1
|
El-Kelany SM, Radwan EK, Abdel-Monem YK. Insights into the adsorption of emerging organic contaminant by low-cost readily separable modified jute fiber. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61763-61780. [PMID: 39438368 DOI: 10.1007/s11356-024-35295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
A high-efficiency biosorbent based on the low-priced jute fiber was developed, characterized, and applied to remove the emerging organic contaminant diclofenac from aqueous solutions. Jute fiber was treated by NaOH (named AJF) followed by grafting different amounts of trimethyl[3-(trimethoxysilyl) propyl] ammonium chloride (named AJF-TTSAC). The composition, morphology, porosity, and adsorption features of the neat and modified jute fiber were evaluated and compared. The surface of neat JF was smooth, nonporous, and free of cracks. NaOH treatment increased the fibrillation, created cracks and grooves, and increased the oxygen content, total pore volume, and surface area. In comparison to AJF, grafting TTSAC filled in the crevices, grooves, and spaces between fibrillates, and decreased the total pore volume and surface area. The adsorption of diclofenac by the neat and modified JF occurred at highly acidic pHo and peaked at pHo 3. Among the neat and modified JF, AJF-TTSAC5 was the most efficient followed by AJF. The efficiency of AJF and AJF-TTSAC5 was highest using 1.00 g/L, at 35 °C and was not affected by the presence of NaCl. The Elovich, pseudo-first-order, and pseudo-second-order models described the adsorption kinetic satisfactorily with the marginal advantage of Elovich for AJF and pseudo-second-order for AJF-TTSAC5. The isotherm study exposed the multilayer and physisorption nature of the adsorption of diclofenac onto AJF and AJF-TTSAC5. The Langmuir monolayer saturation capacity of AJF-TTSAC5 was 37.43 mg/g which revealed its great potential relative to other adsorbents in the literature. The AJF and AJF-TTSAC5 were easily regenerated using distilled water and kept good performance for 5 repetitive cycles.
Collapse
Affiliation(s)
- Sara M El-Kelany
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St, Dokki, Giza, 12622, Egypt
| | - Emad K Radwan
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St, Dokki, Giza, 12622, Egypt.
| | - Yasser K Abdel-Monem
- Department of Chemistry, Faculty of Science, Menoufia University, Menoufia, Egypt
| |
Collapse
|
2
|
Razavi SAA, Habibzadeh E, Morsali A, Yan XW. Dihydrotetrazine-Functionalized Zirconium-Based Metal-Organic Frameworks for High-Capacity Oil Denitrogenation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57051-57063. [PMID: 39444108 DOI: 10.1021/acsami.4c11234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
High structural stability, dual organic-inorganic nature, and tunability in chemical functionality are promising characteristics of zirconium-based metal-organic frameworks (Zr-MOFs). These properties assist Zr-MOFs in extending their applications in various fields, especially adsorptive removal of pollutants. In this work, two well-known Zr-MOFs (UiO-66(Zr) and MIL-140(Zr) with the formula Zr6O4(OH)4(BDC)6, H2BDC is benzene 1,4-dicarboxylic acid) were synthesized and decorated with a dihydrotetrazine functional group through postsynthesis linker exchange (PSLE). Two dihydrotetrazine (DHTZ)-functionalized frameworks, UiO-66(Zr)-DHTZ and MIL-140(Zr)-DHTZ, were applied for the removal of quinoline (Qui) and indole (Ind) from the model oil. The results of adsorption experiments at room temperature display that these functionalized Zr-MOFs have significantly improved removal capacities for Qui (875% for UiO-66(Zr)-DHTZ and 303% for MIL-140(Zr)-DHTZ) and Ind (722% for UiO-66(Zr)-DHTZ and 257% for MIL-140(Zr)-DHTZ). Mechanistic studies based on X-ray photoelectron (XPS) and Fourier-transform infrared (FT-IR) spectroscopies reveal that there is a specific kind of host-guest interaction between dihydrotetrazine and nitrogen-containing compounds (NCCs). UiO-66(Zr)-DHTZ adsorbs 1426 mg·g-1 Qui and 1176 mg·g-1 Ind, while MIL-140(Zr)-DHTZ adsorbs 619 mg·g-1 Qui and 511 mg·g-1 Ind. The lower adsorption capacities of MIL-140(Zr)-DHTZ compared to UiO-66(Zr)-DHTZ are related to its lower surface area (783 m2·g-1 versus 330 m2·g-1). The recyclability of the frameworks goes up to five cycles without any significant decrease in the removal capacity. These results indicate that dihydrotetrazine-functionalized Zr-MOFs are highly stable platforms with superior adsorption capacity compared to basic and neutral NCCs.
Collapse
Affiliation(s)
- Sayed Ali Akbar Razavi
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14117-13116 Tehran, Islamic Republic of Iran
| | - Elham Habibzadeh
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14117-13116 Tehran, Islamic Republic of Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14117-13116 Tehran, Islamic Republic of Iran
| | - Xiao-Wei Yan
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, No. 18 West Ring Road, Hezhou, Guangxi 542899, P. R. China
| |
Collapse
|
3
|
Hou H, Ma Z, Wu D, Wang X, Yu S, Zhang P, Ma X, Fu D. COF-derived porous nitrogen-doped carbon for removal of emerging organic contaminants and efficient uranium extraction from seawater. CHEMOSPHERE 2024; 365:143354. [PMID: 39293684 DOI: 10.1016/j.chemosphere.2024.143354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/03/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
The development of adsorbents for efficient and highly selective seawater extraction of uranium was instrumental in fostering sustainable progress in energy and addressing the prevailing energy crisis. However, the complex background composition of the marine environment, including radionuclides, organic pollutants, and a large number of co-existing heavy metal ions, were non-negligible obstacles to the extraction of uranium from seawater. The present investigation successfully employed a self-templated approach to synthesize porous nitrogen-doped carbon (PNC) derived from COF, which exhibited tremendous potential as an adsorbent for pollutant removal in environmental treatment. LZU1@PNC not only retained the structural features of the original COF-LZU1, but also overcame the acid-base instability problem commonly found in COFs. Subsequently, the removal process of two typical water pollutants on the material was investigated using 2,4-DCP and [UO2(CO3)3]4-. The results demonstrated that LZU1@PNC exhibited superior removal performance for the target pollutants compared to COF-LZU1, owing to its larger specific surface area and abundant defect structure. After six desorption-regeneration cycles, LZU1@PNC still maintained a high removal rate of the target contaminants, demonstrating the stability of this material and its excellent recyclability. In addition, based on various characterization techniques, the removal mechanism of 2,4-DCP was presumed to be mainly electrostatic attraction, hydrogen bonding, and π-π stacking interactions. Conversely, the elimination process of [UO2(CO3)3]4- predominantly relied on surface complexation phenomena. The present investigation provided new perspectives and stimulated a broader study of other COF-derived carbon materials and their modifications as adsorbents for uranium extraction from seawater and other applications.
Collapse
Affiliation(s)
- Hairui Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Zixuan Ma
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Dedong Wu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Xiangxue Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Shujun Yu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| | - Pan Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Xiaoying Ma
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Dong Fu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| |
Collapse
|
4
|
Jia H, Xu H, Shi M, Lu K, Tao Y, Xia M, Wang F. Construction of ACNF/Polypyrrole/MIL-100-Fe composites with exceptional removal performance for ceftriaxone and indomethacin inspired by "Ecological Infiltration System". J Colloid Interface Sci 2023; 650:1152-1163. [PMID: 37473475 DOI: 10.1016/j.jcis.2023.07.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
Developing advanced adsorbents for removing the alarming level of pharmaceuticals active compounds (PhACs) pollution is an urgent task for environmental treatment. Herein, a novel acid-treated carbon nanofiber/polypyrrole/MIL-100-Fe (ACNF/PPy/MIL-100-Fe) with stable 3D-supporting skeleton and hierarchical porous structure had been fabricated to erasure ceftriaxone (CEF) and indomethacin (IDM) from aqueous solution. ACNF as scaffold achieved the highly uniform growth of MIL-100-Fe and PPy. Viewing the large BET surface area (SBET, 999.7 m2/g), highly exposed accessible active sites and copious functional groups, ACNF/PPy/MIL-100-Fe separately showed an excellent adsorption capacity for CEF (294.7 mg/g) and IDM (751.8 mg/g), outstripping the most previously reported adsorbents. Moreover, ACNF/PPy/MIL-100-Fe reached rapid adsorption kinetics and standout reusability property. Further, the redesigned easy-to-recyclable ACF/PPy/MIL-100-Fe inspired by the electrode formation craft achieved prominent adsorption capacity and good reusability property. The adsorption mechanism was evaluated via Fourier transformed infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The outcomes revealed that the splendid adsorption capability mainly depended on the electrostatic interactions, hydrogen bonding and π-π interactions. This work sheds light on one facile practical strategy to exploit advanced materials in water environmental remediation.
Collapse
Affiliation(s)
- Huijuan Jia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Haihua Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingxing Shi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Keren Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yu Tao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Fengyun Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
5
|
Hu L, Wu W, Gong L, Zhu H, Jiang L, Hu M, Lin D, Yang K. A Novel Aluminum-Based Metal-Organic Framework with Uniform Micropores for Trace BTEX Adsorption. Angew Chem Int Ed Engl 2023; 62:e202215296. [PMID: 36698285 DOI: 10.1002/anie.202215296] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/30/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Metal-organic frameworks (MOFs) are potential porous adsorbents for benzene, toluene, ethylbenzene and xylene (BTEX). A novel MOF, using low toxic aluminum (Al) as the metal, named as ZJU-620(Al), with uniform micropore size of 8.37±0.73 Å and specific surface area of 1347 m2 g-1 , was synthesized. It is constructed by one-dimensional rod-shaped AlO6 clusters, formate ligands and 4,4',4''-(2,4,6-trimethylbenzene-1,3,5-triyl) tribenzoic ligands. ZJU-620(Al) exhibits excellent chemical-thermal stability and adsorption for trace BTEX, e.g., benzene adsorption of 3.80 mmol g-1 at P/P0 =0.01 and 298 K, which is the largest one reported. Using Grand Canonical Monte Carlo simulations and Single-crystal X-ray diffraction analyses, it was observed that the excellent adsorption could be attributed to the high affinity of BTEX molecules in ZJU-620(Al) micropores because the kinetic diameters of BTEX are close up to the pore size of ZJU-620(Al).
Collapse
Affiliation(s)
- Laigang Hu
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Wenhao Wu
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Li Gong
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Hongxia Zhu
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Ling Jiang
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Min Hu
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China.,Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, 311200, Hangzhou, China
| |
Collapse
|
6
|
Naghdi S, Shahrestani MM, Zendehbad M, Djahaniani H, Kazemian H, Eder D. Recent advances in application of metal-organic frameworks (MOFs) as adsorbent and catalyst in removal of persistent organic pollutants (POPs). JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130127. [PMID: 36303355 DOI: 10.1016/j.jhazmat.2022.130127] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The presence of persistent organic pollutants (POPs) in the aquatic environment is causing widespread concern due to their bioaccumulation, toxicity, and possible environmental risk. These contaminants are produced daily in large quantities and released into water bodies. Traditional wastewater treatment plants are ineffective at degrading these pollutants. As a result, the development of long-term and effective POP removal techniques is critical. In water, adsorption removal and photocatalytic degradation of POPs have been identified as energy and cost-efficient solutions. Both technologies have received a lot of attention for their efforts to treat the world's wastewater. Photocatalytic removal of POPs is a promising, effective, and long-lasting method, while adsorption removal of persistent POPs represents a simple, practical method, particularly in decentralized systems and isolated areas. It is critical to develop new adsorbents/photocatalysts with the desired structure, tunable chemistry, and maximum adsorption sites for highly efficient removal of POPs. As a class of recently created multifunctional porous materials, Metal-organic frameworks (MOFs) offer tremendous prospects in adsorptive removal and photocatalytic degradation of POPs for water remediation. This review defines POPs and discusses current research on adsorptive and photocatalytic POP removal using emerging MOFs for each type of POPs.
Collapse
Affiliation(s)
- Shaghayegh Naghdi
- Institute of Material Chemistry, Technische Universität Wien, 1060 Vienna, Austria.
| | - Masoumeh Moheb Shahrestani
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Chemistry Department, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, Canada
| | - Mohammad Zendehbad
- Institute of Soil Physics and Rural Water Management, Department of Water, Atmosphere and Environment, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Hoorieh Djahaniani
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Chemistry Department, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, Canada
| | - Hossein Kazemian
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Chemistry Department, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, Canada.
| | - Dominik Eder
- Institute of Material Chemistry, Technische Universität Wien, 1060 Vienna, Austria.
| |
Collapse
|
7
|
Ahmadijokani F, Molavi H, Tajahmadi S, Rezakazemi M, Amini M, Kamkar M, Rojas OJ, Arjmand M. Coordination chemistry of metal–organic frameworks: Detection, adsorption, and photodegradation of tetracycline antibiotics and beyond. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214562] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Díaz Velázquez H, Meneses-Ruiz E, Mora-Vallejo RJ, Verpoort F. Application of templating-free chromium therephtalate for the adsorption of nitrogen-containing compounds in oil refinining feedstocks. Kinetics and thermodinamycs. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2069041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Heriberto Díaz Velázquez
- Dirección de Investigación en transformación de Hidrocarburos, Instituto mexicano del Petróleo, San Bartolo Atepehuacan, Mexico
| | - Edith Meneses-Ruiz
- Dirección de Investigación en transformación de Hidrocarburos, Instituto mexicano del Petróleo, San Bartolo Atepehuacan, Mexico
| | - Rodolfo J. Mora-Vallejo
- Dirección de Investigación en transformación de Hidrocarburos, Instituto mexicano del Petróleo, San Bartolo Atepehuacan, Mexico
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, China
| |
Collapse
|
9
|
A remarkable adsorbent for denitrogenation of liquid fuel: Ethylenediaminetetraacetic acid-grafted metal–organic framework, MOF-808. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Anthony ET, Oladoja NA. Process enhancing strategies for the reduction of Cr(VI) to Cr(III) via photocatalytic pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8026-8053. [PMID: 34837612 DOI: 10.1007/s11356-021-17614-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
This discourse aimed at providing insight into the strategies that can be adopted to boost the process of photoreduction of Cr(VI) to Cr(III). Cr(VI) is amongst the highly detestable pollutants; thus, its removal or reduction to an innocuous and more tolerable Cr(III) has been the focus. The high promise of photocatalysis hinged on the sustainability, low cost, simplicity, and zero sludge generation. Consequently, the present dissertation provided a comprehensive review of the process enhancement procedures that have been reported for the photoreduction of Cr(VI) to Cr(III). Premised on the findings from experimental studies on Cr(VI) reductions, the factors that enhanced the process were identified, dilated, and interrogated. While the salient reaction conditions for the process optimization include the degree of ionization of reacting medium, available photogenerated electrons, reactor ambience, type of semiconductors, surface area of semiconductor, hole scavengers, quantum efficiency, and competing reactions, the relevant process variables are photocatalyst dosage, initial Cr(VI) concentration, interfering ion, and organic load. In addition, the practicability of photoreduction of Cr(VI) to Cr(III) was explored according to the potential for photocatalyst recovery, reactivation, and reuse reaction conditions and the process variables.
Collapse
Affiliation(s)
- Eric Tobechukwu Anthony
- Hydrochemistry Research Laboratory, Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Nurudeen Abiola Oladoja
- Hydrochemistry Research Laboratory, Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, Nigeria.
| |
Collapse
|
11
|
Designed 3D N-doped magnetic porous carbon spheres for sensitive monitoring of biogenic amine by simultaneous microwave-assisted derivatization and magnetic-solid phase extraction. J Chromatogr A 2022; 1667:462882. [DOI: 10.1016/j.chroma.2022.462882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/30/2022] [Accepted: 02/05/2022] [Indexed: 12/16/2022]
|
12
|
Abebe MW, Kim H. Methylcellulose/tannic acid complex particles coated on alginate hydrogel scaffold via Pickering for removal of methylene blue from aqueous and quinoline from non-aqueous media. CHEMOSPHERE 2022; 286:131597. [PMID: 34293568 DOI: 10.1016/j.chemosphere.2021.131597] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Adsorbents reported for liquid phase decontamination under both aqueous and non-aqueous media are all dispersed phase sorbents that further require a tedious separation step post adsorption. Herein, a monolith, highly porous, and mechanically robust scaffold was synthesized for the adsorption of pollutants from both aqueous and non-aqueous media with facile separation and regeneration. Methylcellulose-tannic acid complex particles were prepared and systematically decorated on the surface of interpenetrating polymer network (IPN) scaffold via Pickering emulsion. Due to the surface coating of the particles, plausible amphiphilic adsorption of quinoline (QUI) and methylene blue (MB) was achieved from fuel and water, respectively. The hydroxyl (OH-) and carboxyl (COOH-) groups of tannic acid, alginate, and polyacrylic acid created hydrogen bonding, electrostatic interaction, acid-base interaction, and π-π stacking. Maximum adsorption capacity of 791.17 mg/g MB and 460.92 mg/g QUI was recorded with facile separation, excellent adsorbent regeneration, and reusability. Although both followed the pseudo-second-order adsorption kinetic model, a different mechanism was identified to govern the adsorption under aqueous and non-aqueous environment i.e. only the surface particles were active for QUI adsorption while the scaffold was also involved for MB adsorption.
Collapse
Affiliation(s)
- Medhen W Abebe
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea.
| |
Collapse
|
13
|
Uddin MJ, Ampiaw RE, Lee W. Adsorptive removal of dyes from wastewater using a metal-organic framework: A review. CHEMOSPHERE 2021; 284:131314. [PMID: 34198066 DOI: 10.1016/j.chemosphere.2021.131314] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 05/10/2023]
Abstract
Water pollution from synthetic dyes is a growing environmental concern because many dyes have carcinogenic effects on humans and aquatic life. Adsorption is a widely used technology for the separation and removal of dyes from wastewater. However, the dye removal process using conventional adsorbents is not sufficiently efficient for industrial wastewater. Metal-organic frameworks (MOFs) addresses these drawbacks. MOF showed excellent dye removal and degradation capacity owing to its multifunctionality, water-stability, large surface area, tunable pore size and recyclability. Magnetic MOFs retained excellent performance up to several consecutive cycles. Modified MOFs performed as Fenton-like catalysis process which generated abundant reactive radicals that degraded complex organic dyes into simple and less toxic forms which were further adsorbed onto the MOF. This review systematically compiles in-depth studies on the adsorptive removal of dyes from wastewater, MOF adsorption mechanisms, major influencing factors, to adsorption efficiency of MOFs. While all MOFs adsorb dyes through electrostatic attraction, the type of MOF, presence of functional groups, ligands, and pH significantly control the adsorption mechanism. Before developing an MOF, optimization and upgradation of factors and interaction between available adsorption site and adsorbate is needed. Finally, the prospects and new frontiers of MOFs in sustainable water treatment is discussed.
Collapse
Affiliation(s)
- Md Jamal Uddin
- Department of Environmental Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, 39177, Republic of Korea
| | - Rita E Ampiaw
- Department of Environmental Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, 39177, Republic of Korea
| | - Wontae Lee
- Department of Environmental Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, 39177, Republic of Korea.
| |
Collapse
|
14
|
Wang Y, Zhang L. Designed new magnetic functional three-dimensional hierarchical flowerlike micro-nano structure of N-Co@C/NiCo-layered double oxides for highly efficient co-adsorption of multiple environmental pollutants. J Colloid Interface Sci 2021; 602:469-479. [PMID: 34139540 DOI: 10.1016/j.jcis.2021.06.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/12/2023]
Abstract
In order to eliminate multiple coexisting pollutants in environmental wastewater, a magnetic three-dimensional hierarchical porous flower-like N, Co-doped graphitic carbon nano-polyhedra decorated NiCo-layered double oxides (N-Co@C/NiCo-LDOs) adsorption material was synthesized, which consisted of two-dimensional LDOs nanosheets with functionalized surfaces (N, Co-doped graphitic carbon loaded on both sides of NiCo-LDOs nanosheets). The adsorption properties of N-Co@C/NiCo-LDOs for five types of typical pollutants (cationic dyes: rhodamine b, methylene blue; pesticides: ethofenprox, bifenthrin; anionic dyes: methyl orange, congo red; inorganic cations: Cr2+, Cd2+, Pb2+, Zn2+, inorganic anions: Cr2O72-, AsO33-) were investigated systematically in single and coexisting systems. Combined with the results of FTIR and zeta potential, the adsorption mechanism was discussed. By virtue of its hierarchical porous architecture and the combined effect of functionalized surfaces and LODs supporter, the as-prepared N-Co@C/NiCo-LDOs demonstrates excellent adsorption performance towards five types of typical pollutants with fast adsorption rate, high adsorption capacity and good co-adsorption performance. More importantly, the N-Co@C/NiCo-LDOs showed satisfactory removal efficiency, stability and reusability in model wastewater. The broad-spectrum, rapid, easily separable, and reusable adsorption properties make N-Co@C/NiCo-LDOs promising for highly efficient wastewater treatments. This work also provides a feasible way for the preparation of adsorption materials for the treatment of complex wastewater systems.
Collapse
Affiliation(s)
- Yang Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China
| | - Lei Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, PR China.
| |
Collapse
|
15
|
Simultaneous detection and removal of fluoride from water using smart metal-organic framework-based adsorbents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214037] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Nalaparaju A, Jiang J. Metal-Organic Frameworks for Liquid Phase Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003143. [PMID: 33717851 PMCID: PMC7927635 DOI: 10.1002/advs.202003143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Indexed: 05/10/2023]
Abstract
In the last two decades, metal-organic frameworks (MOFs) have attracted overwhelming attention. With readily tunable structures and functionalities, MOFs offer an unprecedentedly vast degree of design flexibility from enormous number of inorganic and organic building blocks or via postsynthetic modification to produce functional nanoporous materials. A large extent of experimental and computational studies of MOFs have been focused on gas phase applications, particularly the storage of low-carbon footprint energy carriers and the separation of CO2-containing gas mixtures. With progressive success in the synthesis of water- and solvent-resistant MOFs over the past several years, the increasingly active exploration of MOFs has been witnessed for widespread liquid phase applications such as liquid fuel purification, aromatics separation, water treatment, solvent recovery, chemical sensing, chiral separation, drug delivery, biomolecule encapsulation and separation. At this juncture, the recent experimental and computational studies are summarized herein for these multifaceted liquid phase applications to demonstrate the rapid advance in this burgeoning field. The challenges and opportunities moving from laboratory scale towards practical applications are discussed.
Collapse
Affiliation(s)
- Anjaiah Nalaparaju
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117576Singapore
| | - Jianwen Jiang
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117576Singapore
| |
Collapse
|
17
|
Song YD, Ho WH, Chen YC, Li JH, Wang YS, Gu YJ, Chuang CH, Kung CW. Selective Formation of Polyaniline Confined in the Nanopores of a Metal-Organic Framework for Supercapacitors. Chemistry 2021; 27:3560-3567. [PMID: 33166095 DOI: 10.1002/chem.202004516] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Indexed: 11/10/2022]
Abstract
In this study, a strategy that can result in the polyaniline (PANI) solely confined within the nanopores of a metal-organic framework (MOF) without forming obvious bulk PANI between MOF crystals is developed. A water-stable zirconium-based MOF, UiO-66-NH2 , is selected as the MOF material. The polymerization of aniline is initiated in the acidic suspension of UiO-66-NH2 nanocrystals in the presence of excess poly(sodium 4-styrenesulfonate) (PSS). Since the pore size of UiO-66-NH2 is too small to enable the insertion of the bulky PSS, the quick formation of pore-confined solid PANI and the slower formation of well dispersed PANI:PSS occur within the MOF crystals and in the bulk solution, respectively. By taking advantage of the resulting homogeneous PANI:PSS polymer solution, the bulk PANI:PSS can be removed from the PANI/UiO-66-NH2 solid by successive washing the sample with fresh acidic solutions through centrifugation. As this is the first time reporting the PANI solely confined in the pores of a MOF, as a demonstration, the obtained PANI/UiO-66-NH2 composite material is applied as the electrode material for supercapacitors. The PANI/UiO-66-NH2 thin films exhibit a pseudocapacitive electrochemical characteristic, and their resulting electrochemical activity and charge-storage capacities are remarkably higher than those of the bulk PANI thin films.
Collapse
Affiliation(s)
- Yi-Da Song
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan
| | - Wei Huan Ho
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan
| | - Yu-Chuan Chen
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan
| | - Jun-Hong Li
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan
| | - Yi-Sen Wang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan
| | - Yu-Juan Gu
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan
| | - Cheng-Hsun Chuang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan
| |
Collapse
|
18
|
Yoo DK, Bhadra BN, Jhung SH. Adsorptive removal of hazardous organics from water and fuel with functionalized metal-organic frameworks: Contribution of functional groups. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123655. [PMID: 33264864 DOI: 10.1016/j.jhazmat.2020.123655] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/15/2020] [Accepted: 08/01/2020] [Indexed: 05/24/2023]
Abstract
The purification of contaminated water and fuel is very important for our sustainability. Adsorptive removal has attracted significant attention because of possible applications in industry and the rapid development of metal-organic frameworks (MOFs), which can be competitive adsorbents. In this review, the possible/competitive purification of water (contaminated with organics) and fuel (composed of S- and N-Containing compounds) via adsorption using MOFs, especially those with various functional groups (FGs), will be discussed. The contribution of FGs such as -OH, -COOH, -SO3H, -NH2, and -NH3+ to adsorption/purification will be analyzed in detail, not only to understand the plausible adsorption mechanism but also to utilize specific FGs in adsorption. Moreover, methods for introducing FGs onto MOFs will be summarized. Finally, the prospects for both adsorption/removal and emerging fields will be suggested. Studies for practical applications in industry with shaped MOFs from inexpensive route will be important. The solution pH should be considered for the adsorption of aqueous solution. Applications of MOFs in other fields like storage/delivery and enrichment of analytes might be deeply studied.
Collapse
Affiliation(s)
- Dong Kyu Yoo
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, South Korea
| | - Biswa Nath Bhadra
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, South Korea
| | - Sung Hwa Jhung
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, South Korea.
| |
Collapse
|
19
|
Li Z, Liang H, Li X, Yang C, Ge B, Xiong S, Zhang H, Wang T, Yuan P. Adjusting surface acidity of hollow mesoporous carbon nanospheres for enhanced adsorptive denitrogenation of fuels. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Milakin KA, Gavrilov N, Pašti IA, Morávková Z, Acharya U, Unterweger C, Breitenbach S, Zhigunov A, Bober P. Polyaniline-metal organic framework (Fe-BTC) composite for electrochemical applications. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122945] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Shoueir K, Wassel AR, Ahmed M, El-Naggar ME. Encapsulation of extremely stable polyaniline onto Bio-MOF: Photo-activated antimicrobial and depletion of ciprofloxacin from aqueous solutions. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112703] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Carvalho MAFD, Aguiar DVA, Vaz BG, Ferreira MEDO, Andrade LAD, Ostroski IC. A potential material for removal of nitrogen compounds in petroleum and petrochemical derivates. CHEM ENG COMMUN 2020. [DOI: 10.1080/00986445.2020.1798938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | | | - Boniek Gontijo Vaz
- Institute of Chemistry, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | | | | |
Collapse
|
23
|
Chen DD, Yi XH, Zhao C, Fu H, Wang P, Wang CC. Polyaniline modified MIL-100(Fe) for enhanced photocatalytic Cr(VI) reduction and tetracycline degradation under white light. CHEMOSPHERE 2020; 245:125659. [PMID: 31864049 DOI: 10.1016/j.chemosphere.2019.125659] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/05/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
The Z-scheme MIL-100(Fe)/PANI composite photocatalysts were facilely prepared from MIL-100(Fe) and polyaniline (PANI) by ball-milling, and were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), UV-visible diffuse-reflectance spectrometry (UV-vis DRS), X-ray photoelectron spectroscopy (XPS) and photoluminescence emission spectrometry (PL). The photocatalytic activities of MIL-100(Fe)/PANI composites were investigated via tetracycline degradation and hexavalent chromium reduction in aqueous solution under the irradiation of white light. The results revealed that the MIL-100(Fe)/PANI composite photocatalysts exhibited outstanding photocatalytic activities toward Cr(VI) reduction and tetracycline decomposition. The effects of pH and coexisting ions on the photocatalytic Cr(VI) reduction were investigated. As well, the primary active species were identified via electron spin resonance (ESR) determination. A possible Z-scheme photocatalyst mechanism was proposed and verified. Finally, MIL-100(Fe)/PANI composites demonstrated good reusability and stability in water solution, implying potentially practical applications for real wastewater treatment.
Collapse
Affiliation(s)
- Dan-Dan Chen
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xiao-Hong Yi
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Chen Zhao
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Huifen Fu
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Peng Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| |
Collapse
|
24
|
Wang Y, Liu X, Zhang L. Assembling 3D hierarchical hollow flower-like Ni@N-doped graphitic carbon for boosting simultaneously efficient removal and sensitive monitoring of multiple sulfonamides. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121629. [PMID: 31759760 DOI: 10.1016/j.jhazmat.2019.121629] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
The excessive accumulation of sulfonamides (SAs) drugs makes it imperative to develop novel materials for boosting simultaneously efficient removal and precise monitoring of multiple SAs. Herein, three-dimensional hollow flower-like Ni@nitrogen-doped graphitic carbon (3DHFNi@NGC) was designed/fabricated via a facile one-pot hydrothermal route and subsequent pyrolysis. The resultant 3DHFNi@NGC exhibits a unique 3D hollow hierarchical architecture assembled by a layer-by-layer interlacing of corrugated nanosheets subunits, thereby affording numerous interconnected channels, available internal/external surfaces as well as suitable interior cavities. By virtue of its special architecture and in-situ generated N-doped graphitic carbon along with good magnetism, the 3DHFNi@NGC demonstrates superior sorption performance towards SAs, accompanied by high total saturated adsorption capacity, fast sorption rate and easy magnetic recycling. It is noteworthy that as-constructed 3DHFNi@NGC also exhibits high-sensitive/simultaneous detection of trace multiple SAs combined high performance liquid chromatography (HPLC), together with a low detection limit (0.035-0.071 ng mL-1) and a broad linear range (0.2-100 ng mL-1) as well as high enrichment factors (252 < EFs < 291). These indicate that the smart 3DHFNi@NGC could be a promising candidate for the synchronous remediation and sensitive detection of multiple SAs in aqueous systems, presenting a viable option for sewage treatment and water quality monitoring.
Collapse
Affiliation(s)
- Yang Wang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xueyan Liu
- College of Chemistry, Liaoning University, Shenyang 110036, China.
| | - Lei Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
25
|
Amino-functionalized MIL-88B(Fe)-based porous carbon for enhanced adsorption toward ciprofloxacin pharmaceutical from aquatic solutions. CR CHIM 2019. [DOI: 10.1016/j.crci.2019.09.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Wang DC, Yu HY, Qi D, Ramasamy M, Yao J, Tang F, Tam KMC, Ni Q. Supramolecular Self-Assembly of 3D Conductive Cellulose Nanofiber Aerogels for Flexible Supercapacitors and Ultrasensitive Sensors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24435-24446. [PMID: 31257847 DOI: 10.1021/acsami.9b06527] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nature employs supramolecular self-assembly to organize many molecularly complex structures. Based on this, we now report for the first time the supramolecular self-assembly of 3D lightweight nanocellulose aerogels using carboxylated ginger cellulose nanofibers and polyaniline (PANI) in a green aqueous medium. A possible supramolecular self-assembly of the 3D conductive supramolecular aerogel (SA) was provided, which also possessed mechanical flexibility, shape recovery capabilities, and a porous networked microstructure to support the conductive PANI chains. The lightweight conductive SA with hierarchically porous 3D structures (porosity of 96.90%) exhibited a high conductivity of 0.372 mS/cm and a larger area-normalized capacitance (Cs) of 59.26 mF/cm2, which is 20 times higher than other 3D chemically cross-linked nanocellulose aerogels, fast charge-discharge performance, and excellent capacitance retention. Combining the flexible SA solid electrolyte with low-cost nonwoven polypropylene and PVA/H2SO4 yielded a high normalized capacitance (Cm) of 291.01 F/g without the use of adhesive that was typically required for flexible energy storage devices. Furthermore, the supramolecular conductive aerogel could be used as a universal sensitive sensor for toxic gas, field sobriety tests, and health monitoring devices by utilizing the electrode material in lightweight supercapacitor and wearable flexible devices.
Collapse
Affiliation(s)
- Duan-Chao Wang
- College of Materials and Textile , Zhejiang Sci-Tech University , Xiasha Higher Education Park Avenue 2 No. 928 , Hangzhou 310018 , China
| | - Hou-Yong Yu
- College of Materials and Textile , Zhejiang Sci-Tech University , Xiasha Higher Education Park Avenue 2 No. 928 , Hangzhou 310018 , China
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , Ontario N2L 3G1 , Canada
| | - Dongming Qi
- College of Materials and Textile , Zhejiang Sci-Tech University , Xiasha Higher Education Park Avenue 2 No. 928 , Hangzhou 310018 , China
| | - Mohankandhasamy Ramasamy
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , Ontario N2L 3G1 , Canada
| | - Juming Yao
- College of Materials and Textile , Zhejiang Sci-Tech University , Xiasha Higher Education Park Avenue 2 No. 928 , Hangzhou 310018 , China
| | - Feng Tang
- College of Materials and Textile , Zhejiang Sci-Tech University , Xiasha Higher Education Park Avenue 2 No. 928 , Hangzhou 310018 , China
| | - Kam Michael Chiu Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , Ontario N2L 3G1 , Canada
| | - Qingqing Ni
- College of Materials and Textile , Zhejiang Sci-Tech University , Xiasha Higher Education Park Avenue 2 No. 928 , Hangzhou 310018 , China
- Department of Mechanical Engineering and Robotics , Shinshu University , Tokida, Ueda 386-8576 , Japan
| |
Collapse
|
27
|
Razavi SAA, Morsali A. High Capacity Oil Denitrogenation over Azine- and Tetrazine-Decorated Metal-Organic Frameworks: Critical Roles of Hydrogen Bonding. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21711-21719. [PMID: 31141331 DOI: 10.1021/acsami.9b05282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, we demonstrate that rational decoration of pore walls of the metal-organic frameworks (MOFs) with azine and dihydro-tetrazine functions is a very practical strategy for high capacity removal of both neutral and basic nitrogen-containing compounds (NCCs) from model oil. Its performance is even much better than the MOFs with high surface area, open metal sites, and different functional groups such as amine, hydroxyl, carboxy, and sulfonate. For this aim, a number of isostructure functional MOFs (FMOFs) have been synthesized. Among them, TMU-5 (with formula [Zn(OBA)(BPDH)0.5] n·1.5DMF, where H2OBA = 4,4'-oxybis(benzoic acid) and BPDH = 2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene) and TMU-34 (with formula [Zn(OBA)(H2DPT)0.5] n·DMF H2DPT = 3,6-di(pyridin-4-yl)-1,4-dihydro-1,2,4,5-tetrazine) show high affinity toward neutral and basic NCCs, respectively. Dihydro-tetrazine-decorated TMU-34 shows good affinity toward basic NCCs [pyridine (PYD) and quinoline (QUI)] because of hydrogen bonding of dihydro-tetrazine (-NH)···(N) basic NCCs. TMU-34 can adsorb about 619 and 632 mg g-1 PYD and QUI, respectively. On the other hand, azine-methyl-functionalized TMU-5 shows very high affinity to neutral NCCs [pyrrole (PRR) and indole (IND)] owing to strong hydrogen bonding of azine-methyl (Me-C═N-N═C-Me)···(NH) neutral NCCs. TMU-5 can adsorb 518 and 578 mg g-1 PRR and IND, respectively. These numbers are among the best reported data in this area and even reveal higher significance of the host-guest interaction when we consider moderate surface of these FMOFs. These results have been achieved by our "application-directed cavity functionalization" approach through decoration of MOF structures by suitable organic functional groups for specific purposes.
Collapse
Affiliation(s)
- Sayed Ali Akbar Razavi
- Department of Chemistry, Faculty of Sciences , Tarbiat Modares University , Tehran 14117-13116 , Islamic Republic of Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences , Tarbiat Modares University , Tehran 14117-13116 , Islamic Republic of Iran
| |
Collapse
|
28
|
Polyaniline-loaded metal-organic framework MIL-101(Cr): Promising adsorbent for CO2 capture with increased capacity and selectivity by polyaniline introduction. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.10.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|