1
|
Hu Q, Zuo H, Hsu JC, Zeng C, Zhou T, Sun Z, Cai W, Tang Z, Chen W. The Emerging Landscape for Combating Resistance Associated with Energy-Based Therapies via Nanomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308286. [PMID: 37971203 PMCID: PMC10872442 DOI: 10.1002/adma.202308286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Cancer represents a serious disease with significant implications for public health, imposing substantial economic burden and negative societal consequences. Compared to conventional cancer treatments, such as surgery and chemotherapy, energy-based therapies (ET) based on athermal and thermal ablation provide distinct advantages, including minimally invasive procedures and rapid postoperative recovery. Nevertheless, due to the complex pathophysiology of many solid tumors, the therapeutic effectiveness of ET is often limited. Nanotechnology offers unique opportunities by enabling facile material designs, tunable physicochemical properties, and excellent biocompatibility, thereby further augmenting the outcomes of ET. Numerous nanomaterials have demonstrated the ability to overcome intrinsic therapeutic resistance associated with ET, leading to improved antitumor responses. This comprehensive review systematically summarizes the underlying mechanisms of ET-associated resistance (ETR) and highlights representative applications of nanoplatforms used to mitigate ETR. Overall, this review emphasizes the recent advances in the field and presents a detailed account of novel nanomaterial designs in combating ETR, along with efforts aimed at facilitating their clinical translation.
Collapse
Affiliation(s)
- Qitao Hu
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Huali Zuo
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Jessica C. Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Wisconsin 53705, United States
| | - Cheng Zeng
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Tian Zhou
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Zhouyi Sun
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Wisconsin 53705, United States
| | - Zhe Tang
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiyu Chen
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| |
Collapse
|
2
|
Zhong K, Zhang Z, Cheng W, Liu G, Zhang X, Zhang J, Sun S, Wang B. Photodynamic O 2 Economizer Encapsulated with DNAzyme for Enhancing Mitochondrial Gene-Photodynamic Therapy. Adv Healthc Mater 2024; 13:e2302495. [PMID: 38056018 DOI: 10.1002/adhm.202302495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/05/2023] [Indexed: 12/08/2023]
Abstract
Emerging research suggests that mitochondrial DNA is a potential target for cancer treatment. However, achieving precise delivery of deoxyribozymes (DNAzymes) and combining photodynamic therapy (PDT) and DNAzyme-based gene silencing together for enhancing mitochondrial gene-photodynamic synergistic therapy remains challenging. Accordingly, herein, intelligent supramolecular nanomicelles are constructed by encapsulating a DNAzyme into a photodynamic O2 economizer for mitochondrial NO gas-enhanced synergistic gene-photodynamic therapy. The designed nanomicelles demonstrate sensitive acid- and red-light sequence-activated behaviors. After entering the cancer cells and targeting the mitochondria, these micelles will disintegrate and release the DNAzyme and Mn (II) porphyrin in the tumor microenvironment. Mn (II) porphyrin acts as a DNAzyme cofactor to activate the DNAzyme for the cleavage reaction. Subsequently, the NO-carrying donor is decomposed under red light irradiation to generate NO that inhibits cellular respiration, facilitating the conversion of more O2 into singlet oxygen (1 O2 ) in the tumor cells, thereby significantly enhancing the efficacy of PDT. In vitro and in vivo experiments reveal that the proposed system can efficiently target mitochondria and exhibits considerable antitumor effects with negligible systemic toxicity. Thus, this study provides a useful conditional platform for the precise delivery of DNAzymes and a novel strategy for activatable NO gas-enhanced mitochondrial gene-photodynamic therapy.
Collapse
Affiliation(s)
- Kaipeng Zhong
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
- College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, 810008, China
| | - Zefan Zhang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wenyuan Cheng
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Guangyao Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, 730030, P. R. China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou University Second Hospital, Lanzhou, 730030, P. R. China
| | - Xuan Zhang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, 730030, P. R. China
| | - Shihao Sun
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
3
|
Guo S, Yao Y, Tang Y, Xin Z, Wu D, Ni C, Huang J, Wei Q, Zhang T. Radiation-induced tumor immune microenvironments and potential targets for combination therapy. Signal Transduct Target Ther 2023; 8:205. [PMID: 37208386 DOI: 10.1038/s41392-023-01462-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/21/2023] [Accepted: 04/27/2023] [Indexed: 05/21/2023] Open
Abstract
As one of the four major means of cancer treatment including surgery, radiotherapy (RT), chemotherapy, immunotherapy, RT can be applied to various cancers as both a radical cancer treatment and an adjuvant treatment before or after surgery. Although RT is an important modality for cancer treatment, the consequential changes caused by RT in the tumor microenvironment (TME) have not yet been fully elucidated. RT-induced damage to cancer cells leads to different outcomes, such as survival, senescence, or death. During RT, alterations in signaling pathways result in changes in the local immune microenvironment. However, some immune cells are immunosuppressive or transform into immunosuppressive phenotypes under specific conditions, leading to the development of radioresistance. Patients who are radioresistant respond poorly to RT and may experience cancer progression. Given that the emergence of radioresistance is inevitable, new radiosensitization treatments are urgently needed. In this review, we discuss the changes in irradiated cancer cells and immune cells in the TME under different RT regimens and describe existing and potential molecules that could be targeted to improve the therapeutic effects of RT. Overall, this review highlights the possibilities of synergistic therapy by building on existing research.
Collapse
Affiliation(s)
- Siyu Guo
- Department of Radiation Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yihan Yao
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Tang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zengfeng Xin
- Department of Orthopedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Dang Wu
- Department of Radiation Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Chao Ni
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Huang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Qichun Wei
- Department of Radiation Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Ting Zhang
- Department of Radiation Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Zhang J, Huang L, Ge G, Hu K. Emerging Epigenetic-Based Nanotechnology for Cancer Therapy: Modulating the Tumor Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206169. [PMID: 36599655 PMCID: PMC9982594 DOI: 10.1002/advs.202206169] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/05/2022] [Indexed: 06/02/2023]
Abstract
Dysregulated epigenetic modifications dynamically drive the abnormal transcription process to affect the tumor microenvironment; thus, promoting cancer progression, drug resistance, and metastasis. Nowadays, therapies targeting epigenetic dysregulation of tumor cells and immune cells in the tumor microenvironment appear to be promising adjuncts to other cancer therapies. However, the clinical results of combination therapies containing epigenetic agents are disappointing due to systemic toxicities and limited curative effects. Here, the role of epigenetic processes, including DNA methylation, post-translational modification of histones, and noncoding RNAs is discussed, followed by detailed descriptions of epigenetic regulation of the tumor microenvironment, as well as the application of epigenetic modulators in antitumor therapy, with an emphasis on the epigenetic-based advanced drug delivery system in targeting the tumor microenvironment.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Kaili Hu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| |
Collapse
|
5
|
Xie Y, Liu M, Cai C, Ye C, Guo T, Yang K, Xiao H, Tang X, Liu H. Recent progress of hydrogel-based local drug delivery systems for postoperative radiotherapy. Front Oncol 2023; 13:1027254. [PMID: 36860309 PMCID: PMC9969147 DOI: 10.3389/fonc.2023.1027254] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
Surgical resection and postoperative radiotherapy remained the most common therapeutic modalities for malignant tumors. However, tumor recurrence after receiving such combination is difficult to be avoided because of high invasiveness and radiation resistance of cancer cells during long-term therapy. Hydrogels, as novel local drug delivery systems, presented excellent biocompatibility, high drug loading capacity and sustained drug release property. Compared with conventional drug formulations, hydrogels are able to be administered intraoperatively and directly release the entrapped therapeutic agents to the unresectable tumor sites. Therefore, hydrogel-based local drug delivery systems have their unique advantages especially in sensitizing postoperative radiotherapy. In this context, classification and biological properties of hydrogels were firstly introduced. Then, recent progress and application of hydrogels for postoperative radiotherapy were summarized. Finally, the prospects and challenges of hydrogels in postoperative radiotherapy were discussed.
Collapse
Affiliation(s)
- Yandong Xie
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China,Department of Neurosurgery, The Suqian Clinical College of Xuzhou Medical University, Suqian, China
| | - Mingxi Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Chang Cai
- Department of Neurosurgery, The Suqian Clinical College of Xuzhou Medical University, Suqian, China
| | - Chengkun Ye
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tangjun Guo
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kun Yang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Hong Xiao
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China,*Correspondence: Hongyi Liu, ; Xianglong Tang, ; Hong Xiao,
| | - Xianglong Tang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China,Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China,*Correspondence: Hongyi Liu, ; Xianglong Tang, ; Hong Xiao,
| | - Hongyi Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China,*Correspondence: Hongyi Liu, ; Xianglong Tang, ; Hong Xiao,
| |
Collapse
|
6
|
Qian L, Li Q, Ding Z, Luo K, Su J, Chen J, Zhu G, Gan Z, Yu Q. Prodrug Nanosensitizer Overcomes the Radiation Resistance of Hypoxic Tumor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56454-56470. [PMID: 36525559 DOI: 10.1021/acsami.2c14628] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Clinical radiation therapy (RT) is often hindered by the low radiation energy absorption coefficient and the hypoxic features of tumor tissues. Among the tremendous efforts devoted to overcoming the barriers to efficient RT, the application of hypoxic radiosensitizers and cell-cycle-specific chemotherapeutics has shown great potential. However, their effectiveness is often compromised by their limited bioavailability, especially in the hypoxic region, which plays a major role in radioresistance. Herein, to simultaneously improve the delivery efficacy of both hypoxic radiosensitizer and cell-cycle-specific drug, a gambogic acid (GA) metronidazole (MN) prodrug (GM) was designed and synthesized based on GA, a naturally occurring chemotherapeutic and multiple pathway inhibitor, and MN, a typical hypoxic radiosensitizer. In combination with MN-containing block copolymers, the prodrug nanosensitizer (NS) of GM was obtained. Owing to the bioreduction of MN, the as-designed prodrug could be efficiently delivered to hypoxic cells and act on mitochondria to cause the accumulation of reactive oxygen species. The strong G2/M phase arrest caused by the prodrug NS could further sensitize treated cells to external radiation under hypoxic conditions by increasing DNA damage and delaying DNA repair. After coadministration of the NS with a well-established tissue-penetrating peptide, efficient tumor accumulation, deep tumor penetration, and highly potent chemoradiotherapy could be achieved.
Collapse
Affiliation(s)
- Lili Qian
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| | - Qian Li
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| | - Zhenshan Ding
- Department of Urology, China-Japan Friendship Hospital, Beijing100029, China
| | - Kejun Luo
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| | - Jiamin Su
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| | - Jiawei Chen
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| | - Guangying Zhu
- Department of Radiation Oncology, China-Japan Friendship Hospital, Beijing100029, China
| | - Zhihua Gan
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| | - Qingsong Yu
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| |
Collapse
|
7
|
Flores-Contreras EA, González-González RB, González-González E, Parra-Saldívar R, Iqbal HM. Nano-vehicles modulated delivery of therapeutic epigenetic regulators to treat Triple-Negative Breast Cancer. J Drug Deliv Sci Technol 2022; 77:103924. [DOI: 10.1016/j.jddst.2022.103924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Wen X, Chen S, Chen X, Qiu H, Wang W, Zhang N, Liu W, Wang T, Ding X, Zhang L. ITGB5 promotes innate radiation resistance in pancreatic adenocarcinoma by promoting DNA damage repair and the MEK/ERK signaling pathway. Front Oncol 2022; 12:887068. [PMID: 36249018 PMCID: PMC9563233 DOI: 10.3389/fonc.2022.887068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is one of the most aggressive digestive system tumors in the world, with a low early diagnosis rate and a high mortality. Integrin beta 5 (ITGB5) is demonstrated to be a potent tumor promoter in several carcinomas. However, it is unknown whether ITGB5 participates in the occurrence and development of PAAD. In this study, we confirmed a high expression of ITGB5 in PAAD and its role in promoting invasiveness and transitivity in PAAD. Besides, the knockdown of ITGB5 increased cell sensitivity to radiation by promoting DNA damage repair and the MEK/ERK signaling pathway. Collectively, these results show that ITGB5 plays an essential role in pancreatic cancer growth and survival.
Collapse
Affiliation(s)
- Xin Wen
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Cancer Institute of Xuzhou Medical University, Xuzhou, China
| | - Si Chen
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Radiation Oncology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xueting Chen
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hui Qiu
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wei Wang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Nie Zhang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wanming Liu
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tingting Wang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xin Ding
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Longzhen Zhang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Cancer Institute of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou, China
| |
Collapse
|
9
|
Hao Y, Peng B, Si C, Wang B, Luo C, Chen M, Luo C, Gong B, Li Z. PVP-Modified Multifunctional Bi 2WO 6 Nanosheets for Enhanced CT Imaging and Cancer Radiotherapy. ACS OMEGA 2022; 7:18795-18803. [PMID: 35694478 PMCID: PMC9178605 DOI: 10.1021/acsomega.2c01591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Malignant tumors are one of the main causes of human death. The clinical treatment of malignant tumors is usually surgery, chemotherapy, radiotherapy, and so forth. Radiotherapy, as a traditional and effective treatment method for cancer, is widely used in clinical practice, but the radiation resistance of tumor cells and the toxic side effects to normal cells are still the Achilles heel of radiotherapy. Multifunctional inorganic high-atom nanomaterials are expected to enhance the effect of tumor radiotherapy. Tungsten and bismuth, which contain elements with high atomic coefficients, have strong X-ray energy attenuation capability. We synthesized Bi2WO6 nanosheets (NSs) using a hydrothermal synthesis method and modified polyvinylpyrrolidone (PVP) on their surface to make them more stable. PVP-Bi2WO6 NSs have a variety of effects after absorbing X-rays (such as the photoelectric effect and Compton effect) and release a variety of particles such as photoelectrons, Compton electrons, auger electrons, and so forth, which can react with organic molecules or water in cells, generate a large number of free radicals, and promote cell apoptosis, thereby improving the effect of radiotherapy. We show through γ-H2AX and DCFH-DA probe analysis experiments that PVP-Bi2WO6 NSs can effectively increase cell DNA damage and reactive oxygen species formation under X-ray irradiation. Clone formation analysis showed that PVP-Bi2WO6 NSs can effectively suppress cell colony formation under X-ray irradiation. These versatile functions endow PVP-Bi2WO6 NSs with enhanced radiotherapy efficacy in animal models. In addition, PVP-Bi2WO6 NSs can also be used as contrast agents for X-ray computed tomography (CT) imaging with obvious effects. Therefore, PVP-Bi2WO6 NSs can be used as CT imaging contrast agents and tumor radiotherapy sensitizers and have potential medical applications.
Collapse
Affiliation(s)
- Yifan Hao
- Department
of Oral Radiology, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
- Jilin
Provincial Key Laboratory of Tooth Development and Bone Remodeling,
School and Hospital of Stomatology, Jilin
University, Changchun 130021, P. R. China
| | - Bo Peng
- Department
of Oral Radiology, School of Stomatology, China Medical University, Shenyang 110002, P. R. China
| | - Chao Si
- Department
of Oral Radiology, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
- Jilin
Provincial Key Laboratory of Tooth Development and Bone Remodeling,
School and Hospital of Stomatology, Jilin
University, Changchun 130021, P. R. China
| | - Bo Wang
- Department
of Oral Radiology, School of Stomatology, China Medical University, Shenyang 110002, P. R. China
| | - Chengfeng Luo
- Department
of Oral Radiology, School of Stomatology, China Medical University, Shenyang 110002, P. R. China
| | - Menghao Chen
- Department
of Oral Radiology, School of Stomatology, China Medical University, Shenyang 110002, P. R. China
| | - Cheng Luo
- Department
of Orthodontics, School of Stomatology, China Medical University, Shenyang 110002, P. R. China
| | - Baijuan Gong
- Department
of Orthodontics, School of Stomatology, China Medical University, Shenyang 110002, P. R. China
| | - Zhimin Li
- Department
of Oral Radiology, School of Stomatology, China Medical University, Shenyang 110002, P. R. China
| |
Collapse
|
10
|
Zhou M, Yuan M, Zhang M, Lei C, Aras O, Zhang X, An F. Combining histone deacetylase inhibitors (HDACis) with other therapies for cancer therapy. Eur J Med Chem 2021; 226:113825. [PMID: 34562854 DOI: 10.1016/j.ejmech.2021.113825] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022]
Abstract
Histone deacetylases (HDACs) play an important role in regulating the expression of genes involved in tumorigenesis and tumor maintenance, and hence they have been considered as key targets in cancer therapy. As a novel category of antitumor agents, histone deacetylase inhibitors (HDACis) can induce cell cycle arrest, apoptosis, and differentiation in cancer cells, ultimately combating cancer. Although in the United States, the use of HDACis for the treatment of certain cancers has been approved, the therapeutic efficacy of HDACis as a single therapeutic agent in solid tumorshas been unsatisfactory and drug resistance may yet occur. To enhance therapeutic efficacy and limit drug resistance, numerous combination therapies involving HDACis in synergy with other antitumor therapies have been studied. In this review, we describe the classification of HDACs. Moreover, we summarize the antitumor mechanism of the HDACis for targeting key cellular processes of cancers (cell cycle, apoptosis, angiogenesis, DNA repair, and immune response). In addition, we outline the major developments of other antitumor therapies in combination with HDACis, including chemotherapy, radiotherapy, phototherapy, targeted therapy, and immunotherapy. Finally, we discuss the current state and challenges of HDACis-drugs combinations in future clinical studies, with the aim of optimizing the antitumor effect of such combinations.
Collapse
Affiliation(s)
- Mengjiao Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, PR China
| | - Minjian Yuan
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, PR China
| | - Meng Zhang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Chenyi Lei
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, United States
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China.
| | - Feifei An
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China.
| |
Collapse
|
11
|
Zhu Z, Wu M, Sun J, Huangfu Z, Yin L, Yong W, Sun J, Wang G, Meng F, Zhong Z. Redox-sensitive iodinated polymersomes carrying histone deacetylase inhibitor as a dual-functional nano-radiosensitizer for enhanced radiotherapy of breast cancer. Drug Deliv 2021; 28:2301-2309. [PMID: 34730060 PMCID: PMC8567935 DOI: 10.1080/10717544.2021.1995080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 01/14/2023] Open
Abstract
Radiotherapy (RT) is a frequently used means in clinical tumor treatment. The outcome of RT varies, however, to a great extent, due to RT resistance or intolerable dose, which might be resolved by the development of radio-sensitizing strategies. Here, we report redox-sensitive iodinated polymersomes (RIP) carrying histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA, vorinostat), as a new dual-functional nano-radiosensitizer for breast cancer radiotherapy. SAHA-loaded RIP (RIP-SAHA) with a size of about 101 nm exhibited good colloidal stability while the reduction-activated release of SAHA, giving rise to better antitumor effect to 4T1 breast carcinoma cells than free SAHA. Accordingly, RIP-SAHA combined with a 4 Gy dose of X-ray radiation led to significantly enhanced suppression of 4T1 cells compared with SAHA combined 4 Gy of X-ray radiation, as a result of enhanced DNA damage and impeded DNA damage repair. The pharmacokinetics and biodistribution studies by single-photon emission computed tomography (SPECT) with 125I-labeled SAHA (125I-SAHA) showed a 17.3-fold longer circulation and 237.7-fold better tumor accumulation of RIP-SAHA over SAHA. The systemic administration of RIP-SAHA greatly sensitized radiotherapy of subcutaneous 4T1 breast tumors and brought about significant inhibition of tumor growth, without causing damages to major organs, compared with radiotherapy alone. RIP not only enhanced SAHA delivery but also acted as a radiosensitizer. RIP-SAHA emerges as a smart dual-functional nano-radiosensitizer to effectively enhance tumor radiotherapy.
Collapse
Affiliation(s)
- Zhehong Zhu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Manran Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Juan Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Zhengyuan Huangfu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Lingling Yin
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Weipeng Yong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jing Sun
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Guanglin Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
12
|
Bhardwaj P, Goda JS, Pai V, Chaudhari P, Mohanty B, Pai T, Vishwakarma K, Thorat R, Wadasadawala T, Banerjee R. Ultrasound augments on-demand breast tumor radiosensitization and apoptosis through a tri-responsive combinatorial delivery theranostic platform. NANOSCALE 2021; 13:17077-17092. [PMID: 34622906 DOI: 10.1039/d1nr04211d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Advanced inoperable triple-negative breast cancer (TNBC) comprises aggressive tumors with a modest pathological response to neoadjuvant chemotherapy. The concomitant use of chemoradiotherapy improves the pathological response rates. However, the dose-dependent systemic toxicity of clinical radiosensitizers with poor circulation half-life and limited passive bioavailability limits their clinical utility. We address these challenges by rationally designing a stealth and tumor microenvironment responsive nano-conjugate platform for the ultrasound-mediated on-demand spatio-temporal delivery of plant flavonoid curcumin as a combinatorial regimen with clinically approved paclitaxel for the neoadjuvant chemoradiotherapy of locally advanced triple-negative breast cancer (TNBC). Interestingly, the focused application of ultrasound at the orthotopic TNBC xenograft of NOD-SCID mice facilitated the immediate infiltration of nano-conjugates at the tumor interstitium, and conferred in vivo safety over marketed paclitaxel formulation. In addition, curcumin significantly potentiated the in vivo chemoradiotherapeutic efficacy of paclitaxel upon loading into nano-conjugates. This gets further enhanced by the concurrent pulse of ultrasound, as confirmed by PET-CT imaging, along with a significant improvement in the mice survival. The quadrapeutic apoptotic effect by the combination of paclitaxel, curcumin, radiation, and ultrasound, along with a reduction in the tumor microvessel density and cell proliferation marker, confers the broad chemo-radiotherapeutic potential of this regimen for radio-responsive solid tumors, as well as metastatic niches.
Collapse
Affiliation(s)
- Prateek Bhardwaj
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India.
| | - Jayant Sastri Goda
- Department of Radiation Oncology, Tata Memorial Centre, Mumbai, & Homi Bhabha National Institute, Maharashtra, India.
| | - Venkatesh Pai
- Department of Radiation Oncology, Tata Memorial Centre, Mumbai, & Homi Bhabha National Institute, Maharashtra, India.
| | - Pradip Chaudhari
- Animal house facility, Tata Memorial Centre, Mumbai, & Homi Bhabha National Institute, Maharashtra, India
| | - Bhabani Mohanty
- Animal house facility, Tata Memorial Centre, Mumbai, & Homi Bhabha National Institute, Maharashtra, India
| | - Trupti Pai
- Department of Pathology, Tata Memorial Centre, Mumbai, & Homi Bhabha National Institute, Maharashtra, India
| | - Komal Vishwakarma
- Department of Radiation Oncology, Tata Memorial Centre, Mumbai, & Homi Bhabha National Institute, Maharashtra, India.
| | - Rahul Thorat
- Animal house facility, Tata Memorial Centre, Mumbai, & Homi Bhabha National Institute, Maharashtra, India
| | - Tabassum Wadasadawala
- Department of Radiation Oncology, Tata Memorial Centre, Mumbai, & Homi Bhabha National Institute, Maharashtra, India.
| | - Rinti Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India.
| |
Collapse
|
13
|
Zhang Y, Cui H, Zhang R, Zhang H, Huang W. Nanoparticulation of Prodrug into Medicines for Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101454. [PMID: 34323373 PMCID: PMC8456229 DOI: 10.1002/advs.202101454] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/16/2021] [Indexed: 05/28/2023]
Abstract
This article provides a broad spectrum about the nanoprodrug fabrication advances co-driven by prodrug and nanotechnology development to potentiate cancer treatment. The nanoprodrug inherits the features of both prodrug concept and nanomedicine know-how, attempts to solve underexploited challenge in cancer treatment cooperatively. Prodrugs can release bioactive drugs on-demand at specific sites to reduce systemic toxicity, this is done by using the special properties of the tumor microenvironment, such as pH value, glutathione concentration, and specific overexpressed enzymes; or by using exogenous stimulation, such as light, heat, and ultrasound. The nanotechnology, manipulating the matter within nanoscale, has high relevance to certain biological conditions, and has been widely utilized in cancer therapy. Together, the marriage of prodrug strategy which shield the side effects of parent drug and nanotechnology with pinpoint delivery capability has conceived highly camouflaged Trojan horse to maneuver cancerous threats.
Collapse
Affiliation(s)
- Yuezhou Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Huaguang Cui
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Ruiqi Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, FI-00520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, FI-00520, Finland
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| |
Collapse
|
14
|
Wang Q, Hou X, Gao J, Ren C, Guo Q, Fan H, Liu J, Zhang W, Liu J. A coassembled peptide hydrogel boosts the radiosensitization of cisplatin. Chem Commun (Camb) 2021; 56:13017-13020. [PMID: 33000806 DOI: 10.1039/d0cc05184e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We constructed a novel supramolecular hydrogel by carrying out a coassembly of cisplatin and short naproxen-capped peptides. This procedure boosted the radiosensitization effect of cisplatin by increasing the number of Pt-DNA adducts, arresting the cell cycle, and inhibiting cyclooxygenase-2.
Collapse
Affiliation(s)
- Qian Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Xiaoxue Hou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Jie Gao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Chunhua Ren
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Qingxiang Guo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Huirong Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Wenxue Zhang
- Radiation Oncology Department, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China.
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.
| |
Collapse
|
15
|
Ma YC, Tang XF, Xu YC, Jiang W, Xin YJ, Zhao W, He X, Lu LG, Zhan MX. Nano-enabled coordination platform of bismuth nitrate and cisplatin prodrug potentiates cancer chemoradiotherapy via DNA damage enhancement. Biomater Sci 2021; 9:3401-3409. [PMID: 33949448 DOI: 10.1039/d1bm00157d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The combination of chemotherapy and radiotherapy (chemoradiotherapy) is a promising strategy, extensively studied and applied clinically. Meanwhile, radiosensitizers play an important role in improving clinical radiotherapy therapeutic efficacy. There are still some disadvantages in practical applications, because radiosensitizers and drugs are difficult to deliver spatio-temporally to tumor sites and work simultaneously with low efficiency for DNA damage and repair inhibition, leading to an inferior synergistic effect. Herein, a suitable radiosensitizer of nano-enabled coordination platform (NP@PVP) with bismuth nitrate and cisplatin prodrug is developed by a simple synthetic route to improve the effectiveness of chemo-radiation synergistic therapy. When NP@PVP is internalized by a tumor cell, the bismuth in NP@PVP can sensitize radiation therapy (RT) by increasing the amount of reactive oxygen species generation to enhance DNA damage after X-ray radiation; meanwhile, the cisplatin in NP@PVP can inhibit DNA damage repair with spatio-temporal synchronization. NP@PVP is demonstrated to exhibit higher sensitization enhancement ratio (SER) of 2.29 and excellent tumor ablation capability upon irradiation in vivo in comparison with cisplatin (SER of 1.78). Our strategy demonstrates that the RT sensitization effect of bismuth and cisplatin based NP@PVP has great anticancer potential in chemo-radiation synergistic therapy, which is promising for clinical application.
Collapse
Affiliation(s)
- Yin-Chu Ma
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai 519000, China.
| | - Xin-Feng Tang
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - You-Cui Xu
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Wei Jiang
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai 519000, China.
| | - Yong-Jie Xin
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai 519000, China.
| | - Wei Zhao
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai 519000, China.
| | - Xu He
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai 519000, China.
| | - Li-Gong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai 519000, China.
| | - Mei-Xiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai 519000, China.
| |
Collapse
|
16
|
|
17
|
Liu JW, Yang YG, Wang K, Wang G, Shen CC, Chen YH, Liu YF, James TD, Jiang K, Zhang H. Activation and Monitoring of mtDNA Damage in Cancer Cells via the "Proton-Triggered" Decomposition of an Ultrathin Nanosheet. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3669-3678. [PMID: 33435678 DOI: 10.1021/acsami.0c20060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mitochondrial DNA (mtDNA) damage is a very important molecular event, which has significant effects on living organisms. Therefore, a particularly important challenge for biomaterials research is to develop functionalized nanoparticles that can activate and monitor mtDNA damage and instigate cancer cell apoptosis, and as such eliminate the negative effects on living organisms. Toward that goal, with this research, we have developed a hydroxyapatite ultrathin nanosheet (HAP-PDCns)-a high Ca2+ content biomaterial. HAP-PDCns undergoes proton-triggered decomposition after entering cancer cells via clathrin-mediated endocytosis, and then, it selectively concentrates in the charged mitochondrial membrane. This kind of proton-triggered decomposition phenomenon facilitates mtDNA damage by causing instantaneous local calcium overload in the mitochondria of cancer cells, and inhibits tumor growth. Importantly, at the same time, a real-time green-red-green fluorescence change occurs that correlates with the degree of mtDNA deterioration because of the changes in the highest occupied molecular orbital-lowest unoccupied molecular orbital energy gaps during this process. Significantly, the decomposition and the fluorescence changes cannot be triggered in normal cells. Thus, HAP-PDCns can selectively induce apoptosis and the death of a cancer cell by facilitating mtDNA damage, but does not affect normal cells. In addition, HAP-PDCns can simultaneously monitor the degree of mtDNA damage. We anticipate that this design strategy can be generalized to develop other functionalized biomaterials that can be used to instigate the positive effects of mtDNA damage on living organisms while eliminating any negative effects.
Collapse
Affiliation(s)
- Jun W Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yong G Yang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Kui Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ge Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Cong C Shen
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yue H Chen
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yu F Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Kai Jiang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hua Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
18
|
Xia D, Hang D, Li Y, Jiang W, Zhu J, Ding Y, Gu H, Hu Y. Au-Hemoglobin Loaded Platelet Alleviating Tumor Hypoxia and Enhancing the Radiotherapy Effect with Low-Dose X-ray. ACS NANO 2020; 14:15654-15668. [PMID: 33108152 DOI: 10.1021/acsnano.0c06541] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Radiotherapy (RT) is a widely explored clinical modality to combat cancer. However, its therapeutic efficacy is not always satisfied because of the severe hypoxic microenvironment in solid tumors and the high dosage of radiation harmful to the adjacent healthy tissue. Herein, Au nanoparticle-hemoglobin complex nanoparticle loaded platelets (Au-Hb@PLT) were fabricated. These Au-Hb@PLT would be activated by tumor cells, and the formed platelet-derivate particles (PM) could deliver Au nanoparticle-hemoglobin complex deeply into tumor tissue because of their small size and tumor homing ability. Hemoglobin acts as an oxygen carrier to relieve the hypoxia and gold nanoparticles work as radiosensitizers to potentiate the sensitivity of tumor cells to X-ray, thus, enhancing the in vivo therapeutic outcome even under a low-dose RT in tumor bearing mice. The enhanced antitumor effect and survival benefits endowed by the Au-Hb@PLT were confirmed in vitro and in vivo. These results demonstrate that these Au-Hb@PLT can work as an oxygen vehicle, offer a promising approach to mitigate hypoxia and improve RT efficacy with a low RT dosage.
Collapse
Affiliation(s)
- Donglin Xia
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Daming Hang
- Nantong Tumor Hospital, Nantong, Jiangsu 226362, P.R. China
| | - Yuanyuan Li
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Wei Jiang
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Jianfeng Zhu
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Yin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Haiying Gu
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Yong Hu
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| |
Collapse
|
19
|
Luo K, Guo W, Yu Y, Xu S, Zhou M, Xiang K, Niu K, Zhu X, Zhu G, An Z, Yu Q, Gan Z. Reduction-sensitive platinum (IV)-prodrug nano-sensitizer with an ultra-high drug loading for efficient chemo-radiotherapy of Pt-resistant cervical cancer in vivo. J Control Release 2020; 326:25-37. [PMID: 32531414 DOI: 10.1016/j.jconrel.2020.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 01/03/2023]
Abstract
Cisplatin is widely used in the chemoradiotherapy (CRT) of cervical cancers. However, despite the severe systemic side effects, the therapeutic efficacy of cisplatin is often compromised by the development of drug resistance, which is closely related to the elevated intracellular thiol-containing species (especially glutathione (GSH)) and the adenosine triphosphate (ATP)-dependent glutathione S-conjugate pumps. The construction of a safe and redox-sensitive nano-sensitizer with high disulfide density and high Pt(IV) prodrug loading capacity (up to 16.50% Pt and even higher), as described herein, is a promising way to overcome the cisplatin resistance and enhance the CRT efficacy. The optimized nanoparticles (NPs) (referred to as SSCV5) with moderate Pt loading (7.62% Pt) and median size (c.a. 40 nm) was screened out and used for further biological evaluation. Compared with free cisplatin, more drugs could be transported and released inside the cisplatin resistant cells (Hela-CDDP) by SSCV5 NPs. With the synergistic effect of GSH scavenging and mitochondrial damage, SSCV5 NPs can easily reverse the cisplatin resistance. Moreover, the higher nucleus DNA binding Pt content of SSCV5 NPs not only caused the DNA damage and apoptosis of Hela-CDDP cells but also sensitized these cells to X-Ray radiation. The in vivo safety and efficacy results showed that SSCV5 NPs effectively accumulated inside tumor and inhibited the growth of cisplatin resistant xenograft models while alleviating the serious side effect associated with cisplatin (the maximum tolerated cisplatin equivalent of single injection is higher than 20 mg/kg body weight). The intervention of exogenous radiation further improved the anticancer efficacy of SSCV5 NPs and caused the shrinkage of tumor volume, thus making this safe and facile nano-sensitizer a promising route for the neoadjuvant CRT of cervical cancers.
Collapse
Affiliation(s)
- Kejun Luo
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Wenxuan Guo
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Yanting Yu
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Simeng Xu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Min Zhou
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Keqi Xiang
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Kun Niu
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Xianqi Zhu
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Guangying Zhu
- Department of radiation oncology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Zheng An
- Proton therapy center, China-Japan Friendship Hospital, Beijing 100029, China
| | - Qingsong Yu
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China.
| | - Zhihua Gan
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China.
| |
Collapse
|
20
|
Tu B, Zhang M, Liu T, Huang Y. Nanotechnology-Based Histone Deacetylase Inhibitors for Cancer Therapy. Front Cell Dev Biol 2020; 8:400. [PMID: 32582697 PMCID: PMC7284110 DOI: 10.3389/fcell.2020.00400] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022] Open
Abstract
Histone deacetylase inhibitors (HDACi) have been approved and achieved success in hematologic malignancies. But its application in solid tumors still confronts big challenges and is hampered by low treatment efficacy. Nanotechnology has been widely applied in cancer therapy, and nanomedicine could improve drug stability, prolong the circulation half-life, and increase intratumoral drug accumulation. Therefore, nanomedicine is a promising strategy to enhance HDACi therapy efficacy. The review provides a summary of the advances of HDACi nanomedicines with a focus on the design principles of the targeting delivery systems for HDACi.
Collapse
Affiliation(s)
- Bin Tu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Meng Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tuanbing Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Beijing, China
| |
Collapse
|
21
|
Jin J, Zhao Q. Engineering nanoparticles to reprogram radiotherapy and immunotherapy: recent advances and future challenges. J Nanobiotechnology 2020; 18:75. [PMID: 32408880 PMCID: PMC7227304 DOI: 10.1186/s12951-020-00629-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023] Open
Abstract
Nanoparticles (NPs) have been increasingly studied for radiosensitization. The principle of NPs radio-enhancement is to use high-atomic number NPs (e.g. gold, hafnium, bismuth and gadolinium) or deliver radiosensitizing substances, such as cisplatin and selenium. Nowadays, cancer immunotherapy is emerged as a promising treatment and immune checkpoint regulation has a potential property to improve clinical outcomes in cancer immunotherapy. Furthermore, NPs have been served as an ideal platform for immunomodulator system delivery. Owing to enhanced permeability and retention (EPR) effect, modified-NPs increase the targeting and retention of antibodies in target cells. The purpose of this review is to highlight the latest progress of nanotechnology in radiotherapy (RT) and immunotherapy, as well as combining these three strategies in cancer treatment. Overall, nanomedicine as an effective strategy for RT can significantly enhance the outcome of immunotherapy response and might be beneficial for clinical transformation.
Collapse
Affiliation(s)
- Jing Jin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China. .,Department of Pathophysiology, College of Basic Medical Science, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China. .,South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
22
|
Dong Y, Wang Y, Zhuang P, Fu X, Zheng Y, Sanche L. Role of Transient Anions in Chemoradiation Therapy: Base Modifications, Cross-Links, and Cluster Damages Induced to Cisplatin-DNA Complexes by 1–20 eV Electrons. J Phys Chem B 2020; 124:3315-3325. [DOI: 10.1021/acs.jpcb.0c00946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yanfang Dong
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P.R. China
| | - Yaxiao Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P.R. China
| | - Puxiang Zhuang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P.R. China
| | - Xianzhi Fu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P.R. China
| | - Yi Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P.R. China
| | - Léon Sanche
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4
| |
Collapse
|
23
|
Wang L, Zhang Z, Ding Y, Wu J, Hu Y, Yuan A. Novel copper-based and pH-sensitive nanomedicine for enhanced chemodynamic therapy. Chem Commun (Camb) 2020; 56:7753-7756. [DOI: 10.1039/d0cc00165a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We utilized albumin as reducing agent to establish a novel pH-sensitive nanocarrier with abundant Cu+, which can encapsulate HDAC inhibitor vorinostat to form uniform V-CuNPs for synergistic chromatin remodelling and chemodynamic therapy.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Pharmaceutical Biotechnology
- Medical School of Nanjing University & School of Life Sciences
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Zhicheng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology
- Medical School of Nanjing University & School of Life Sciences
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Yawen Ding
- State Key Laboratory of Pharmaceutical Biotechnology
- Medical School of Nanjing University & School of Life Sciences
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology
- Medical School of Nanjing University & School of Life Sciences
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology
- Medical School of Nanjing University & School of Life Sciences
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Ahu Yuan
- State Key Laboratory of Pharmaceutical Biotechnology
- Medical School of Nanjing University & School of Life Sciences
- Nanjing University
- Nanjing 210093
- P. R. China
| |
Collapse
|
24
|
Liu H, Jiang W, Wang Q, Xia J, Yu W, Wang Y, Wang Y. Microenvironment-activated nanoparticles for oxygen self-supplemented photodynamic cancer therapy. Biomater Sci 2019; 8:370-378. [PMID: 31728482 DOI: 10.1039/c9bm01537j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tumor hypoxia, as a hallmark of most solid tumors, poses a serious impediment to O2-dependent anticancer therapies, such as photodynamic therapy (PDT). Although utilizing nanocarriers to load and transport O2 to tumor tissues has been proved effective, the therapeutic outcomes have been impeded by the low O2 capacity and limited tumor penetration of the nanocarriers. To address these problems, we incorporated perfluorooctyl moieties into nanocarriers to improve the encapsulation of perfluorooctyl bromide via fluorophilic interactions, leading to elevated O2 capacity of the nanocarriers. Meanwhile, to enhance the tumor cell penetrating ability as well as reduce reticuloendothelial system recognition, the nanocarrier was further decorated with a cell-penetrating peptide, which was masked with a protecting group via an acid-labile amide bond for prolonged circulation time and acid-activated cell penetration. The in vitro study demonstrated that, apart from remarkably boosting the photocytoxicity of chlorin 6 (Ce6) at a low dosage, the rationally designed O2@DANPCe6+PFOB could even alleviate the pre-existing tumor hypoxia. After intravenous injection, O2@DANPCe6+PFOB exhibited significant tumor accumulation and retention, and potent tumor growth inhibition compared to traditional PDT. Overall, the O2@DANPCe6+PFOB mediated O2 self-supplemented PDT with tumor acidic microenviornment-activated cell penetration provides a promising strategy in anticancer treatment.
Collapse
Affiliation(s)
- Hang Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China.
| | - Wei Jiang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, P. R. China.
| | - Qin Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, P. R. China.
| | - Jinxing Xia
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Wenhao Yu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China.
| | - Yucai Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, P. R. China.
| | - Yanmei Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China.
| |
Collapse
|
25
|
Szostak B, Machaj F, Rosik J, Pawlik A. CTLA4 antagonists in phase I and phase II clinical trials, current status and future perspectives for cancer therapy. Expert Opin Investig Drugs 2018; 28:149-159. [PMID: 30577709 DOI: 10.1080/13543784.2019.1559297] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION In cancer, the immune response to tumor antigens is often suppressed by inhibitors and ligands. Checkpoint blockade, considered one of the most promising frontiers for anti-cancer therapy, aims to stimulate the immune anti-cancer response. Agents such as cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) inhibitors offer prolonged survival with manageable side effects. AREAS COVERED We summarize the recent clinical successes of CTLA-4 inhibitors and place a strong emphasis on those in early phase clinical trials, often in combination with other immune check-point inhibitors, i.e., programmed cell death protein 1 (PD-1) and BRAF/mitogen-activated protein kinase inhibitors. EXPERT OPINION Recent phase I and phase II clinical trials confirm the efficacy of anti-CTLA-4 therapy for treatment of cancers such as renal cell carcinoma. These studies also indicated increased efficacy with combined immune checkpoint blockade with PD-1 or Ras/Raf/mitogen-activated protein kinase/ERK kinase (MEK)/extracellular-signal-regulated kinase (ERK) inhibitors. Researchers must search for new immune targets that may enable more effective and safe immune checkpoint blockade and cancer therapy. This goal may be achieved by next-generation combination therapies to overcome immune checkpoint therapy resistance.
Collapse
Affiliation(s)
- Bartosz Szostak
- a Department of Physiology , Pomeranian Medical University , Szczecin , Poland
| | - Filip Machaj
- a Department of Physiology , Pomeranian Medical University , Szczecin , Poland
| | - Jakub Rosik
- a Department of Physiology , Pomeranian Medical University , Szczecin , Poland
| | - Andrzej Pawlik
- a Department of Physiology , Pomeranian Medical University , Szczecin , Poland
| |
Collapse
|