Qiu
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang, 150081, PR China.
| |
Collapse
|
2
|
Zhang Y, Tian J. Strategies, Challenges, and Prospects of Nanoparticles in Gynecological Malignancies. ACS OMEGA 2024; 9:37459-37504. [PMID: 39281920 PMCID: PMC11391544 DOI: 10.1021/acsomega.4c04573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/18/2024]
Abstract
Gynecologic cancers are a significant health issue for women globally. Early detection and successful treatment of these tumors are crucial for the survival of female patients. Conventional therapies are often ineffective and harsh, particularly in advanced stages, necessitating the exploration of new therapy options. Nanotechnology offers a novel approach to biomedicine. A novel biosensor utilizing bionanotechnology can be employed for early tumor identification and therapy due to the distinctive physical and chemical characteristics of nanoparticles. Nanoparticles have been rapidly applied in the field of gynecologic malignancies, leading to significant advancements in recent years. This study highlights the significance of nanoparticles in treating gynecological cancers. It focuses on using nanoparticles for precise diagnosis and continuous monitoring of the disease, innovative imaging, and analytic methods, as well as multifunctional drug delivery systems and targeted therapies. This review examines several nanocarrier systems, such as dendrimers, liposomes, nanocapsules, and nanomicelles, for gynecological malignancies. The review also examines the enhanced therapeutic potential and targeted delivery of ligand-functionalized nanoformulations for gynecological cancers compared to nonfunctionalized anoformulations. In conclusion, the text also discusses the constraints and future exploration prospects of nanoparticles in chemotherapeutics. Nanotechnology will offer precise methods for diagnosing and treating gynecological cancers.
Collapse
Affiliation(s)
- Yingfeng Zhang
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jing Tian
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| |
Collapse
|
3
|
Fu L, Lin CT, Karimi-Maleh H, Chen F, Zhao S. Plasmonic Nanoparticle-Enhanced Optical Techniques for Cancer Biomarker Sensing. BIOSENSORS 2023; 13:977. [PMID: 37998152 PMCID: PMC10669140 DOI: 10.3390/bios13110977] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
This review summarizes recent advances in leveraging localized surface plasmon resonance (LSPR) nanotechnology for sensitive cancer biomarker detection. LSPR arising from noble metal nanoparticles under light excitation enables the enhancement of various optical techniques, including surface-enhanced Raman spectroscopy (SERS), dark-field microscopy (DFM), photothermal imaging, and photoacoustic imaging. Nanoparticle engineering strategies are discussed to optimize LSPR for maximum signal amplification. SERS utilizes electromagnetic enhancement from plasmonic nanostructures to boost inherently weak Raman signals, enabling single-molecule sensitivity for detecting proteins, nucleic acids, and exosomes. DFM visualizes LSPR nanoparticles based on scattered light color, allowing for the ultrasensitive detection of cancer cells, microRNAs, and proteins. Photothermal imaging employs LSPR nanoparticles as contrast agents that convert light to heat, producing thermal images that highlight cancerous tissues. Photoacoustic imaging detects ultrasonic waves generated by LSPR nanoparticle photothermal expansion for deep-tissue imaging. The multiplexing capabilities of LSPR techniques and integration with microfluidics and point-of-care devices are reviewed. Remaining challenges, such as toxicity, standardization, and clinical sample analysis, are examined. Overall, LSPR nanotechnology shows tremendous potential for advancing cancer screening, diagnosis, and treatment monitoring through the integration of nanoparticle engineering, optical techniques, and microscale device platforms.
Collapse
Affiliation(s)
- Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (F.C.); (S.Z.)
| | - Cheng-Te Lin
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China;
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Hassan Karimi-Maleh
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Wenzhou 325015, China;
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Engineering, Lebanese American University, Byblos 13-5053, Lebanon
| | - Fei Chen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (F.C.); (S.Z.)
| | - Shichao Zhao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (F.C.); (S.Z.)
| |
Collapse
|
4
|
Liu S, Xu D, Chen J, Peng N, Ma T, Liang F. Nanozymatic magnetic nanomotors for enhancing photothermal therapy and targeting intracellular SERS sensing. NANOSCALE 2023; 15:12944-12953. [PMID: 37486742 DOI: 10.1039/d3nr02739b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Self-propelled micro/nanomotors (MNMs) have emerged as promising tools for biomedical applications owing to their active and controllable movement, which is achieved by converting energy derived from chemical reactions or external physical fields into mechanical forces. However, it remains a challenge to develop all-in-one MNMs that integrate multiple bio-friendly engines and biomedical functions. In this study, we present a nanozymatic magnetic nanomotor capable of self-propulsion, driven by its intrinsic engines, and possessing inherent biomedical functions. The nanomotors with a core-island structure are fabricated by a general scalable chemistry synthesis approach. The core of the nanomotors is magnetic Fe3O4 nanoparticles, while the surrounding islands consist of Au nanostars. Such components naturally equip the nanomotors with the dual engine of the magnetic core and gold nanozyme. In addition, the localized surface plasmon resonance (LSPR) effect of the Au nanostar imparts the nanomotors with favourable photothermal conversion and surface-enhanced Raman scattering (SERS) properties. The nanomotors exhibit glucose concentration-dependent motion behavior of enhanced diffusion, leading to improved endocytosis for enhanced photothermal treatment. When exposed to a magnetic field, the nanomotors demonstrate both directional locomotion towards target cells and up-and-down oscillatory movement, enabling the efficient gathering of intracellular analytes for SERS sensing. To conclude, the as-prepared nanomotors represent an active and controllable nanoplatform with a simple structure and are naturally equipped with dual engines and dual biomedical functions, providing new perspectives to the development of all-in-one biomedical MNMs.
Collapse
Affiliation(s)
- Shimi Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Dandan Xu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Junling Chen
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Na Peng
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Tao Ma
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
5
|
Chen Y, An Q, Teng K, Liu C, Sun F, Li G. Application of SERS in In-Vitro Biomedical Detection. Chem Asian J 2023; 18:e202201194. [PMID: 36581747 DOI: 10.1002/asia.202201194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Surface-enhanced Raman scattering (SERS), as a rapid and nondestructive biological detection method, holds great promise for clinical on spot and early diagnosis. In order to address the challenging demands of on spot detection of biomedical samples, a variety of strategies has been developed. These strategies include substrate structural and component engineering, data processing techniques, as well as combination with other analytical methods. This report summarizes the recent SERS developments for biomedical detection, and their promising applications in cancer detection, virus or bacterial infection detection, miscarriage spotting, neurological disease screening et al. The first part discusses the frequently used SERS substrate component and structures, the second part reports on the detection strategies for nucleic acids, proteins, bacteria, and virus, the third part summarizes their promising applications in clinical detection in a variety of illnesses, and the forth part reports on recent development of SERS in combination with other analytical techniques. The special merits, challenges, and perspectives are discussed in both introduction and conclusion sections.
Collapse
Affiliation(s)
- Yunfan Chen
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China.,Engineering Research Center of Ministry of Education for, Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Qi An
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China.,Engineering Research Center of Ministry of Education for, Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Kaixuan Teng
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China.,Engineering Research Center of Ministry of Education for, Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Chao Liu
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China.,Department of Chemistry, China, Tsinghua University, Beijing, 100084, P. R. China.,Engineering Research Center of Ministry of Education for, Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Fuwei Sun
- Fujian Provincial Key Laboratory of, Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Guangtao Li
- Department of Chemistry, China, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
6
|
The Application of Carbon Nanomaterials in Sensing, Imaging, Drug Delivery and Therapy for Gynecologic Cancers: An Overview. Molecules 2022; 27:molecules27144465. [PMID: 35889338 PMCID: PMC9324069 DOI: 10.3390/molecules27144465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023] Open
Abstract
Gynecologic cancers are one of the main health concerns of women throughout the world, and the early diagnosis and effective therapy of gynecologic cancers will be particularly important for the survival of female patients. As a current hotspot, carbon nanomaterials have attracted tremendous interest in tumor theranostics, and their application in gynecologic cancers has also been developed rapidly with great achievements in recent years. This Overview Article summarizes the latest progress in the application of diverse carbon nanomaterials (e.g., graphenes, carbon nanotubes, mesoporous carbon, carbon dots, etc.) and their derivatives in the sensing, imaging, drug delivery, and therapy of different gynecologic cancers. Important research contributions are highlighted in terms of the relationships among the fabrication strategies, architectural features, and action mechanisms for the diagnosis and therapy of gynecologic cancers. The current challenges and future strategies are discussed from the viewpoint of the real clinical application of carbon-based nanomedicines in gynecologic cancers. It is anticipated that this review will attract more attention toward the development and application of carbon nanomaterials for the theranostics of gynecologic cancers.
Collapse
|
7
|
Li D, Aubertin K, Onidas D, Nizard P, Félidj N, Gazeau F, Mangeney C, Luo Y. Recent advances in non-plasmonic surface-enhanced Raman spectroscopy nanostructures for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1795. [PMID: 35362261 DOI: 10.1002/wnan.1795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is an emerging powerful vibrational technique offering unprecedented opportunities in biomedical science for the sensitive detection of biomarkers and the imaging and tracking of biological samples. Conventional SERS detection is based on the use of plasmonic substrates (e.g., Au and Ag nanostructures), which exhibit very high enhancement factors (EF = 1010 -1011 ) but suffers from serious limitations, including light-induced local heating effect due to ohmic loss and expensive price. These drawbacks may limit detection accuracy and large-scaled practical applications. In this review, we focus on alternative approaches based on plasmon-free SERS detection on low-cost nanostructures, such as carbons, oxides, chalcogenides, polymers, silicons, and so forth. The mechanism of non-plasmonic SERS detection has been attributed to interfacial charge transfer between the substrate and the adsorbed molecules, with no photothermal side-effects but usually less EF compared with plasmonic nanostructures. The strategies to improve Raman signal detection, through the tailoring of substrate composition, structure, and surface chemistry, is reviewed and discussed. The biomedical applications, for example, SERS cell characterization, biosensing, and bioimaging are also presented, highlighting the importance of substrate surface functionalization to achieve sensitive, accurate analysis, and excellent biocompatibility. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Diagnostic Tools > Biosensing Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Da Li
- LCBPT, CNRS UMR 8601, Université Paris Cité, 45, rue des Saints-Pères, Paris, France
| | - Kelly Aubertin
- MSC, CNRS UMR 7057, Université Paris Cité, 45, rue des Saints-Pères, Paris, France
| | - Delphine Onidas
- LCBPT, CNRS UMR 8601, Université Paris Cité, 45, rue des Saints-Pères, Paris, France
| | - Philippe Nizard
- LCBPT, CNRS UMR 8601, Université Paris Cité, 45, rue des Saints-Pères, Paris, France
| | - Nordin Félidj
- ITODYS, CNRS UMR 7086, Université Paris Cité, 15, rue Jean Antoine de Baïf, Paris, France
| | - Florence Gazeau
- MSC, CNRS UMR 7057, Université Paris Cité, 45, rue des Saints-Pères, Paris, France
| | - Claire Mangeney
- LCBPT, CNRS UMR 8601, Université Paris Cité, 45, rue des Saints-Pères, Paris, France
| | - Yun Luo
- LCBPT, CNRS UMR 8601, Université Paris Cité, 45, rue des Saints-Pères, Paris, France
| |
Collapse
|
8
|
Septani CM, Wang CA, Jeng US, Su YC, Ko BT, Sun YS. Hierarchically Porous Carbon Materials from Self-Assembled Block Copolymer/Dopamine Mixtures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11754-11764. [PMID: 32955261 DOI: 10.1021/acs.langmuir.0c01431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hierarchically porous carbon materials with interconnected frameworks of macro- and mesopores are desirable for electrochemical applications in biosensors, electrocatalysis, and supercapacitors. In this study, we report a facile synthetic route to fabricate hierarchically porous carbon materials by controlled macro- and mesophase separation of a mixture of polystyrene-block-poly(ethylene) and dopamine. The morphology of mesopores is tailored by controlling the coassembly of PS-b-PEO and dopamine in the acidic tetrahydrofuran-water cosolvent. HCl addition plays a critical role via enhancing the charge-dipole interactions between PEO and dopamine and suppressing the clustering and chemical reactions of dopamine in solution. As a result, subsequent drying can produce interpenetrated PS-b-PEO/DA mixtures without forming dopamine microsized crystallites. Dopamine oxidative polymerization induced by solvent annealing in NH4OH vapor enables the formation of percolating macropores. Subsequent pyrolysis to selectively remove the PS-b-PEO template from the complex can produce hierarchically porous carbon materials with interconnected frameworks of macro- and mesopores when pyrolysis is implemented at a low temperature or when DA is a minor component.
Collapse
Affiliation(s)
- Cindy M Septani
- Department of Chemical and Materials Engineering, National Central University, 300 Zhongda Road, Zhongli District, Taoyuan City 32001, Taiwan
| | - Chen-An Wang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Chia Su
- Department of Chemistry, National Chung Hsing University, 145 Xingda Road, South District, Taichung City 402, Taiwan
| | - Bao-Tsan Ko
- Department of Chemistry, National Chung Hsing University, 145 Xingda Road, South District, Taichung City 402, Taiwan
| | - Ya-Sen Sun
- Department of Chemical and Materials Engineering, National Central University, 300 Zhongda Road, Zhongli District, Taoyuan City 32001, Taiwan
| |
Collapse
|
9
|
Kim J, Jang Y, Kim NJ, Kim H, Yi GC, Shin Y, Kim MH, Yoon S. Study of Chemical Enhancement Mechanism in Non-plasmonic Surface Enhanced Raman Spectroscopy (SERS). Front Chem 2019; 7:582. [PMID: 31482089 PMCID: PMC6710363 DOI: 10.3389/fchem.2019.00582] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/02/2019] [Indexed: 12/02/2022] Open
Abstract
Surface enhanced Raman spectroscopy (SERS) has been intensively investigated during the past decades for its enormous electromagnetic field enhancement near the nanoscale metallic surfaces. Chemical enhancement of SERS, however, remains rather elusive despite intensive research efforts, mainly due to the relatively complex enhancing factors and inconsistent experimental results. To study details of chemical enhancement mechanism, we prepared various low dimensional semiconductor substrates such as ZnO and GaN that were fabricated via metal organic chemical vapor deposition process. We used three kinds of molecules (4-MPY, 4-MBA, 4-ATP) as analytes to measure SERS spectra under non-plasmonic conditions to understand charge transfer mechanisms between a substrate and analyte molecules leading to chemical enhancement. We observed that there is a preferential route for charge transfer responsible for chemical enhancement, that is, there exists a dominant enhancement process in non-plasmonic SERS. To further confirm our idea of charge transfer mechanism, we used a combination of 2-dimensional transition metal dichalcogenide substrates and analyte molecules. We also observed significant enhancement of Raman signal from molecules adsorbed on 2-dimensional transition metal dichalcogenide surface that is completely consistent with our previous results. We also discuss crucial factors for increasing enhancement factors for chemical enhancement without involving plasmonic resonance.
Collapse
Affiliation(s)
- Jayeong Kim
- Department of Physics, Ewha Womans University, Seoul, South Korea
| | - Yujin Jang
- Department of Physics, Ewha Womans University, Seoul, South Korea
| | - Nam-Jung Kim
- Department of Physics and Astronomy, Institute of Applied Physics, Research Institute of Advanced Materials, Seoul National University, Seoul, South Korea
| | - Heehun Kim
- Department of Physics and Astronomy, Institute of Applied Physics, Research Institute of Advanced Materials, Seoul National University, Seoul, South Korea
| | - Gyu-Chul Yi
- Department of Physics and Astronomy, Institute of Applied Physics, Research Institute of Advanced Materials, Seoul National University, Seoul, South Korea
| | - Yukyung Shin
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea
| | - Myung Hwa Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea
| | - Seokhyun Yoon
- Department of Physics, Ewha Womans University, Seoul, South Korea
| |
Collapse
|