1
|
Lee YY, Sriram B, Wang SF, Kogularasu S, Chang-Chien GP. Advanced Nanomaterial-Based Biosensors for N-Terminal Pro-Brain Natriuretic Peptide Biomarker Detection: Progress and Future Challenges in Cardiovascular Disease Diagnostics. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:153. [PMID: 38251118 PMCID: PMC10820909 DOI: 10.3390/nano14020153] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
Cardiovascular diseases (CVDs) represent a significant challenge in global health, demanding advancements in diagnostic modalities. This review delineates the progressive and restrictive facets of nanomaterial-based biosensors in the context of detecting N-terminal pro-B-type natriuretic peptide (NT-proBNP), an indispensable biomarker for CVD prognosis. It scrutinizes the escalation in diagnostic sensitivity and specificity attributable to the incorporation of novel nanomaterials such as graphene derivatives, quantum dots, and metallic nanoparticles, and how these enhancements contribute to reducing detection thresholds and augmenting diagnostic fidelity in heart failure (HF). Despite these technological strides, the review articulates pivotal challenges impeding the clinical translation of these biosensors, including the attainment of clinical-grade sensitivity, the substantial costs associated with synthesizing and functionalizing nanomaterials, and their pragmatic deployment across varied healthcare settings. The necessity for intensified research into the synthesis and functionalization of nanomaterials, strategies to economize production, and amelioration of biosensor durability and ease of use is accentuated. Regulatory hurdles in clinical integration are also contemplated. In summation, the review accentuates the transformative potential of nanomaterial-based biosensors in HF diagnostics and emphasizes critical avenues of research requisite to surmount current impediments and harness the full spectrum of these avant-garde diagnostic instruments.
Collapse
Affiliation(s)
- Yen-Yi Lee
- Institute of Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833301, Taiwan
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833301, Taiwan
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833301, Taiwan
| | - Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Sakthivel Kogularasu
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833301, Taiwan
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833301, Taiwan
| | - Guo-Ping Chang-Chien
- Institute of Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833301, Taiwan
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833301, Taiwan
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833301, Taiwan
| |
Collapse
|
2
|
Sousa MP, Bettencourt P, Brás-Silva C, Pereira C. Biosensors for natriuretic peptides in cardiovascular diseases. A review. Curr Probl Cardiol 2024; 49:102180. [PMID: 37907188 DOI: 10.1016/j.cpcardiol.2023.102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/02/2023]
Abstract
Heart failure (HF) is a complex clinical syndrome associated with high rates of morbidity and mortality. Over the years, it has been crucial to find accurate biomarkers capable of doing a precise monitor of HF and provide an early diagnosis. Of these, it has been established an important role of natriuretic peptides in HF assessment. Moreover, the development of biosensors has been garnering interest as new diagnostic medical tools. In this review we first provide a general overview of HF, its pathogenesis, and diagnostic features. We then discuss the role of natriuretic peptides in heart failure by characterizing them and point out their potential as biomarkers. Finally, we adress the evolution of biosensors development and the available natriuretic peptides biosensors for disease monitoring.
Collapse
Affiliation(s)
- Mariana P Sousa
- Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Porto 4200-135, Portugal
| | - Paulo Bettencourt
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Carmen Brás-Silva
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Claudia Pereira
- FP-I3ID, Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS, Biomedical and Health Sciences, Universidade Fernando Pessoa, Porto 4249-004, Portugal; HE-FP-Hospital Fernando Pessoa, CECLIN, Center of Clinical Studies, 4420-096 Gondomar, Portugal; FCS-Faculty of Health Sciences, Fernando Pessoa University, 4249-004 Porto, Portugal.
| |
Collapse
|
3
|
Li M, An S, Wu Y, Yan Z, Chai Y, Yuan R. Self-Supplied Electron Photoelectrochemical Biosensor with PTB7-Th as a Photoelectric Material and Biotin as an Efficient Quencher. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53398-53404. [PMID: 36378492 DOI: 10.1021/acsami.2c14921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this work, a self-supplied electron photoelectrochemical (PEC) biosensor for sensitive determination of Pb2+ was established by utilizing donor-acceptor (D-A)-type PTB7-Th (poly{4,8-bis[5-(2-ethylhexyl) thiophen-2-yl]benzo[1,2-b,4,5-b']dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno[3,4-b]-thiophene-4,6-diyl}) as a photoelectric material coupled with biotin as an efficient signal quencher. Impressively, compared with the traditional PEC signal quenchers, biotin was first applied as a PEC signal quencher in this work and it effectively avoided a cumbersome preparation process, complex DNA sequence design, and extra reagent assistance and greatly simplified experimental steps, which could achieve an efficient PEC signal quenching toward PTB7-Th. In addition, the execution of a DNAzyme-assisted Pb2+ recycling amplification reaction could release the quencher biotin, leading to the recovery of the PEC signal, thereby realizing the quantitative detection of Pb2+. Resultantly, the submitted self-supplied electron PEC biosensor presented an extensive coverage of assay Pb2+ (50 fM to 500 nM) along with a low determination limit (16.7 fM), which exhibited the advantages of high selectivity and excellent stability. Importantly, this work provided a powerful alternative to traditional heavy metal-ion assessment methods and possessed the potential for application in environment, biomedicine, and food-safety fields.
Collapse
Affiliation(s)
- Mengjie Li
- School of Civil Engineering and Architecture, Chongqing University of Science & Technology, Chongqing 401331, P.R. China
- Institute for Health and Environment, Chongqing University of Science & Technology, Chongqing 401331, P.R. China
| | - Siyu An
- School of Civil Engineering and Architecture, Chongqing University of Science & Technology, Chongqing 401331, P.R. China
- Institute for Health and Environment, Chongqing University of Science & Technology, Chongqing 401331, P.R. China
| | - Ying Wu
- School of Civil Engineering and Architecture, Chongqing University of Science & Technology, Chongqing 401331, P.R. China
- Institute for Health and Environment, Chongqing University of Science & Technology, Chongqing 401331, P.R. China
| | - Zhitao Yan
- School of Civil Engineering and Architecture, Chongqing University of Science & Technology, Chongqing 401331, P.R. China
- Institute for Health and Environment, Chongqing University of Science & Technology, Chongqing 401331, P.R. China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
4
|
Zhang J, Cheng D, Sheng Q, Feng C, Wang F, Wu H. Detection of Cr(VI) in agricultural products by photoelectrochemical sensor based on SnS/Bi2MoO6. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Sloboda T, Svanström S, Johansson FOL, Bryngelsson E, García-Fernández A, Lindblad A, Cappel UB. The impact of chemical composition of halide surface ligands on the electronic structure and stability of lead sulfide quantum dot materials. Phys Chem Chem Phys 2022; 24:12645-12657. [PMID: 35579959 DOI: 10.1039/d2cp01050j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is a high fundamental interest in the surface and bulk chemistry of quantum dot (QD) solids, as they have proven to be very promising materials in optoelectronic devices. The choice of surface ligands for quantum dots in solid devices determines many of the film properties, as the ligands influence for example the doping density, chemical stability and charge transport. Lead halide ligands have developed as the main ligand of choice for lead sulfide quantum dots, as they have been shown to passivate quantum dot surfaces and enhance the chemical stability. In this study, we successfully varied the ligand composition on the surface of PbS quantum dot films from pure lead iodide to pure lead bromide and investigated its influence on the chemical and electronic structure of the QD solids using hard X-ray photoelectron spectroscopy (HAXPES). Furthermore, we developed a surface treatment to prevent the surface oxidation of a bulk PbS reference sample. Through measurements of this sample and of lead halide reference samples, we were able to assign the contributions of different chemical bonding to the Pb 4f core level and of different atomic orbitals to the valence band spectral shape of the QD materials. Overall, we found that the valence band edge position was very similar for all different iodide:bromide ratios and that all investigated compositions were able to protect the quantum dot surfaces within solid films from oxidation. However, the ligand composition significantly influences the sample stability under X-rays. The iodide rich QD solids showed the highest stability with very little to no chemical changes over several hours of X-ray exposure, while the bromide rich QD solids changed already within the first hour of exposure.
Collapse
Affiliation(s)
- Tamara Sloboda
- Division of Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Sebastian Svanström
- Division of X-ray Photon Science, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - Fredrik O L Johansson
- Division of X-ray Photon Science, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - Erik Bryngelsson
- Division of Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Alberto García-Fernández
- Division of Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Andreas Lindblad
- Division of X-ray Photon Science, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - Ute B Cappel
- Division of Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
6
|
Crapnell RD, Dempsey NC, Sigley E, Tridente A, Banks CE. Electroanalytical point-of-care detection of gold standard and emerging cardiac biomarkers for stratification and monitoring in intensive care medicine - a review. Mikrochim Acta 2022; 189:142. [PMID: 35279780 PMCID: PMC8917829 DOI: 10.1007/s00604-022-05186-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 12/27/2022]
Abstract
Determination of specific cardiac biomarkers (CBs) during the diagnosis and management of adverse cardiovascular events such as acute myocardial infarction (AMI) has become commonplace in emergency department (ED), cardiology and many other ward settings. Cardiac troponins (cTnT and cTnI) and natriuretic peptides (BNP and NT-pro-BNP) are the preferred biomarkers in clinical practice for the diagnostic workup of AMI, acute coronary syndrome (ACS) and other types of myocardial ischaemia and heart failure (HF), while the roles and possible clinical applications of several other potential biomarkers continue to be evaluated and are the subject of several comprehensive reviews. The requirement for rapid, repeated testing of a small number of CBs in ED and cardiology patients has led to the development of point-of-care (PoC) technology to circumvent the need for remote and lengthy testing procedures in the hospital pathology laboratories. Electroanalytical sensing platforms have the potential to meet these requirements. This review aims firstly to reflect on the potential benefits of rapid CB testing in critically ill patients, a very distinct cohort of patients with deranged baseline levels of CBs. We summarise their source and clinical relevance and are the first to report the required analytical ranges for such technology to be of value in this patient cohort. Secondly, we review the current electrochemical approaches, including its sub-variants such as photoelectrochemical and electrochemiluminescence, for the determination of important CBs highlighting the various strategies used, namely the use of micro- and nanomaterials, to maximise the sensitivities and selectivities of such approaches. Finally, we consider the challenges that must be overcome to allow for the commercialisation of this technology and transition into intensive care medicine.
Collapse
Affiliation(s)
- Robert D Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Nina C Dempsey
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| | - Evelyn Sigley
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Ascanio Tridente
- Intensive Care Unit, Whiston Hospital, St Helens and Knowsley Teaching Hospitals NHS Trust, Warrington Road, Prescot, L35 5DR, UK
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| |
Collapse
|
7
|
Zhang S, Wang C, Wu T, Fan D, Hu L, Wang H, Wei Q, Wu D. A sandwiched photoelectrochemical biosensing platform for detecting Cytokeratin-19 fragments based on Ag 2S-sensitized BiOI/Bi 2S 3 heterostructure amplified by sulfur and nitrogen co-doped carbon quantum dots. Biosens Bioelectron 2022; 196:113703. [PMID: 34656853 DOI: 10.1016/j.bios.2021.113703] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/09/2021] [Indexed: 01/20/2023]
Abstract
A sandwiched photoelectrochemical (PEC) immunosensor based on BiOI/Bi2S3/Ag2S was designed for the quantitative detection of cytokeratin-19 fragments (CYFRA21-1) in serum. In this work, due to the intervention of the narrow band gap Bi2S3, the absorption of the light source by the BiOI/Bi2S3 heterostructure has been significantly enhanced. Meanwhile, the matched band structure of BiOI, Bi2S3 and Ag2S promoted the rapid transfer of electrons between the conduction bands and effectively inhibited the recombination of electron-hole pairs, thus enhanced the photoelectric signals. Sulfur and nitrogen co-doped carbon quantum dots (S,N-CQDs) with up-conversion luminescence properties provided more light energy for the base materials. On the other hand, S,N-CQDs were combined with Ab2 through polydopamine (PDA), as secondary antibody labels, further enhanced the sensitivity of the sensor. Herein, the linear range of the sensor was from 0.001 to 100 ng mL-1 and the detection limit was 1.72 pg mL-1. In addition, the sensor provides a feasible way for the detection of tumor markers due to its excellent selectivity, repeatability and good stability.
Collapse
Affiliation(s)
- Shitao Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Chao Wang
- Department of Rehabilitation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Tingting Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Dawei Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Lihua Hu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Huan Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China.
| |
Collapse
|
8
|
Zhang XJ, Ma YY, Bi HX, Yin XY, Song H, Liu MH, Han ZG. Wheel-shaped molybdenum( v) cobalt-phosphate cluster as a highly sensitive bifunctional photoelectrochemical sensor for the trace determination of Cr( vi) and tetracycline. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01936a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A wheel-shaped {Co16Mo16P24} cluster-based 3-D crystal framework serves as an efficient bifunctional photoelectrochemical sensor for the trace determination of Cr(vi) and tetracycline.
Collapse
Affiliation(s)
- Xiu-Juan Zhang
- Hebei Key laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Yuan-Yuan Ma
- Hebei Key laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Hao-Xue Bi
- Hebei Key laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Xiao-Yu Yin
- Hebei Key laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Hao Song
- Hebei Key laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Man-Hui Liu
- Hebei Key laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Zhan-Gang Han
- Hebei Key laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| |
Collapse
|
9
|
Abstract
Nowadays, the emerging photoelectrochemical (PEC) bioanalysis has drawn intensive interest due to its numerous merits. As one of its core elements, functional nanostructured materials play a crucial role during the construction of PEC biosensors, which can not only be employed as transducers but also act as signal probes. Although both chemical composition and morphology control of nanostructured materials contribute to the excellent analytical performance of PEC bioassay, surveys addressing nanostructures with different dimensionality have rarely been reported. In this review, according to classification based on dimensionality, zero-dimensional, one-dimensional, two-dimensional, and three-dimensional nanostructures used in PEC bioanalysis are evaluated, with an emphasis on the effect of morphology on the detection performances. Furthermore, using the illustration of recent works, related novel PEC biosensing patterns with promising applications are also discussed. Finally, the current challenges and some future perspectives in this field are addressed based on our opinions.
Collapse
|
10
|
Zhang X, Zhang J, Gao Y, Yan J, Song W. Controllable signal molecule release from Au NP-gated MSNs for photocathodic detection of ultralow level AβO. Chem Commun (Camb) 2021; 58:839-842. [PMID: 34931636 DOI: 10.1039/d1cc05220a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
By integrating a target-responsive MSN-based controlled release system with a sensitization-SPR co-enhanced thionine/MoS2 QDs/Cu NWs photocathode, a highly sensitive split-type PEC aptasensing platform for AβO detection in blood is constructed. Ultralow detection limit (2.1 fM) and high selectivity show great potential in early AD diagnosis.
Collapse
Affiliation(s)
- Xuechen Zhang
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Jinling Zhang
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Yao Gao
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Jianyue Yan
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Wenbo Song
- College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
11
|
Applications of two-dimensional layered nanomaterials in photoelectrochemical sensors: A comprehensive review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214156] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Wang X, Xue M, Li X, Qin L, Kang SZ. Boosting the photocatalytic H2 production performance and stability of C3N4 nanosheets via the synergistic effect between SnO2 nanoparticles and Pt nanoclusters. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Liu XP, Chang N, Chen JS, Mao CJ, Jin BK. Ultrasensitive photoelectrochemical immunosensor based on a g-C3N4/SnS2 nanocomposite for prostate-specific antigen detection. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Gu Z, Perez-Aguilar JM, Shao Q. Restricted binding of a model protein on C3N4 nanosheets suggests an adequate biocompatibility of the nanomaterial. RSC Adv 2021; 11:7417-7425. [PMID: 35423284 PMCID: PMC8694939 DOI: 10.1039/d0ra10125g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/03/2021] [Indexed: 11/21/2022] Open
Abstract
The fixed binding pattern of protein adsorption to C3N4 plays a major role in the nanomaterial biocompatibility, which results from the inherent porous surface structure.
Collapse
Affiliation(s)
- Zonglin Gu
- College of Physical Science and Technology
- Yangzhou University
- China
| | - Jose Manuel Perez-Aguilar
- School of Chemical Sciences
- Meritorious Autonomous University of Puebla (BUAP)
- University City
- Puebla 72570
- Mexico
| | - Qiwen Shao
- Institute of Quantitative Biology
- Department of Physics
- College of Life Science
- Zhejiang University
- Hangzhou 310027
| |
Collapse
|
15
|
Chouhan RS, Jerman I, Heath D, Bohm S, Gandhi S, Sadhu V, Baker S, Horvat M. Emerging tri‐s‐triazine‐based graphitic carbon nitride: A potential signal‐transducing nanostructured material for sensor applications. NANO SELECT 2020. [DOI: 10.1002/nano.202000228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Ivan Jerman
- National Institute of Chemistry Ljubljana Slovenia
| | - David Heath
- Department of Environmental Sciences Jožef Stefan Institute Ljubljana Slovenia
| | - Sivasambu Bohm
- Royal Society Industry Fellow Molecular Science Research Hub Imperial College London London UK
| | - Sonu Gandhi
- DBT‐National Institute of Animal Biotechnology (DBT‐NIAB) Hyderabad Telangana India
| | - Veera Sadhu
- School of Physical Sciences Kakatiya Institute of Technology & Science (KITS) Warangal Telangana India
| | - Syed Baker
- Department of Microbiology Prof. V.F. Voino‐Yasenetsky Krasnoyarsk State Medical University Krasnoyarsk Siberia Russian Federation
| | - Milena Horvat
- Department of Environmental Sciences Jožef Stefan Institute Ljubljana Slovenia
| |
Collapse
|
16
|
Wu T, Feng J, Zhang S, Liu L, Ren X, Fan D, Kuang X, Sun X, Wei Q, Ju H. A self-powered photoanode-supported photoelectrochemical immunosensor for CYFRA 21-1 detection based on In2O3/In2S3/CdIn2S4 heterojunction. Biosens Bioelectron 2020; 169:112580. [DOI: 10.1016/j.bios.2020.112580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 01/29/2023]
|
17
|
Long D, Li M, Wang H, Wang H, Chai Y, Li Z, Yuan R. Ultrasensitive Photoelectrochemical Assay for DNA Detection Based on a Novel SnS2/Co3O4 Sensitized Structure. Anal Chem 2020; 92:14769-14774. [DOI: 10.1021/acs.analchem.0c03497] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dan Long
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Mengjie Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Haihua Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Haijun Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Zhaohui Li
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
18
|
Feng R, Tian K, Zhang Y, Liu W, Fang J, Khan MS, Wei Q, Wu R. Recognition of M2 type tumor-associated macrophages with ultrasensitive and biocompatible photoelectrochemical cytosensor based on Ce doped SnO 2/SnS 2 nano heterostructure. Biosens Bioelectron 2020; 165:112367. [PMID: 32729499 DOI: 10.1016/j.bios.2020.112367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 02/08/2023]
Abstract
Tumor-associated macrophages (TAMs) play central roles in the regulation of tumor growth. TAMs can be differentiated into M1 and M2 types, which are responsible for the inhibition and growth of tumor tissues, respectively. Recognition of M2-TAMs is significant for the diagnosis and therapy of cancer, which is however severely limited due to the deficiency of selective and sensitive photoelectrochemical sensors. In this work, using Ce doped SnO2/SnS2 nano heterostructure as the highly sensitive platform, a photoelectrochemical sensor enabling the recognition of M2-TAMs was fabricated for the first time. By the decoration of CD163 antibody on the platform, the ultrasensitive photoelectrochemical sensor can selectively detect the CD163 protein on the surface of M2-TAMs. To our best knowledge, this is the first demonstration for recognition of M2-TAMs using photoelectrochemical method. The fabricated cytosensor has ultra-sensitive photocurrent response, applicable biological compatibility, high selectivity and relatively wide linear sensing range (5 × 101 to 1 × 105 cells/ml) with a low detection limit (50 cells/ml) for the detection of M2-TAMS. This kind of PEC cytosensor would provide a novel analysis and detection strategy for M2-TAMs.
Collapse
Affiliation(s)
- Ruiqing Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Kaixuan Tian
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China.
| | - Yifeng Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Wei Liu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China.
| | - Jinglong Fang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Malik Saddam Khan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Rongde Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China.
| |
Collapse
|
19
|
Xu R, Du Y, Leng D, Liu L, Li Y, Ren X, Fan D, Wang H, Wei Q. Antigen down format photoelectrochemical analysis supported by fullerene functionalized Sn 3O 4. Chem Commun (Camb) 2020; 56:7455-7458. [PMID: 32495763 DOI: 10.1039/d0cc02933e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, a smart competitive-type photoelectrochemical (PEC) sensor based on an antigen-down (Ag-down) format for procalcitonin (PCT) detection is proposed. A fullerene sensitized flower-like Sn3O4 nano-structure is used as the photoactive platform, and FeS2 is labeled on the secondary antibody as a signal adjusting element. The sensor exhibits excellent sensitivity and great stability.
Collapse
Affiliation(s)
- Rui Xu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang S, Wang F, Fu C, Sun Y, Zhao J, Li N, Liu Y, Ge S, Yu J. AgInSe2-Sensitized ZnO Nanoflower Wide-Spectrum Response Photoelectrochemical/Visual Sensing Platform via Au@Nanorod-Anchored CeO2 Octahedron Regulated Signal. Anal Chem 2020; 92:7604-7611. [DOI: 10.1021/acs.analchem.0c00231] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shaopeng Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Fangfang Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Cuiping Fu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Yina Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Jinge Zhao
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Na Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Yunqing Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Shenguang Ge
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Jinghua Yu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| |
Collapse
|
21
|
A signal-off type photoelectrochemical immunosensor for the ultrasensitive detection of procalcitonin: Ru(bpy)32+ and Bi2S3 co-sensitized ZnTiO3/TiO2 polyhedra as matrix and dual inhibition by SiO2/PDA-Au. Biosens Bioelectron 2019; 142:111513. [DOI: 10.1016/j.bios.2019.111513] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/25/2019] [Accepted: 07/12/2019] [Indexed: 12/24/2022]
|
22
|
Cysteine-assisted photoelectrochemical immunoassay for the carcinoembryonic antigen by using an ITO electrode modified with C3N4-BiOCl semiconductor and CuO nanoparticles as antibody labels. Mikrochim Acta 2019; 186:633. [DOI: 10.1007/s00604-019-3706-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/21/2019] [Indexed: 01/10/2023]
|
23
|
Wang HH, Li MJ, Wang HJ, Chai YQ, Yuan R. p-n-Sensitized Heterostructure Co 3O 4/Fullerene with Highly Efficient Photoelectrochemical Performance for Ultrasensitive DNA Detection. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23765-23772. [PMID: 31252476 DOI: 10.1021/acsami.9b05923] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Significantly sensitized architectures meeting the requirements of high photoelectric conversion efficiency and promising photocurrent intensity are extremely desirable, but challenges in sensitizer development and efficiency in photoelectrochemical (PEC) fields remain. In this paper, the p-type metal oxide semiconductor Co3O4 was attached as an effective photosensitizer to n-type fullerene C60 in view of appropriately matched energy band levels to form the highlighted p-n-sensitized heterostructure Co3O4/fullerene, with facilitated charge separation and accelerated carrier mobility. Compared with traditional p-n heterostructure, the p-n-sensitized heterostructure Co3O4/fullerene illustrated a wider range for light absorption with further enhanced light-harvesting capability, thereby leading to more exceptional PEC performance containing remarkably promoted photoelectric conversion efficiency and improved photocurrent intensity. Impressively, the photocurrent intensity obtained by Co3O4/fullerene was about sixfold higher than that of fullerene alone, and this achievement was quite favored compared to the reported works for fullerene sensitization, which could be responsible for the advancement of detection sensitivity for the subsequently constructed biosensor. Unambiguously, given the p-n-sensitized heterostructure Co3O4/fullerene of high PEC activity, the well-fabricated three-dimensional DNA walker applied as a target-cascade signal amplification strategy, and the Au layer employed as the specific linker between the photoactive material and the signal amplification product, a smart PEC biosensor was successfully enabled for ultrasensitive investigation of the model DNA (a fragment of the p53 gene), showing a wide linear range of 60 to 1 × 105 aM and a detection limit of 20 aM. This proposed PEC biosensor provided acceptable insights into the clinic analysis, disease therapies, and other relevant subjects.
Collapse
Affiliation(s)
- Hai-Hua Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , People's Republic of China
| | - Meng-Jie Li
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , People's Republic of China
| | - Hai-Jun Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , People's Republic of China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , People's Republic of China
| | - Ruo Yuan
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , People's Republic of China
| |
Collapse
|
24
|
Mimic peroxidase-transfer enhancement of photoelectrochemical aptasensing via CuO nanoflowers functionalized lab-on-paper device with a controllable fluid separator. Biosens Bioelectron 2019; 133:32-38. [PMID: 30904620 DOI: 10.1016/j.bios.2019.02.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/25/2019] [Accepted: 02/11/2019] [Indexed: 01/29/2023]
Abstract
Inspired by the design of folding greeting cards and tissue drawing covers, a photoelectrochemical (PEC) lab-on-paper device with a controllable fluid separator, producing both reaction zone and detection zone, was explored for ultrasensitive detection of adenosine 5'-triphosphate (ATP) via mimic peroxidase-transfer enhancement of photocurrent response. To realize it, the DNA1, aptamer, and DNA2 as well as the mimic peroxidase of G-quadruplex/hemin modified Au nanocubes were linked on the graphene oxide-functionalized reaction zone via the DNA hybridization. Meanwhile, three-dimensional CuO nanoflowers (CuO NFs) as a photoactive material with outstanding electron transfer ability and absorption of light were grown in situ on the detection zone, providing a PEC active interface. Besides, an innovative fluid separator was elaborately designed by assembling a strip of paper with a hydrophilic channel, providing an effective way to bridge the gap between the two zones with a controllable drawing way, which could successfully avoid the signal interference caused by modifying biomolecules layer by layer on photosensitive materials. In the presence of ATP, the G-quadruplex/hemin modified in the reaction zone was dissociated due to the specific recognition of ATP with aptamer and released into the detection zone with the assistance of controllable fluid separator. The free G-quadruplex/hemin could catalyze hydrogen peroxide to generate oxygen for the consumption of photo-induced electrons from CuO NFs, which could further promote the electron-hole carriers separation efficiency, and eventually resulting in the enhancement of PEC signal. The proposed PEC lab-on-paper device could be employed for specific detection of ATP in the range from 5.0 to 3.0 × 103 nM with a detection limit of 2.1 nM.
Collapse
|
25
|
Deng HM, Huang LJ, Chai YQ, Yuan R, Yuan YL. Ultrasensitive Photoelectrochemical Detection of Multiple Metal Ions Based on Wavelength-Resolved Dual-Signal Output Triggered by Click Reaction. Anal Chem 2019; 91:2861-2868. [DOI: 10.1021/acs.analchem.8b04831] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Han-Mei Deng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Liao-Jing Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ya-Li Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|