1
|
Qin H, He Y, Xu P, Huang D, Wang Z, Wang H, Wang Z, Zhao Y, Tian Q, Wang C. Spinel ferrites (MFe 2O 4): Synthesis, improvement and catalytic application in environment and energy field. Adv Colloid Interface Sci 2021; 294:102486. [PMID: 34274724 DOI: 10.1016/j.cis.2021.102486] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
To develop efficient catalysts is one of the major ways to solve the energy and environmental problems. Spinel ferrites, with the general chemical formula of MFe2O4 (where M = Mg2+, Co2+, Ni2+, Zn2+, Fe2+, Mn2+, etc.), have attracted considerable attention in catalytic research. The flexible position and valence variability of metal cations endow spinel ferrites with diverse physicochemical properties, such as abundant surface active sites, high catalytic activity and easy to be modified. Meanwhile, their unique advantages in regenerating and recycling on account of the magnetic performances facilitate their practical application potential. Herein, the conventional as well as green chemistry synthesis of spinel ferrites is reviewed. Most importantly, the critical pathways to improve the catalytic performance are discussed in detail, mainly covering selective doping, site substitution, structure reversal, defect introduction and coupled composites. Furthermore, the catalytic applications of spinel ferrites and their derivative composites are exclusively reviewed, including Fenton-type catalysis, photocatalysis, electrocatalysis and photoelectro-chemical catalysis. In addition, some vital remarks, including toxicity, recovery and reuse, are also covered. Future applications of spinel ferrites are envisioned focusing on environmental and energy issues, which will be pushed by the development of precise synthesis, skilled modification and advanced characterization along with emerging theoretical calculation.
Collapse
Affiliation(s)
- Hong Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Yangzhuo He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China..
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China..
| | - Ziwei Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Han Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Zixuan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Yin Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Quyang Tian
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Changlin Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| |
Collapse
|
2
|
Yang J, Li X, Wu J, Han Y, Wang Z, Zhang X, Xu Y. Yolk-shell (Cu,Zn)Fe 2O 4 ferrite nano-microspheres with highly selective triethylamine gas-sensing properties. Dalton Trans 2020; 49:14475-14482. [PMID: 33034597 DOI: 10.1039/d0dt03106b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Multicomponent spinel ferrites are essential to be used in high-performance gas-sensing materials. Herein, multinary (Cu,Zn)Fe2O4 spinel nano-microspheres with tunable internal structures, including solid, core-shell, and yolk-shell, were successfully synthesized by a simple self-templated solvothermal method combined with a subsequent annealing strategy. The internal structures of the (Cu,Zn)Fe2O4 nano-microspheres significantly rely on the heating rates of the precursors, which show promising selective response towards trimethylamine gas. Among them, the as-formed yolk-shell (Cu,Zn)Fe2O4 nano-microspheres exhibited high response to triethylamine with excellent selectivity of STEA/SX = 1.86 at 160 °C, fast response-recovery rate (58 s/136 s), and long-term repeatability and stability of more than one month. The corresponding triethylamine gas-sensing mechanism with the special microstructures is discussed. This work provides new insights into the rational design of interior structure and the modulation of high gas response and selectivity of multinary spinel ferrites in gas-sensing applications.
Collapse
Affiliation(s)
- Jing Yang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, P.R. China.
| | - Xianliang Li
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142P.R. China
| | - Junbiao Wu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, P.R. China.
| | - Yide Han
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, P.R. China.
| | - Zhuopeng Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, P.R. China.
| | - Xia Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, P.R. China.
| | - Yan Xu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, P.R. China.
| |
Collapse
|
3
|
Liu Y, Guo Z, Li F, Xiao Y, Zhang Y, Bu T, Jia P, Zhe T, Wang L. Multifunctional Magnetic Copper Ferrite Nanoparticles as Fenton-like Reaction and Near-Infrared Photothermal Agents for Synergetic Antibacterial Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31649-31660. [PMID: 31407880 DOI: 10.1021/acsami.9b10096] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Synergistic therapeutic strategies for bacterial infection have attracted extensive attentions owing to their enhanced therapeutic effects and less adverse effects compared with monotherapy. Herein, we report a novel synergistic antibacterial platform that integrates the nanocatalytic antibacterial therapy and photothermal therapy (PTT) by hemoglobin-functionalized copper ferrite nanoparticles (Hb-CFNPs). In the presence of a low concentration of hydrogen peroxide (H2O2), the excellent Fenton and Fenton-like reaction activity of Hb-CFNPs can effectively catalyze the decomposition of H2O2 to produce hydroxyl radicals (·OH), rendering an increase in the permeability of the bacterial cell membrane and the sensitivity to heat. With the assistance of NIR irradiation, hyperthermia generated by Hb-CFNPs can induce the death of the damaged bacteria. Additionally, owing to the outstanding magnetic property of Hb-CFNPs, it can improve the photothermal efficiency by about 20 times via magnetic enrichment, which facilitates to realize excellent bactericidal efficacy at a very low experimental dose (20 μg/mL). In vitro antibacterial experiment shows that this synergistic antibacterial strategy has a broad-spectrum antibacterial property against Gram-negative Escherichia coli (E. coli, 100%) and Gram-positive Staphylococcus aureus (S. aureus, 96.4%). More importantly, in vivo S. aureus-infected abscess treatment studies indicate that Hb-CFNPs can serve as an antibacterial candidate with negligible toxicity to realize synergistic treatment of bacterial infections through catalytic and photothermal effects. Accordingly, this study proposes a novel, high-efficiency, and multifunctional therapeutic system for the treatment of bacterial infection, which will open up a new avenue for the design of synergistic antibacterial systems in the future.
Collapse
Affiliation(s)
- Yingnan Liu
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , Shaanxi , China
| | - Zhirong Guo
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , Shaanxi , China
| | - Fan Li
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , Shaanxi , China
| | - Yaqing Xiao
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , Shaanxi , China
| | - Yalan Zhang
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , Shaanxi , China
| | - Tong Bu
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , Shaanxi , China
| | - Pei Jia
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , Shaanxi , China
| | - Taotao Zhe
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , Shaanxi , China
| | - Li Wang
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , Shaanxi , China
| |
Collapse
|
4
|
Chen B, Chen X, Li R, Fan W, Wang F, Mao B, Shi W. Flame Reduced TiO2 Nanorod Arrays with Ag Nanoparticle Decoration for Efficient Solar Water Splitting. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b06171] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Biyi Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xue Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Ruoyuan Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Weiqiang Fan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Fagen Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Baodong Mao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
5
|
Prasad D, Patil KN, Bhanushali JT, Nagaraja BM, Jadhav AH. Sustainable fixation of CO2 into epoxides to form cyclic carbonates using hollow marigold CuCo2O4 spinel microspheres as a robust catalyst. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00945k] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The present work demonstrates the chemical fixation of CO2 for the synthesis of organic carbonates using mesoporous hollow marigold CuCo2O4 spinel microspheres as a catalyst prepared using the solvothermal method.
Collapse
Affiliation(s)
- Divya Prasad
- Centre for Nano and Material Science
- JAIN University
- Bangalore 562112
- India
| | - Komal N. Patil
- Centre for Nano and Material Science
- JAIN University
- Bangalore 562112
- India
| | | | | | - Arvind H. Jadhav
- Centre for Nano and Material Science
- JAIN University
- Bangalore 562112
- India
| |
Collapse
|
6
|
Liu Y, Mi X, Wang J, Li M, Fan D, Lu H, Chen X. Two-dimensional SnS2 nanosheets exfoliated from an inorganic–organic hybrid with enhanced photocatalytic activity towards Cr(vi) reduction. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00020h] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Thin SnS2 nanosheets with {001} facets dominating were obtained with the liquid-exfoliation method and exhibit largely improved photocatalytic activity for Cr(vi) reduction.
Collapse
Affiliation(s)
- Yongping Liu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin
- China
| | - Xihong Mi
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin
- China
| | - Jixiang Wang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin
- China
| | - Ming Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin
- China
| | - Dayong Fan
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin
- China
| | - Huidan Lu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin
- China
| | - Xiaobo Chen
- Department of Chemistry
- University of Missouri – Kansas City
- Kansas City
- USA
| |
Collapse
|