1
|
Zhang H, Ding Q, Zhang Y, Lu G, Liu Y, Tong Y. Prevention and Control of Biofouling Coatings in Limnoperna fortunei: A Review of Research Progress and Strategies. Polymers (Basel) 2024; 16:3070. [PMID: 39518278 PMCID: PMC11548153 DOI: 10.3390/polym16213070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The increasing environmental concerns of conventional antifouling coatings have led to the exploration of novel and sustainable solutions to address the biofouling caused by Limnoperna fortunei. As a rapidly expanding invasive species, the fouling process of Limnoperna fortunei is closely associated with microbial fouling, posing significant threats to the integrity of aquatic infrastructure and biodiversity. This review discusses recent progress in the development of non-toxic, eco-friendly antifouling coatings that are designed to effectively resist biofouling without using toxic chemicals. Recent research has focused on developing novel non-toxic coatings that integrate natural bioactive components with advanced material technologies. These formulations not only meet current environmental standards and exhibit minimal ecological impact, but also possess significant potential in preventing the attachment, growth, and reproduction of Limnoperna fortunei. This review aims to provide scientific guidance by proposing effective and sustainable solutions to address the ecological challenges presented by Limnoperna fortunei. The insights gained from current research not only reveal novel antifouling methods, but also identify key areas for further investigation aimed at enhancing performance and environmental compatibility.
Collapse
Affiliation(s)
- Hailong Zhang
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China; (Y.L.); (Y.T.)
| | - Qingjie Ding
- Sinohydro Bureau 11 Co., Ltd., Zhengzhou 450000, China; (Q.D.); (G.L.)
| | - Yonghui Zhang
- Sinohydro Bureau 11 Co., Ltd., Zhengzhou 450000, China; (Q.D.); (G.L.)
| | - Guangyi Lu
- Sinohydro Bureau 11 Co., Ltd., Zhengzhou 450000, China; (Q.D.); (G.L.)
| | - Yangyu Liu
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China; (Y.L.); (Y.T.)
| | - Yuping Tong
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China; (Y.L.); (Y.T.)
| |
Collapse
|
2
|
Li S, Li H, Guo P, Li X, Yang W, Ma G, Nishimura K, Ke P, Wang A. Enhanced Long-Term Corrosion Resistance of 316L Stainless Steel by Multilayer Amorphous Carbon Coatings. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2129. [PMID: 38730935 PMCID: PMC11084866 DOI: 10.3390/ma17092129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Diamond-like carbon (DLC) coatings are effective in protecting the key components of marine equipment and can greatly improve their short-term performance (1.5~4.5 h). However, the lack of investigation into their long-term (more than 200 h) performance cannot meet the service life requirements of marine equipment. Here, three multilayered DLC coatings, namely Ti/DLC, TiCx/DLC, and Ti-TiCx/DLC, were prepared, and their long-term corrosion resistance was investigated. Results showed that the corrosion current density of all DLC coatings was reduced by 1-2 orders of magnitude compared with bare 316L stainless steel (316Lss). Moreover, under long-term (63 days) immersion in a 3.5 wt.% NaCl solution, all DLC coatings could provide excellent long-term corrosion protection for 316Lss, and Ti-TiCx/DLC depicted the best corrosion resistance; the polarization resistances remained at ~3.0 × 107 Ω·cm2 after immersion for 63 days, with more interfaces to hinder the penetration of the corrosive media. Meanwhile, during neutral salt spray (3000 h), the corrosion resistance of Ti/DLC and TiCx/DLC coatings showed a certain degree of improvement because the insoluble corrosion products at the defects blocked the subsequent corrosion. This study can provide a route to designing amorphous carbon protective coatings for long-term marine applications in different environments.
Collapse
Affiliation(s)
- Shuyu Li
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (S.L.); (H.L.); (X.L.); (W.Y.); (G.M.); (K.N.); (P.K.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Li
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (S.L.); (H.L.); (X.L.); (W.Y.); (G.M.); (K.N.); (P.K.)
| | - Peng Guo
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (S.L.); (H.L.); (X.L.); (W.Y.); (G.M.); (K.N.); (P.K.)
| | - Xiaowei Li
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (S.L.); (H.L.); (X.L.); (W.Y.); (G.M.); (K.N.); (P.K.)
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Wei Yang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (S.L.); (H.L.); (X.L.); (W.Y.); (G.M.); (K.N.); (P.K.)
| | - Guanshui Ma
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (S.L.); (H.L.); (X.L.); (W.Y.); (G.M.); (K.N.); (P.K.)
| | - Kazuhito Nishimura
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (S.L.); (H.L.); (X.L.); (W.Y.); (G.M.); (K.N.); (P.K.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiling Ke
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (S.L.); (H.L.); (X.L.); (W.Y.); (G.M.); (K.N.); (P.K.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aiying Wang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (S.L.); (H.L.); (X.L.); (W.Y.); (G.M.); (K.N.); (P.K.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Hoque MA, Yao CW, Khanal M, Lian I. Tribocorrosion Behavior of Micro/Nanoscale Surface Coatings. SENSORS (BASEL, SWITZERLAND) 2022; 22:9974. [PMID: 36560343 PMCID: PMC9786041 DOI: 10.3390/s22249974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Wear and corrosion are common issues of material degradation and failure in industrial appliances. Wear is a damaging process that can impact surface contacts and, more specifically, can cause the loss and distortion of material from a surface because of the contacting object's mechanical action via motion. More wear occurs during the process of corrosion, in which oxide particles or debris are released from the contacting material. These types of wear debris and accumulated oxide particles released during corrosion cause a combination of wear-corrosion processes. Bringing together the fields of tribology and corrosion research, tribocorrosion is a field of study which deals with mechanical and electrochemical interactions between bodies in motion. More specifically, it is the study of mechanisms caused by the combined effects of mechanical stress and chemical/electrochemical interactions with the environment. Tribocorrosion testing methods provide new opportunities for studying the electrochemical nature of corrosion combined with mechanical loading to establish a synergistic relationship between corrosion and wear. To improve tribological, mechanical, and anti-corrosion performances, several surface modification techniques are being applied to develop functional coatings with micro/nano features. This review of the literature explores recent and enlightening research into the tribocorrosive properties of micro/nano coatings. It also looks at recent discussions of the most common experimental methods and some newer, promising experimental methods in tribocorrosion to elucidate their applications in the field of micro/nano coatings.
Collapse
Affiliation(s)
- Md Ashraful Hoque
- Department of Mechanical Engineering, Lamar University, Beaumont, TX 77710, USA
| | - Chun-Wei Yao
- Department of Mechanical Engineering, Lamar University, Beaumont, TX 77710, USA
| | - Mukunda Khanal
- Department of Mechanical Engineering, Lamar University, Beaumont, TX 77710, USA
| | - Ian Lian
- Department of Biology, Lamar University, Beaumont, TX 77710, USA
| |
Collapse
|
4
|
Meng W, Zou J, Wang X, Zhang P, Du X. On the Distinctive Hardness, Anti-Corrosion Properties and Mechanisms of Flame-Deposited Carbon Coating with a Hierarchical Structure in Contrast to a Graphene Layer via Chemical Vapor Deposition. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172944. [PMID: 36079981 PMCID: PMC9458154 DOI: 10.3390/nano12172944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 05/14/2023]
Abstract
Two carbonaceous (amorphous carbon and graphene) coatings were catalytically grown on bulk Ni plates. It was found that the flame-deposited carbon (FDC) layers exhibited a unique hierarchical structure with the formation of FDC/Ni nano-interlocking interface. The effect of the flame coating time on its corrosion protective efficiency (PE) was studied and compared with that of graphene coating produced via chemical vapor deposition. The FDC grown for 10 min exhibited a PE of 92.7%, which was much greater than that of the graphene coating (75.6%). The anti-corrosive mechanisms of both coatings were revealed and compared. For graphene coatings, the higher reaction temperature than that for FDC resulted in large grain boundaries inherent in the coating. Such boundaries were weak points and easily initiated grain boundary corrosion. In contrast, corrosion started at only certain local defects in FDC layers, whose unique interface structure likely promoted its PE as well. Moreover, after the coating process, the hardness of FDC-coated Ni remained almost unchanged, in contrast to that of graphene-coated samples (reduced by ~30%). This is suggested to be related to the crystal structure evolution of the Ni substrate caused by the heat treatment accompanying the coating process.
Collapse
|
5
|
Nasir A, Mazare A, Zhou X, Qin S, Denisov N, Zdrazil L, Kment Š, Zboril R, Yasin T, Schmuki P. Photocatalytic Synthesis of Oxidized Graphite Enabled by Grey TiO
2
and Direct Formation of a Visible‐Light‐Active Titania/Graphene Oxide Nanocomposite. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Amara Nasir
- Pakistan Institute of Engineering and Applied Sciences (PIEAS) PO Nilore 45650 Islamabad Pakistan
- Department of Materials Science WW4-LKO Friedrich Alexander University of Erlangen Nürnberg Martensstrasse 7 91058 Erlangen Germany
| | - Anca Mazare
- Department of Materials Science WW4-LKO Friedrich Alexander University of Erlangen Nürnberg Martensstrasse 7 91058 Erlangen Germany
- Advanced Institute for Materials Research (AIMR) National University Corporation Tohoku University 980-8577 Sendai Japan
| | - Xin Zhou
- Department of Materials Science WW4-LKO Friedrich Alexander University of Erlangen Nürnberg Martensstrasse 7 91058 Erlangen Germany
| | - Shanshan Qin
- Department of Materials Science WW4-LKO Friedrich Alexander University of Erlangen Nürnberg Martensstrasse 7 91058 Erlangen Germany
| | - Nikita Denisov
- Department of Materials Science WW4-LKO Friedrich Alexander University of Erlangen Nürnberg Martensstrasse 7 91058 Erlangen Germany
| | - Lukas Zdrazil
- Regional Centre of Advanced Technologies and Materials Czech Advanced Technology and Research Institute Palacký University Křížkovského 511/8 77900 Olomouc Czech Republic
- Department of Physical Chemistry Faculty of Science Palacký University 17 Listopadu 12 71146 Olomouc Czech Republic
| | - Štěpán Kment
- Regional Centre of Advanced Technologies and Materials Czech Advanced Technology and Research Institute Palacký University Křížkovského 511/8 77900 Olomouc Czech Republic
- Nanotechnology Centre, Centre of Energy and Environmental Technologies – CEET VŠB−Technical University of Ostrava 17. Listopadu 2172/15 70800 Ostrava-Poruba Czech Republic
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials Czech Advanced Technology and Research Institute Palacký University Křížkovského 511/8 77900 Olomouc Czech Republic
- Nanotechnology Centre, Centre of Energy and Environmental Technologies – CEET VŠB−Technical University of Ostrava 17. Listopadu 2172/15 70800 Ostrava-Poruba Czech Republic
| | - Tariq Yasin
- Pakistan Institute of Engineering and Applied Sciences (PIEAS) PO Nilore 45650 Islamabad Pakistan
| | - Patrik Schmuki
- Department of Materials Science WW4-LKO Friedrich Alexander University of Erlangen Nürnberg Martensstrasse 7 91058 Erlangen Germany
- Regional Centre of Advanced Technologies and Materials Czech Advanced Technology and Research Institute Palacký University Křížkovského 511/8 77900 Olomouc Czech Republic
- Department of Chemistry, Faculty of Science King Abdulaziz University P.O. Box 80203 Jeddah 21569 Saudi Arabia
| |
Collapse
|
6
|
Liu Z, Ye J, Rauf A, Zhang S, Wang G, Shi S, Ning G. A flexible fibrous membrane based on copper(II) metal-organic framework/poly(lactic acid) composites with superior antibacterial performance. Biomater Sci 2021; 9:3851-3859. [PMID: 33890581 DOI: 10.1039/d1bm00164g] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A flexible antibacterial fibrous membrane employing high antibacterial efficiency has great potential in healthcare applications. Herein, a three-dimensional copper(ii) metal-organic framework [Cu2(CA)(H2O)2, Cu-MOF-1] and poly(lactic acid) (PLA) composite fibrous membrane was prepared through a facile electrospinning method. The sphere-like Cu-MOF-1 was rapidly synthesized by a microwave-assisted hydrothermal reaction of Cu(ii) salts with citric acid (H4CA) in the presence of polyvinyl pyrrolidone (PVP). The surface morphology, thermal stability, mechanical properties and hydrophilicity test of the as-prepared Cu-MOF-1/PLA fibrous membrane were studied systematically. Compared with commercial copper nanoparticles (Cu-NPs), citric acid and copper citrate, Cu-MOF-1 showed higher antibacterial properties with the bacteriostatic rates of 97.9% and 99.3% against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), respectively, when the used dose was 250 μg mL-1. The Cu-MOF-1/PLA fibrous membrane also exhibited outstanding bactericidal activities against E. coli and S. aureus with the antibacterial rates up to 99.3% and 99.8%, respectively. Mechanism investigation indicated that the slowly released Cu2+ ions could destroy the microenvironment of bacteria cells and destroy the integrity and permeability of the cell membrane, leading to enzyme inactivation. Therefore, the as-prepared flexible fibrous membrane will advance progress toward developing a broad spectrum antibacterial textile for healthcare protection related applications.
Collapse
Affiliation(s)
- Zhao Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China.
| | - Junwei Ye
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China. and Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Abdul Rauf
- Department of Chemistry, School of Science, University of Management and Technology, CII, Johar Town, Lahore, 54770, Pakistan
| | - Siqi Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China.
| | - Guangyao Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China.
| | - Suqi Shi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China.
| | - Guiling Ning
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China. and Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| |
Collapse
|
7
|
Rauf A, Ye J, Zhang S, Qi Y, Wang G, Che Y, Ning G. Copper(ii)-based coordination polymer nanofibers as a highly effective antibacterial material with a synergistic mechanism. Dalton Trans 2019; 48:17810-17817. [PMID: 31773125 DOI: 10.1039/c9dt03649k] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanofibers of a copper(ii)-based coordination polymer [Cu(HBTC)(H2O)3] were synthesized via a microwave-assisted hydrothermal process, while macroparticles and bulk crystals were prepared via a hydrothermal method. X-ray analysis revealed that this compound possesses one-dimensional zig-zag chains, in which the coordination polyhedron of the copper(ii) center is a five-coordinate distorted square-pyramid. The width of the as-prepared nanofibers was about 150 nm, while the size of the macroparticles was about 200 μm. The antibacterial activities of the nanofibers and macroparticles against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were evaluated by determining the minimal inhibitory concentration (MIC), the growth curve of the bacteria and the bacterial reduction assay. The nanofibers showed higher antibacterial performance as compared with macroparticles, commercial copper nanoparticles, and pure ligands alone. The bacteriostatic rates of nanofibers and macroparticles were up to 99.9% and 96.7% against E. coli, while 99.1% and 96.2% against S. aureus, respectively, when the concentration was 250 μg mL-1. The synergistic antibacterial mechanism was also proposed based on the generation of reactive oxygen species (ROS) and the release of Cu2+ ions.
Collapse
Affiliation(s)
- Abdul Rauf
- State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China.
| | - Junwei Ye
- State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China.
| | - Siqi Zhang
- State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China.
| | - Ye Qi
- State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China.
| | - Guangyao Wang
- State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China.
| | - Ying Che
- Department of Ultrasound, the First Affiliated Hospital of Dalian Medical University, 193 Lianhe Road, Dalian, Liaoning 116011, PR China.
| | - Guiling Ning
- State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China. and Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, Dalian, Liaoning Province 116024, P. R. China
| |
Collapse
|
8
|
The Effects of Precursor C₂H₂ Fraction on Microstructure and Properties of Amorphous Carbon Composite Films Containing Si and Ag Prepared by Magnetron Sputtering Deposition. NANOMATERIALS 2019; 9:nano9040528. [PMID: 30987154 PMCID: PMC6523700 DOI: 10.3390/nano9040528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 11/24/2022]
Abstract
Hydrogenated graphite-like carbon composite films containing silicon (Si) and silver (Ag) (g-C:H:Si:Ag) were prepared by middle frequency magnetron sputtering deposition in argon (Ar) and acetylene (C2H2) mixture gases. The effects of precursor C2H2 fraction on the microstructure and properties were studied. The results of Raman and X-ray photoelectron spectroscope (XPS) revealed that the films were dominated by sp2 carbon sites. It was observed from transmission electron microscope (TEM) that the films contained nanoparticles mainly consisting of Ag, and their size increased with the decrease in the C2H2 fraction. Si was also found to aggregate in the areas where Ag nanoparticles formed in films with high Si content. The comparative studies on the frictional behaviors of films sliding against aluminum oxide were carried out in ambient air and saline solution. The g-C:H:Si:Ag films still exhibited outstanding frictional properties even when the test environment shifts from ambient air to saline solution.
Collapse
|