1
|
Yan J, Wang Q, Zhu J, Tong S, Guo S. Cost-Effective Synthesis of Carbazole-Based Nanoporous Organic Polymers for SO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9913-9922. [PMID: 39879325 DOI: 10.1021/acsami.4c21694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Sulfur dioxide (SO2), a pervasive air pollutant, poses significant environmental and health risks, necessitating advanced materials for its efficient capture. Nanoporous organic polymers (NOPs) have emerged as promising candidates; however, their development is often hindered by high synthesis temperatures, complex precursors, and limited SO2 selectivity. Herein, we report a room-temperature, cost-effective synthesis of carbazole-based nanoporous organic polymers (CNOPs) using 1,3,5-trioxane and paraldehyde, offering a significant advancement over traditional Friedel-Crafts alkylation methods. The resulting CNOPs exhibit a high surface area of up to 842 m2·g-1 and feature ultramicroporous structures optimized for SO2 adsorption. At 298 K and 1 bar, the CNOPs demonstrated SO2 adsorption capacities of up to 9.39 mmol·g-1. Ideal adsorbed solution theory (IAST) calculations revealed outstanding selectivities of 105 for SO2/CO2 and 6139 for SO2/N2 mixtures, supported by breakthrough experiments demonstrating superior separation performance. This work not only provides a straightforward synthetic route for CNOPs but also offers valuable insights into the design and development of porous materials tailored for enhanced SO2 capture, addressing critical environmental and health challenges.
Collapse
Affiliation(s)
- Jun Yan
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Qilin Wang
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Jiangli Zhu
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Sihan Tong
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Shengwei Guo
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| |
Collapse
|
2
|
Zhang G, Liu F, Zhu Q, Qian H, Zhong S, Tan J, Zheng A, Liu F, Jiang L. Triple Templates Directed Synthesis of Nitrogen-Doped Hierarchically Porous Carbons from Pyridine Rich Monomer as Efficient and Reversible SO 2 Adsorbents. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404548. [PMID: 39092680 DOI: 10.1002/smll.202404548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Herein, a variety of 2,6-diaminopyridine (DAP) derived nitrogen-doped hierarchically porous carbon (DAP-NHPC-T) prepared from carbonization-induced structure transformation of DAP-Zn-SiO2-P123 nanocomposites are reported, which are facilely prepared from solvent-free co-assembly of block copolymer templates P123 with pyridine-rich monomer of DAP, Zn(NO3)2 and tetramethoxysilane. In the pyrolysis process, P123 and SiO2 templates promote the formation of mesoporous and supermicroporous structures in the DAP-NHPC-T, while high-temperature volatilization of Zn contributed to generation of micropores. The DAP-NHPC-T possess large BET surface areas (≈956-1126 m2 g-1), hierarchical porosity with micro-supermicro-mesoporous feature and high nitrogen contents (≈10.44-5.99 at%) with tunable density of pyridine-based nitrogen sites (≈5.99-3.32 at%), exhibiting good accessibility and reinforced interaction with SO2. Consequently, the DAP-NHPC-T show high SO2 capacity (14.7 mmol g-1, 25 °C and 1.0 bar) and SO2/CO2/N2 IAST selectivities, extraordinary dynamic breakthrough separation efficiency and cycling stability, far beyond any other reported nitrogen-doped metal-free carbon. As verified by in situ spectroscopy and theoretical calculations, the pyridine-based nitrogen sites of the DAP-NHPC-T boost SO2 adsorption via the unique charge transfer, the adsorption mechanism and reaction model have been finally clarified.
Collapse
Affiliation(s)
- Guanqing Zhang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian, 350002, China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian, 362801, P.R. China
| | - Fengqing Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Qiliang Zhu
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian, 350002, China
| | - Hao Qian
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian, 350002, China
| | - Shouchao Zhong
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian, 350002, China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian, 362801, P.R. China
| | - Jingze Tan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Fujian Liu
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian, 350002, China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian, 362801, P.R. China
| | - Lilong Jiang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian, 350002, China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian, 362801, P.R. China
| |
Collapse
|
3
|
Yan J, Zhu J, Tong S, Wang Q, Wang Z. Engineering Nanoporous Polyaminal Networks for Superior SO 2 Capture and Selectivity. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39359234 DOI: 10.1021/acsami.4c14038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Designing adsorbent materials with high SO2 adsorption capacities and selectivity remains a significant challenge in flue gas desulfurization. This work focuses on developing two nitrogen-rich nanoporous polyaminal networks (NPANs), which demonstrate promising capabilities for SO2 adsorption and separation. Two nitrogen-rich nanoporous polyaminal networks, NPAN-5 and NPAN-6, were synthesized via a one-pot method using thiophene-2,5-dicarbaldehyde and furan-2,5-dicarbaldehyde with 1,4-bis(2,4-diamino-1,3,5-triazine)-benzene, respectively. The Brunauer-Emmett-Teller (BET) specific surface areas of NPANs range from 838 to 956 m2·g-1. At 298 K and pressures of 0.1 and 1.0 bar, NPAN-5, featuring thiophene units, demonstrates a SO2 adsorption uptake of 5.14 and 9.63 mmol·g-1, respectively, surpassing many previously reported materials. Furthermore, at room temperature, NPAN-6, containing furan moieties, exhibits unprecedented selectivity for SO2 over CO2 and N2, with ratios reaching up to 78 and 9321, respectively. Dynamic breakthrough experiments reveal that NPANs effectively separate SO2 from a ternary gas mixture comprising SO2, CO2, and N2 at concentrations of 0.2, 10, and 89.8%, respectively. Notably, NPAN-6 achieves a prolonged SO2 retention time of 218 min·g-1 and a saturation adsorption uptake of 0.42 mmol·g-1. The remarkable SO2 adsorption capacities and selectivities demonstrated by these nitrogen-rich nanoporous polyaminal networks underscore their potential to revolutionize industrial flue gas desulfurization.
Collapse
Affiliation(s)
- Jun Yan
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Jiangli Zhu
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Sihan Tong
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Qilin Wang
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Zefeng Wang
- College of Ecology, Lishui University, Lishui 323000, China
- R&D Center of Green Manufacturing New Materials and Technology of Synthetic Leather Sichuan University-Lishui University, Lishui 323000, China
| |
Collapse
|
4
|
Cao Z, Yang C, Zhang W, Shao H. Activated persulfate for efficient bisphenol A degradation via nitrogen-doped Fe/Mn bimetallic biochar. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:1149-1163. [PMID: 39215729 DOI: 10.2166/wst.2024.275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
To achieve the purpose of treating waste by waste, in this study, a nitrogen-doped Fe/Mn bimetallic biochar material (FeMn@N-BC) was prepared from chicken manure for persulfate activation to degrade Bisphenol A (BPA). The FeMn@N-BC was characterized by scanning electron microscopy (SEM), X-ray diffract meter (XRD), fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectrometer (XPS) and found that N doping can form larger specific surface area. Catalytic degradation experiments showed that Fe/Mn bimetal doping not only accelerated the electron cycling rate on the catalyst surface, but also makes the biochar magnetic and easy to separate, thus reducing environmental pollution. Comparative experiments was concluded that the highest degradation efficiency of BPA was achieved when the mass ratios of urea and chicken manure, Fe/Mn were 3:1 and 2:1, respectively, and the pyrolysis temperature was 800 °C, which can almost degrade all the BPA in 60 min. FeMn@N-BC/PS system with high catalytic efficiency and low consumables is promising for reuse of waste resources and the remediation of wastewater.
Collapse
Affiliation(s)
- Zexian Cao
- School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Changhe Yang
- School of Resources and Environment, Nanchang University, Nanchang 330031, China E-mail:
| | - Wenqiang Zhang
- School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Huiliang Shao
- School of Resources and Environment, Nanchang University, Nanchang 330031, China
| |
Collapse
|
5
|
Kong Q, Liu LL, Li Z. Synthesis of Calix[4]arene-Based Porous Organic Cages and Their Gas Adsorption. Chemistry 2024; 30:e202400947. [PMID: 38622630 DOI: 10.1002/chem.202400947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Two crystalline large-sized porous organic cages (POCs) based on conical calix[4]arene (C4A) were designed and synthesized. The four-jaw C4A unit tends to follow the face-directed self-assembly law with the planar triangular building blocks such as tris(4-aminophenyl)amine (TAPA) or 1,3,5-tris(4-aminophenyl)benzene (TAPB) to generate a predictable cage with a stoichiometry of [6+8]. The formation of the large cages is confirmed through their relative molecular mass measured using MALDI-TOF/TOF spectra. The protonated molecular ion peaks of C4A-TAPA and C4A-TAPB were observed at m/z 5109.0 (calculated for C336H240O24N32: m/z 5109.7) and m/z 5594.2 (calculated for C384H264O24N24: m/z 5598.4). C4A-POCs exhibit I-type N2 adsorption-desorption isotherms with the BET surface areas of 1444.9 m2 ⋅ g-1 and 1014.6 m2 ⋅ g-1. The CO2 uptakes at 273 K are 62.1 cm3 ⋅ g-1 and 52.4 cm3 ⋅ g-1 at a pressure of 100 KPa. The saturated iodine vapor static uptakes at 348 K are 3.9 g ⋅ g-1 and 3.5 g ⋅ g-1. The adsorption capacity of C4A-TAPA for SO2 reaches to 124.4 cm3 ⋅ g-1 at 298 K and 1.3 bar. Additionally, the adsorption capacities of C4A-TAPA for C2H2, C2H4, and C2H6 were evaluated.
Collapse
Affiliation(s)
- Qidi Kong
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Lei-Lei Liu
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Zhongyue Li
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| |
Collapse
|
6
|
Hu Z, Lai S, Chen Y, Wang S, Wang C, Wang X, Zhou W, Zhao H. Mechanisms of efficient indoor formaldehyde removal via electro-Fenton: Synergy in ·OH generation and utilization through a modified carbon cathode. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124090. [PMID: 38697249 DOI: 10.1016/j.envpol.2024.124090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Indoor formaldehyde poses a significant carcinogenic risk to human health, making its removal imperative. Electro-Fenton degradation has emerged as a promising technology for addressing this concern. In the electro-Fenton system, ·OH is identified as the primary active species responsible for formaldehyde removal. Hence, its generation and utilization are pivotal for the system's effectiveness and economy. Experimental and quantum chemical methods were employed to investigate the effects and mechanisms of nitrogen doping on various aspects influencing ·OH generation and utilization. Results indicate that nitrogen doping synergistically enhances the generation and utilization of ·OH, leading to an improved formaldehyde removal efficiency in nitrogen-doped cathodic systems. The dominant nitrogen type influencing ·OH generation and utilization varies across different stages. Pyridinic nitrogen facilitates H2O2 adsorption through hydrogen bonding, while pyrrolic and graphitic nitrogen contribute to formaldehyde adsorption and catalyze the conversion of H2O2 to ·OH. Both pyridinic nitrogen and pyrrolic nitrogen boost the degradation of formaldehyde by ·OH. In comparison to the unmodified system, the modified system with NAC-GF/700C as cathode exhibits remarkable improvements. The formaldehyde removal efficiency has increased twofold, and energy consumption reduced by 73.45%. Furthermore, the system demonstrates excellent cyclic stability. These advancements can be attributed to the activation temperature, which leads to the appropriate types and high content of nitrogen elements in NAC-GF/700C. The research represents an important step towards more economical and efficient electro-Fenton technology for indoor formaldehyde removal.
Collapse
Affiliation(s)
- Zhipei Hu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Shiwei Lai
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Yongqi Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Song Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Chenghao Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaochun Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wei Zhou
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Haiqian Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
7
|
Seehamart K, Busayaporn W, Chanajaree R. Molecular adsorption and self-diffusion of NO 2, SO 2, and their binary mixture in MIL-47(V) material. RSC Adv 2023; 13:19207-19219. [PMID: 37362329 PMCID: PMC10289206 DOI: 10.1039/d3ra02724d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023] Open
Abstract
The loading dependence of self-diffusion coefficients (Ds) of NO2, SO2, and their equimolar binary mixture in MIL-47(V) have been investigated by using classical molecular dynamics (MD) simulations. The Ds of NO2 are found to be two orders of magnitude greater than SO2 at low loadings and temperatures, and its Ds decreases monotonically with loading. The Ds of SO2 exhibit two diffusion patterns, indicating the specific interaction between the gas molecules and the MIL-47(V) lattice. The maximum activation energy (Ea) in the pure component and in the mixture for SO2 are 16.43 and 18.35 kJ mol-1, and for NO2 are 2.69 and 1.89 kJ mol-1, respectively. It is shown that SO2 requires more amount of energy than NO2 to increase the diffusion rate. The radial distribution functions (RDFs) of gas-gas and gas-lattice indicate that the Oh of MIL-47(V) are preferential adsorption site for both NO2 and SO2 molecules. However, the presence of the hydrogen bonding (HB) interaction between the O of SO2 and the H of MIL-47(V) and also their binding angle (θ(OHC)) of 120° with the linkers of lattice indicate a stronger binding interaction between the SO2 and the MIL-47(V), but it does not occur with NO2. The jump-diffusion of SO2 between adsorption sites within the lattice has been confirmed by the 2D density distribution plots. Moreover, the extraordinarily high Sdiff for NO2/SO2 of 623.4 shows that NO2 can diffuse through the MIL-47(V) significantly faster than SO2, especially at low loading and temperature.
Collapse
Affiliation(s)
- Kompichit Seehamart
- Department of Applied Physics, Faculty of Engineering, Rajamangala University of Technology Isan Khon Kaen Campus Khon Kaen 40000 Thailand
| | - Wutthikrai Busayaporn
- Synchrotron Light Research Institute (Public Organization) Nakhon Ratchasima 30000 Thailand
| | - Rungroj Chanajaree
- Metallurgy and Materials Science Research Institfute (MMRI), Chulalongkorn University Bangkok 10330 Thailand
| |
Collapse
|
8
|
Grubišić S, Dahmani R, Djordjević I, Sentić M, Hochlaf M. Selective adsorption of sulphur dioxide and hydrogen sulphide by metal-organic frameworks. Phys Chem Chem Phys 2023; 25:954-965. [PMID: 36477115 DOI: 10.1039/d2cp04295a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The removal of highly toxic gasses such as SO2 and H2S is important in various industrial and environmental applications. Metal organic frameworks (MOFs) are promising candidates for the capture of toxic gases owing to their favorable properties such as high selectivity, moisture stability, thermostability, acid gas resistance, high sorption capacity, and low-cost regenerability. In this study, we perform first principles density functional theory (DFT) and grand-canonical Monte Carlo (GCMC) simulations to investigate the capture of highly toxic gases, SO2 and H2S, by the recently designed ZTF and MAF-66 MOFs. Our results indicate that ZTF and MAF-66 show good adsorption performances for SO2 and H2S capture. The nature of the interactions between H2S or SO2 and the pore surface cavities was examined at the microscopic level. SO2 is adsorbed on the pore surface through two types of hydrogen bonds, either between O of SO2 with the closest H of the triazole 5-membred ring or between O of SO2 with the hydrogen of the amino group. For H2S inside the pores, the principal interactions between H2S and surface pores are due to a relatively strong hydrogen bonds established between the nitrogens of the organic part of MOFs and H2S. Also, we found that these interactions depend on the orientation of SO2/H2S inside the pores. Moreover, we have studied the influence of the presence of water and CO2 on H2S and SO2 capture by the ZTF MOF. The present GCMC simulations reveal that the addition of H2O molecules at low pressure leads to an enhancement of the H2S adsorption, in agreement with experimental findings. However, the presence of water molecules decreases the adsorption of SO2 irrespective of the pressure used. Besides, SO2 adsorption is increased in the presence of a small number of CO2 molecules, whereas the presence of carbon dioxide in ZTF pores has an unfavorable effect on the capture of H2S.
Collapse
Affiliation(s)
- S Grubišić
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of Republic of Serbia, Njegoševa 12, Belgrade, 11000, Serbia.
| | - R Dahmani
- Université Gustave Eiffel, COSYS/IMSE, 5 Bd Descartes 77454, Champs sur Marne, France. .,University of Tunis El Manar, Department of Chemistry, Laboratory of Characterizations, Applications and Modeling of Materials (LCAMM), LR18ES08, Tunis, Tunisia
| | - I Djordjević
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of Republic of Serbia, Njegoševa 12, Belgrade, 11000, Serbia.
| | - M Sentić
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of Republic of Serbia, Njegoševa 12, Belgrade, 11000, Serbia.
| | - M Hochlaf
- Université Gustave Eiffel, COSYS/IMSE, 5 Bd Descartes 77454, Champs sur Marne, France.
| |
Collapse
|
9
|
Feng T, Kong Q, Xue J, Li L, Liu P, Li S, Zhang Z. Powder activated coke prepared from coal fast pyrolysis: fractal characteristics and SO 2 adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89210-89220. [PMID: 35849235 DOI: 10.1007/s11356-022-22031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The rapid and low-cost preparation of powder activated coke (PAC) is very important for the promotion of fluidized dry desulfurization technology of activated coke. In order to explore the effect of rapid pyrolysis process on SO2 adsorption capacity of PAC, the fractal analysis of PAC prepared under different atmospheres was carried out. The Frenkel-Halsey-Hill (FHH) method was used to determine two fractal dimensions D1 and D2, under relative pressures of 0-0.5 and 0.5-1, respectively. The results indicate that the fractal dimensions were influenced by the concentrations of activation agents with D1 ranging from 2.1838 to 2.8643 and D2 ranging from 2.7485 to 2.9257. The effect of steam on the fractal dimension of PAC sample is small, but oxygen has a great promotion effect on the fractal dimension. An n-shaped curve-based relationship between fractal dimensions and coke yields is observed with a peak values of fractal dimensions appearing around 64% yield. The SO2 adsorption capacity shows a consecutively positive linear correlation with D2, while it illustrates distinctly different linear rates with D1 in intervals of 2-2.6 and 2.6-3, respectively. Taking advantage of fractal analysis as research method, this paper clarified the influence of activation atmosphere and ablative degree on the SO2 adsorption capacity of PAC, and the research conclusion provided a basis for the PAC preparation with high SO2 capacity.
Collapse
Affiliation(s)
- Tai Feng
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China.
| | - Qiwen Kong
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Jiangwei Xue
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Longzhi Li
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Peiyi Liu
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Shanchuan Li
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Zhen Zhang
- College of Electric Power, North China University of Water Resources and Electric Power, Zhengzhou, 450045, People's Republic of China
| |
Collapse
|
10
|
Gupta NK, López-Olvera A, González-Zamora E, Martínez-Ahumada E, Ibarra I. Sulfur Dioxide Capture in Metal‐Organic Frameworks, Metal‐Organic Cages, and Porous Organic Cages. Chempluschem 2022; 87:e202200006. [DOI: 10.1002/cplu.202200006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/11/2022] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | | | - Ilich Ibarra
- Universidad Nacional Autonoma de Mexico Instituto de Investigaciones en Materiales Circuito Exterior s/nCU, Del. Coyoacan 04510 Mexico City MEXICO
| |
Collapse
|
11
|
Zhu Q, Li F, Zheng Y, Cao Y, Xiao Y, Liang S, Liu F, Jiang L. Dual-template approach to designing nitrogen functionalized, hierarchical porous carbons for efficiently selective capture and separation of SO2. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Gong WQ, Wu XL, Li ZM, Zhou Y, Zhu W, Tao DJ. Sulfate ionic liquids impregnated 2D boron nitride nanosheets for trace SO2 capture with high capacity and selectivity. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Xing S, Liang J, Brandt P, Schäfer F, Nuhnen A, Heinen T, Boldog I, Möllmer J, Lange M, Weingart O, Janiak C. Capture and Separation of SO 2 Traces in Metal-Organic Frameworks via Pre-Synthetic Pore Environment Tailoring by Methyl Groups. Angew Chem Int Ed Engl 2021; 60:17998-18005. [PMID: 34129750 PMCID: PMC8457122 DOI: 10.1002/anie.202105229] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/07/2021] [Indexed: 11/25/2022]
Abstract
Herein, we report a pre-synthetic pore environment design strategy to achieve stable methyl-functionalized metal-organic frameworks (MOFs) for preferential SO2 binding and thus enhanced low (partial) pressure SO2 adsorption and SO2 /CO2 separation. The enhanced sorption performance is for the first time attributed to an optimal pore size by increasing methyl group densities at the benzenedicarboxylate linker in [Ni2 (BDC-X)2 DABCO] (BDC-X=mono-, di-, and tetramethyl-1,4-benzenedicarboxylate/terephthalate; DABCO=1,4-diazabicyclo[2,2,2]octane). Monte Carlo simulations and first-principles density functional theory (DFT) calculations demonstrate the key role of methyl groups within the pore surface on the preferential SO2 affinity over the parent MOF. The SO2 separation potential by methyl-functionalized MOFs has been validated by gas sorption isotherms, ideal adsorbed solution theory calculations, simulated and experimental breakthrough curves, and DFT calculations.
Collapse
Affiliation(s)
- Shanghua Xing
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic7098 Liuxian Blvd, Nanshan DistrictShenzhen518055China
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40225DüsseldorfGermany
| | - Jun Liang
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic7098 Liuxian Blvd, Nanshan DistrictShenzhen518055China
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40225DüsseldorfGermany
| | - Philipp Brandt
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40225DüsseldorfGermany
| | - Felix Schäfer
- Institut für Theoretische Chemie und ComputerchemieHeinrich-Heine-Universität Düsseldorf40225DüsseldorfGermany
| | - Alexander Nuhnen
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40225DüsseldorfGermany
| | - Tobias Heinen
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40225DüsseldorfGermany
| | - Istvan Boldog
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40225DüsseldorfGermany
| | - Jens Möllmer
- Institut für Nichtklassische Chemie e.V.Permoserstraße 1504318LeipzigGermany
| | - Marcus Lange
- Institut für Nichtklassische Chemie e.V.Permoserstraße 1504318LeipzigGermany
| | - Oliver Weingart
- Institut für Theoretische Chemie und ComputerchemieHeinrich-Heine-Universität Düsseldorf40225DüsseldorfGermany
| | - Christoph Janiak
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic7098 Liuxian Blvd, Nanshan DistrictShenzhen518055China
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40225DüsseldorfGermany
| |
Collapse
|
14
|
Xing S, Liang J, Brandt P, Schäfer F, Nuhnen A, Heinen T, Boldog I, Möllmer J, Lange M, Weingart O, Janiak C. Einlagerung und Abtrennung von SO
2
‐Spuren in Metall‐organischen Gerüstverbindungen durch präsynthetische Anpassung der Porenumgebung mit Methylgruppen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shanghua Xing
- Hoffmann Institute of Advanced Materials Shenzhen Polytechnic 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 China
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Deutschland
| | - Jun Liang
- Hoffmann Institute of Advanced Materials Shenzhen Polytechnic 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 China
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Deutschland
| | - Philipp Brandt
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Deutschland
| | - Felix Schäfer
- Institut für Theoretische Chemie und Computerchemie Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Deutschland
| | - Alexander Nuhnen
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Deutschland
| | - Tobias Heinen
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Deutschland
| | - Istvan Boldog
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Deutschland
| | - Jens Möllmer
- Institut für Nichtklassische Chemie e.V. Permoserstraße 15 04318 Leipzig Deutschland
| | - Marcus Lange
- Institut für Nichtklassische Chemie e.V. Permoserstraße 15 04318 Leipzig Deutschland
| | - Oliver Weingart
- Institut für Theoretische Chemie und Computerchemie Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Deutschland
| | - Christoph Janiak
- Hoffmann Institute of Advanced Materials Shenzhen Polytechnic 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 China
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Deutschland
| |
Collapse
|
15
|
Zhang Z, Yang B, Ma H. Aliphatic amine decorating metal–organic framework for durable SO2 capture from flue gas. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Wang Y, Wang A, Pan J, Xue Z, Li J, Wang G. Metal–organic complex-derived 3D porous carbon-supported g-C3N4/TiO2 as photocatalysts for the efficient degradation of antibiotic. CrystEngComm 2021. [DOI: 10.1039/d1ce00709b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
g-C3N4/TiO2/CNOT heterojunction photocatalysts exhibit efficient synergistic adsorption–photocatalysis performance for the removal of chlortetracycline hydrochloride (CTC-HCl).
Collapse
Affiliation(s)
- Yanru Wang
- College of Chemistry and Chemical Engineering
- Qingdao University
- P. R. China
| | - Ani Wang
- College of Chemistry and Chemical Engineering
- Qingdao University
- P. R. China
| | - Jie Pan
- College of Chemistry and Chemical Engineering
- Qingdao University
- P. R. China
| | - Zhenzhen Xue
- College of Chemistry and Chemical Engineering
- Qingdao University
- P. R. China
| | - Jinhua Li
- College of Chemistry and Chemical Engineering
- Qingdao University
- P. R. China
| | - Guoming Wang
- College of Chemistry and Chemical Engineering
- Qingdao University
- P. R. China
| |
Collapse
|
17
|
Hanif MA, Ibrahim N, Abdul Jalil A. Sulfur dioxide removal: An overview of regenerative flue gas desulfurization and factors affecting desulfurization capacity and sorbent regeneration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27515-27540. [PMID: 32415453 DOI: 10.1007/s11356-020-09191-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/05/2020] [Indexed: 05/21/2023]
Abstract
Numerous mitigation techniques have been incorporated to capture or remove SO2 with flue gas desulfurization (FGD) being the most common method. Regenerative FGD method is advantageous over other methods due to high desulfurization efficiency, sorbent regenerability, and reduction in waste handling. The capital costs of regenerative methods are higher than those of commonly used once-through methods simply due to the inclusion of sorbent regeneration while operational and management costs depend on the operating hours and fuel composition. Regenerable sorbents like ionic liquids, deep eutectic solvents, ammonium halide solutions, alkyl-aniline solutions, amino acid solutions, activated carbons, mesoporous silica, zeolite, and metal-organic frameworks have been reported to successfully achieve high SO2 removal. The presence of other gases in flue gas, e.g., O2, CO2, NOx, and water vapor, and the reaction temperature critically affect the sorption capacity and sorbent regenerability. To obtain optimal SO2 removal performance, other parameters such as pH, inlet SO2 concentration, and additives need to be adequately governed. Due to its high removal capacity, easy preparation, non-toxicity, and low regeneration temperature, the use of deep eutectic solvents is highly feasible for upscale utilization. Metal-organic frameworks demonstrated highest reported SO2 removal capacity; however, it is not yet applicable at industrial level due to its high price, weak stability, and robust formulation.
Collapse
Affiliation(s)
- Muhammad Adli Hanif
- School of Environmental Engineering, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, 02600, Arau, Perlis, Malaysia
| | - Naimah Ibrahim
- School of Environmental Engineering, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, 02600, Arau, Perlis, Malaysia.
| | - Aishah Abdul Jalil
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Johor, Malaysia
| |
Collapse
|
18
|
Pi X, Wang A, Fan R, Zhou X, Sui W, Yang Y. Metal-Organic Complexes@Melamine Foam Template Strategy to Prepare Three-Dimensional Porous Carbon with Hollow Spheres Structures for Efficient Organic Vapor and Small Molecule Gas Adsorption. Inorg Chem 2020; 59:5983-5992. [PMID: 32314913 DOI: 10.1021/acs.inorgchem.9b03773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three-dimensional (3D) porous carbon materials have received substantial attention owing to their unique structural features. However, the synthesis of 3D porous carbon, especially 3D porous carbon with hollow spheres structures at the connection points, still pose challenges. Herein, we first develop a metal-organic complexes@melamine foam (MOC@MF) template strategy, by using hot-pressing and carbonization method to synthesize 3D porous carbon with hollow spheres structures (denoted as NOPCs). The formation mechanism of NOPCs can be attributed to the difference in Laplace pressure and surface energy gradient between the carbonized MOC and carbonized MF. These rare 3D porous carbons exhibit high BET surface area (2453.8 m2 g-1), N contents (10.5%), and O contents (16.3%). Moreover, NOPCs show significant amounts of toluene and methanol at room temperature, reaching as high as 1360 and 1140 mg g-1. The adsorption amounts of SO2 and CO2 for NOPCs are up to 93.1 and 445 mg g-1. Theoretical calculation indicates surfaces of porous carbon with N and O coexistence could strongly enhance adsorption with high adsorption energy of -65.83 kJ mol g-1.
Collapse
Affiliation(s)
- Xinxin Pi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Ani Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Ruiqing Fan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Xuesong Zhou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Wenbo Sui
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Yulin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| |
Collapse
|
19
|
Martínez-Ahumada E, López-Olvera A, Jancik V, Sánchez-Bautista JE, González-Zamora E, Martis V, Williams DR, Ibarra IA. MOF Materials for the Capture of Highly Toxic H2S and SO2. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00735] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eva Martínez-Ahumada
- Laboratorio de Fisicoquímica y Reactividad de Superficies, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, C.P. 04510, Coyoacán, Ciudad de México, México
| | - Alfredo López-Olvera
- Laboratorio de Fisicoquímica y Reactividad de Superficies, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, C.P. 04510, Coyoacán, Ciudad de México, México
| | - Vojtech Jancik
- Centro Conjunto de Investigaciones en Química Sustentable UAEM-UNAM, Carr. Toluca-Atlacomulco Km 14.5, Toluca, Estado de México 50200, México
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México 04510, México
| | - Jonathan E. Sánchez-Bautista
- Laboratorio de Fisicoquímica y Reactividad de Superficies, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, C.P. 04510, Coyoacán, Ciudad de México, México
| | - Eduardo González-Zamora
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, C. P. 09340, Ciudad de México, México
| | - Vladimir Martis
- Surface Measurement Systems, Unit 5, Wharfside, Rosemont Road, London HA0 4PE, U.K
| | - Daryl R. Williams
- Surfaces and Particle Engineering Laboratory (SPEL), Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Ilich A. Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, C.P. 04510, Coyoacán, Ciudad de México, México
| |
Collapse
|