1
|
Zou C, Chen L, Liu Q, Lu W, Sun X, Liu J, Lei Y, Zhao W, Liu Y. Flexible Aluminum-Air Battery Based on High-Performance Three-Dimensional Dual-Network PVA/KC/KOH Composite Gel Polymer Electrolyte. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9999-10007. [PMID: 38696767 DOI: 10.1021/acs.langmuir.4c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
With a large theoretical capacity and high energy density, aluminum-air batteries are a promising energy storage device. However, the rigid structure and liquid electrolyte of a traditional aluminum-air battery limit its application potential in the field of flexible electronics, and the irreversible corrosion of its anode greatly reduces the battery life. To solve the above problems, a PVA/KC/KOH (2 M) composite gel polymer electrolyte (GPE) with a three-dimensional dual-network structure consisting of polyvinyl alcohol (PVA), kappa-carrageenan (KC), and potassium hydroxide was prepared in this paper by a simple two-step method and applied in aluminum-air batteries. At room temperature, the ionic conductivity of the PVA/KC/KOH (2 M) composite GPE was found to be up to 6.50 × 10-3 S cm-1. By utilizing this composite GPE, a single flexible aluminum-air battery was assembled and achieved a maximum discharge voltage of 1.2 V at 5 mA cm-2, with discharge time exceeding 3 h. Moreover, the single flexible aluminum-air battery maintains good electrochemical performance under various deformation modes, and the output voltage of the battery remains at about 99% after 300 cycles. The construction of flexible aluminum-air batteries based on a three-dimensional dual-network PVA/KC/KOH composite GPE provides excellent safety and high-multiplication capabilities for aluminum-air batteries, making them potential candidates for various flexible device applications.
Collapse
Affiliation(s)
- Chang Zou
- School of Chemical Engineering, Northwest University, Xi'an 710127, China
| | - Li Chen
- BYD Automobile Co., Ltd., Xi'an 710119, China
| | - Qingye Liu
- School of Chemical Engineering, Northwest University, Xi'an 710127, China
| | - Wei Lu
- School of Chemical Engineering, Northwest University, Xi'an 710127, China
| | - Xueyan Sun
- Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Jun Liu
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Shaanxi Coal Geology Group Company Limited, Xi'an 710069, China
| | - Yuan Lei
- School of Chemical Engineering, Northwest University, Xi'an 710127, China
| | - Wei Zhao
- School of Chemical Engineering, Northwest University, Xi'an 710127, China
| | - Yilun Liu
- School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
2
|
Nayem SMA, Islam S, Mohamed M, Shaheen Shah S, Ahammad AJS, Aziz MA. A Mechanistic Overview of the Current Status and Future Challenges of Aluminum Anode and Electrolyte in Aluminum-Air Batteries. CHEM REC 2024; 24:e202300005. [PMID: 36807755 DOI: 10.1002/tcr.202300005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/06/2023] [Indexed: 02/20/2023]
Abstract
Aluminum-air batteries (AABs) are regarded as attractive candidates for usage as an electric vehicle power source due to their high theoretical energy density (8100 Wh kg-1 ), which is considerably higher than that of lithium-ion batteries. However, AABs have several issues with commercial applications. In this review, we outline the difficulties and most recent developments in AABs technology, including electrolytes and aluminum anodes, as well as their mechanistic understanding. First, the impact of the Al anode and alloying on battery performance is discussed. Then we focus on the impact of electrolytes on battery performances. The possibility of enhancing electrochemical performances by adding inhibitors to electrolytes is also investigated. Additionally, the use of aqueous and non-aqueous electrolytes in AABs is also discussed. Finally, the challenges and potential future research areas for the advancement of AABs are suggested.
Collapse
Affiliation(s)
- S M Abu Nayem
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Santa Islam
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Mostafa Mohamed
- Physics Department, King Fahd University of Petroleum & Minerals, KFUPM, Box 5047, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM, Box 5040, Dhahran, 31261, Saudi Arabia
- K.A.CARE Energy Research & Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
3
|
Islam S, Nayem SMA, Anjum A, Shaheen Shah S, Ahammad AJS, Aziz MA. A Mechanistic Overview of the Current Status and Future Challenges in Air Cathode for Aluminum Air Batteries. CHEM REC 2024; 24:e202300017. [PMID: 37010435 DOI: 10.1002/tcr.202300017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/16/2023] [Indexed: 04/04/2023]
Abstract
Aluminum air batteries (AABs) are a desirable option for portable electronic devices and electric vehicles (EVs) due to their high theoretical energy density (8100 Wh K-1 ), low cost, and high safety compared to state-of-the-art lithium-ion batteries (LIBs). However, numerous unresolved technological and scientific issues are preventing AABs from expanding further. One of the key issues is the catalytic reaction kinetics of the air cathode as the fuel (oxygen) for AAB is reduced there. Additionally, the performance and price of an AAB are directly influenced by an air electrode integrated with an oxygen electrocatalyst, which is thought to be the most crucial element. In this study, we covered the oxygen chemistry of the air cathode as well as a brief discussion of the mechanistic insights of active catalysts and how they catalyze and enhance oxygen chemistry reactions. There is also extensive discussion of research into electrocatalytic materials that outperform Pt/C such as nonprecious metal catalysts, metal oxide, perovskites, metal-organic framework, carbonaceous materials, and their composites. Finally, we provide an overview of the present state, and possible future direction for air cathodes in AABs.
Collapse
Affiliation(s)
- Santa Islam
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - S M Abu Nayem
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Ahtisham Anjum
- Physics Department, King Fahd University of Petroleum & Minerals, KFUPM, Box 5047, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
- K.A.CARE Energy Research & Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
4
|
Hu K, Wang X, Hu Y, Hu H, Lin X, Reddy KM, Luo M, Qiu HJ, Lin X. Simultaneous Improvement of Oxygen Reduction and Catalyst Anchoring via Multiple Dopants on Mesoporous Carbon Frameworks for Flexible Al-Air Batteries. ACS NANO 2022; 16:19165-19173. [PMID: 36355571 DOI: 10.1021/acsnano.2c08332] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mesoporous carbon supported non-noble metals, as promising catalysts for boosting the oxygen reduction reaction (ORR) in metal-air batteries, usually face challenges of low activity and performance degradation caused by the catalyst detachment from carbon substrates. Herein, a one-stone-two-birds strategy is reported to simultaneously improve the ORR activity and anchor nanosized MnS catalysts on a mesoporous carbon framework via nitrogen (N) and sulfur (S) dopants (MnS/NS-C). Synchrotron-based X-ray absorption spectroscopy (XAS) confirms the existence of Mn-N and Mn-S bonds, which firmly anchor active MnS nanoparticles. Density functional theory (DFT) calculations reveal that the N, S codoping lowers the d-band center of Mn and optimizes ORR intermediate adsorption. An excellent ORR performance (the onset and half-wave potential of 1.07 and 0.91 V) and long-term durability are achieved for MnS/NS-C in alkaline media. The flexible Al-air battery, using MnS/NS-C as the cathode catalyst, shows a power density of 134.6 mW cm-2 in comparison to the Pt/C-based counterpart of 106.2 mW cm-2. This study constructs a stable interaction with non-noble catalysts and carbon substrates for enhancing catalytic activity and durability in metal-air batteries.
Collapse
Affiliation(s)
- Kailong Hu
- School of Materials Science and Engineering, and Institute of Materials Genome & Big Data, Harbin Institute of Technology Shenzhen, Shenzhen 518055, P. R. China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Xudong Wang
- School of Materials Science and Engineering, and Institute of Materials Genome & Big Data, Harbin Institute of Technology Shenzhen, Shenzhen 518055, P. R. China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yixuan Hu
- Frontier Research Center for Materials Structure, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Haolin Hu
- School of Materials Science and Engineering, and Institute of Materials Genome & Big Data, Harbin Institute of Technology Shenzhen, Shenzhen 518055, P. R. China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Xiaorong Lin
- School of Materials Science and Engineering, and Institute of Materials Genome & Big Data, Harbin Institute of Technology Shenzhen, Shenzhen 518055, P. R. China
| | - Kolan Madhav Reddy
- Frontier Research Center for Materials Structure, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Min Luo
- Shanghai Technical Institute of Electronics & Information, Shanghai 201411, P. R. China
| | - Hua-Jun Qiu
- School of Materials Science and Engineering, and Institute of Materials Genome & Big Data, Harbin Institute of Technology Shenzhen, Shenzhen 518055, P. R. China
| | - Xi Lin
- School of Materials Science and Engineering, and Institute of Materials Genome & Big Data, Harbin Institute of Technology Shenzhen, Shenzhen 518055, P. R. China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, P. R. China
- Blockchain Development and Research Institute, Harbin Institute of Technology Shenzhen, Shenzhen 518055, P. R. China
| |
Collapse
|
5
|
Guo L, Wan K, Liu B, Wang Y, Wei G. Recent advance in the fabrication of carbon nanofiber-based composite materials for wearable devices. NANOTECHNOLOGY 2021; 32:442001. [PMID: 34325413 DOI: 10.1088/1361-6528/ac18d5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Carbon nanofibers (CNFs) exhibit the advantages of high mechanical strength, good conductivity, easy production, and low cost, which have shown wide applications in the fields of materials science, nanotechnology, biomedicine, tissue engineering, sensors, wearable electronics, and other aspects. To promote the applications of CNF-based nanomaterials in wearable devices, the flexibility, electronic conductivity, thickness, weight, and bio-safety of CNF-based films/membranes are crucial. In this review, we present recent advances in the fabrication of CNF-based composite nanomaterials for flexible wearable devices. For this aim, firstly we introduce the synthesis and functionalization of CNFs, which promote the optimization of physical, chemical, and biological properties of CNFs. Then, the fabrication of two-dimensional and three-dimensional CNF-based materials are demonstrated. In addition, enhanced electric, mechanical, optical, magnetic, and biological properties of CNFs through the hybridization with other functional nanomaterials by synergistic effects are presented and discussed. Finally, wearable applications of CNF-based materials for flexible batteries, supercapacitors, strain/piezoresistive sensors, bio-signal detectors, and electromagnetic interference shielding devices are introduced and discussed in detail. We believe that this work will be beneficial for readers and researchers to understand both structural and functional tailoring of CNFs, and to design and fabricate novel CNF-based flexible and wearable devices for advanced applications.
Collapse
Affiliation(s)
- Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, People's Republic of China
| | - Keming Wan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | - Bin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| |
Collapse
|
6
|
Liu Z, Zhu Y, Xiao K, Xu Y, Peng Y, Liu J, Chen X. Fe/Fe 3C Embedded in N-Doped Worm-like Porous Carbon for High-Rate Catalysis in Rechargeable Zinc-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24710-24722. [PMID: 34013717 DOI: 10.1021/acsami.1c03220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Designing low-cost preparation of high-activity electrocatalysts with excellent stability is the route one must take to fully realize large-scale application implementation of zinc-air batteries. 3D nitrogen-doped nanocarbons with transition metals or their derivatives encapsulated in show promising potential in the field of non-precious metal oxygen electrocatalysis. Herein, we report a simple, economical, and large-scale production method to construct worm-like porous nitrogen-doped carbon with in situ-grown carbon nanotubes and uniformly embedded Fe/Fe3C nanoparticles. It not only has high conductivity owing to the nitrogen-doped nature but also has ample active sites and electrolyte diffusion channels benefitting from the uniformly distributed heterostructural Fe/Fe3C nanoparticles and discrete hierarchically porous structures. When used as catalyst materials for a zinc-air battery, an energy density of 719.1 Wh kg-1 and a peak power density of 101.3 mW cm-2 at a 50 mA cm-2 discharge current density is achieved. Additionally, throughout charging and discharging for 200 cycles at a current density of 20 mA cm-2, the charge/discharge voltage gap is nearly constant.
Collapse
Affiliation(s)
- Zheng Liu
- College of Materials Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, China
- College of Materials and Chemical Engineering, All-Solid-State Energy Storage Materials and Devices Key Laboratory of Hunan Province, Hunan City University, Yiyang 413000, China
| | - Yanfei Zhu
- College of Materials Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, China
| | - Kuikui Xiao
- College of Materials Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, China
| | - Yali Xu
- College of Materials Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, China
| | - Yufan Peng
- College of Materials Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, China
| | - Jilei Liu
- College of Materials Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, China
| | - Xiaohua Chen
- College of Materials Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, China
| |
Collapse
|
7
|
|
8
|
Szabó L, Xu X, Ohsawa T, Uto K, Henzie J, Ichinose I, Ebara M. Ultrafine self-N-doped porous carbon nanofibers with hierarchical pore structure utilizing a biobased chitosan precursor. Int J Biol Macromol 2021; 182:445-454. [PMID: 33838199 DOI: 10.1016/j.ijbiomac.2021.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/30/2021] [Accepted: 04/04/2021] [Indexed: 11/25/2022]
Abstract
Ultrafine porous carbon nanofiber network with ~40 nm fiber diameter is realized for the first time utilizing a biobased polymer as carbon precursor. A simple one-step carbonization procedure is applied to convert the electrospun chitosan/poly(ethylene oxide) nanofibers to self-N-doped ultrafine hierarchically porous carbon nanofiber interconnected web. The pore formation process is governed by the immiscible nature of the two polymers and the sacrificial character of poly(ethylene oxide) with low carbon yield at the carbonization temperature (800 °C). The obtained porous scaffold has a high specific surface area (564 m2 g-1), high micro (0.22 cm3 g-1) as well as meso/macropore volume (0.28 cm3 g-1). Structural analysis indicates high graphitic content and the existence of turbostratic carbon typical for carbon fibers derived from otherwise synthetic polymer precursors. X-ray photoelectron spectroscopy confirms the presence of an N-doped structure with dominating graphitic N, together with a smaller amount of pyridinic N. The prepared electrode exhibits good electrochemical performance as a supercapacitor device. The excellent charge storage characteristics are attributed to the unique ultrafine hierarchical nanoarchitecture and the interconnected N-doped carbon structure. This green material holds great promise for the realization of more sustainable high-performance energy storage devices.
Collapse
Affiliation(s)
- László Szabó
- International Center for Young Scientists, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Xingtao Xu
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - Takeo Ohsawa
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - Koichiro Uto
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - Joel Henzie
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan; JST-ERATO Yamauchi Materials Space-Tectonics Project, Saitama 332-0012, Japan
| | - Izumi Ichinose
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - Mitsuhiro Ebara
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
9
|
Li X, Li J, Zhang D, Gao L, Qu J, Lin T. Synergistic effect of 8-aminoquinoline and ZnO as hybrid additives in alkaline electrolyte for Al-air battery. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Sun X, Gong Q, Liang Y, Wu M, Xu N, Gong P, Sun S, Qiao J. Exploiting a High-Performance "Double-Carbon" Structure Co 9S 8/GN Bifunctional Catalysts for Rechargeable Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38202-38210. [PMID: 32805974 DOI: 10.1021/acsami.0c10734] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rational synthesis of bifunctional electrocatalysts with high performance and strong durability is highly demanded rechargeable metal-air battery. In this work, ZIF-derived Co9S8/C coated with conductive graphene nanosheet (Co9S8/GN) was synthesized by a simple solvothermal method and formed a stable double-carbon structure. As expected, the prepared Co9S8/GN catalyst exhibits a high catalytic activity (ΔE: 0.88 V) and long-term durability toward both oxygen reduction reaction and oxygen evolution reaction (ORR and OER), which is even superior to the Pt/C + Ir/C mixture (0.91 V). In addition, the Zn-air battery with the Co9S8/GN catalyst showed higher power density (186 mW cm-2) and more stable charge-discharge cycling performances (2000 cycles) than the Pt/C + Ir/C (118 mW cm-2). Based on these analysis results, the favorable catalytic performance of ORR/OER should be illustrated by the following reasons: (i) large specific surface area and unique mesoporous structure, providing abundant active sites; (ii) good conductivity, accelerating the electrons transfer; and (iii) the unique stable "double-carbon" structures (metal-S-C-C), preventing the agglomeration of metal sulfide, building new quick transfer pathway, and forming the strong electron coupling ability and synergistic effect.
Collapse
Affiliation(s)
- Xiaoling Sun
- College of Chemistry and Materials Science, Shanxi Normal University, 1 Gongyuan Street, Linfen 041000, China
- Department of Applied Chemistry, Yuncheng University, 1155 Fudan West Street, Yuncheng 044000, China
| | - Qiaojuan Gong
- College of Chemistry and Materials Science, Shanxi Normal University, 1 Gongyuan Street, Linfen 041000, China
- Department of Applied Chemistry, Yuncheng University, 1155 Fudan West Street, Yuncheng 044000, China
| | - Yunxia Liang
- Department of Applied Chemistry, Yuncheng University, 1155 Fudan West Street, Yuncheng 044000, China
| | - Mingjie Wu
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, Québec J3X 1S2, Canada
| | - Nengneng Xu
- College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, China
- Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, Louisiana 70504, United States
| | - Pengni Gong
- Department of Applied Chemistry, Yuncheng University, 1155 Fudan West Street, Yuncheng 044000, China
| | - Shuhui Sun
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, Québec J3X 1S2, Canada
| | - Jinli Qiao
- College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, China
| |
Collapse
|
11
|
Abstract
Abstract
Environmental concerns such as climate change due to rapid population growth are becoming increasingly serious and require amelioration. One solution is to create large capacity batteries that can be applied in electricity-based applications to lessen dependence on petroleum. Here, aluminum–air batteries are considered to be promising for next-generation energy storage applications due to a high theoretical energy density of 8.1 kWh kg−1 that is significantly larger than that of the current lithium-ion batteries. Based on this, this review will present the fundamentals and challenges involved in the fabrication of aluminum–air batteries in terms of individual components, including aluminum anodes, electrolytes and air cathodes. In addition, this review will discuss the possibility of creating rechargeable aluminum–air batteries.
Graphic Abstract
Collapse
|
12
|
Directly Electrospun Carbon Nanofibers Incorporated with Mn 3O 4 Nanoparticles as Bending-Resistant Cathode for Flexible Al-Air Batteries. NANOMATERIALS 2020; 10:nano10020216. [PMID: 32012677 PMCID: PMC7074833 DOI: 10.3390/nano10020216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 11/17/2022]
Abstract
Al-air batteries are regarded as potential power source for flexible and wearable devices. However, the traditional cathodes of Al-air batteries are easy to be broken after continuous bending. This is why few Al-air batteries have been tested under the state of dynamic bending so far. Herein, carbon nanofibers incorporated with Mn3O4 catalyst have been prepared as bending-resistant cathodes through direct electrospinning. The cathode assembled in Al-air battery showed excellent electrochemical and mechanical stability. A high specific capacity of 1021 mAh/cm2 was achieved after bending 1000 times, which is 81.7% of that in platform state. This work will facilitate the progress of using Al-air battery in flexible electronics.
Collapse
|
13
|
Manganese Oxide Nanorods Decorated Table Sugar Derived Carbon as Efficient Bifunctional Catalyst in Rechargeable Zn-Air Batteries. Catalysts 2020. [DOI: 10.3390/catal10010064] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite its commercial success as a primary battery, Zn-air battery is struggling to sustain a reasonable cycling performance mainly because of the lack of robust bifunctional electrocatalysts which smoothen the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) taking place on its air-cathode. Composites of carbon/manganese oxide have emerged as a potential solution with high catalytic performance; however, the use of non-renewable carbon sources with tedious and non-scalable synthetic methods notably compromised the merit of being low cost. In this work, high quantity of carbon is produced from renewable source of readily available table sugar by a facile room temperature dehydration process, on which manganese oxide nanorods are grown to yield an electrocatalyst of MnOx@AC-S with high oxygen bifunctional catalytic activities. A Zn-air battery with the MnOx@AC-S composite catalyst in its air-cathode delivers a peak power density of 116 mW cm−2 and relatively stable cycling performance over 215 discharge and charge cycles. With decent performance and high synthetic yield achieved for the MnOx@AC-S catalyst form a renewable source, this research sheds light on the advancement of low-cost yet efficient electrocatalyst for the industrialization of rechargeable Zn-air battery.
Collapse
|
14
|
Li P, Qiu Y, Liu S, Li H, Zhao S, Diao J, Guo X. Heterogeneous Mo
2
C/Fe
5
C
2
Nanoparticles Embedded in Nitrogen‐Doped Carbon as Efficient Electrocatalysts for the Oxygen Reduction Reaction. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ping Li
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, and the College of Chemistry and Materials Science Northwest University 710069 Xi'an P. R. China
| | - Yu Qiu
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, and the College of Chemistry and Materials Science Northwest University 710069 Xi'an P. R. China
| | - Shuangquan Liu
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, and the College of Chemistry and Materials Science Northwest University 710069 Xi'an P. R. China
| | - Hailong Li
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, and the College of Chemistry and Materials Science Northwest University 710069 Xi'an P. R. China
| | - Sen Zhao
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, and the College of Chemistry and Materials Science Northwest University 710069 Xi'an P. R. China
| | - Jinxiang Diao
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, and the College of Chemistry and Materials Science Northwest University 710069 Xi'an P. R. China
| | - Xiaohui Guo
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, and the College of Chemistry and Materials Science Northwest University 710069 Xi'an P. R. China
| |
Collapse
|