1
|
Bulemo PM, Kim DH, Shin H, Cho HJ, Koo WT, Choi SJ, Park C, Ahn J, Güntner AT, Penner RM, Kim ID. Selectivity in Chemiresistive Gas Sensors: Strategies and Challenges. Chem Rev 2025; 125:4111-4183. [PMID: 40198852 DOI: 10.1021/acs.chemrev.4c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The demand for highly functional chemical gas sensors has surged due to the increasing awareness of human health to monitor metabolic disorders or noncommunicable diseases, safety measures against harmful greenhouse and/or explosive gases, and determination of food freshness. Over the years of dedicated research, several types of chemiresistive gas sensors have been realized with appreciable sensitivities toward various gases. However, critical issues such as poor selectivity and sluggish response/recovery speeds continue to impede their widespread commercialization. Specifically, the mechanisms behind the selective response of some chemiresistive materials toward specific gas analytes remain unclear. In this review, we discuss state-of-the-art strategies employed to attain gas-selective chemiresistive materials, with particular emphasis on materials design, surface modification or functionalization with catalysts, defect engineering, material structure control, and integration with physical/chemical gas filtration media. The nature of material surface-gas interactions and the supporting mechanisms are elucidated, opening opportunities for optimizing the materials design, fine-tuning the gas sensing performance, and guiding the selection of the most appropriate materials for the accurate detection of specific gases. This review concludes with recommendations for future research directions and potential opportunities for further selectivity improvements.
Collapse
Affiliation(s)
- Peresi Majura Bulemo
- Department of Mechanical and Industrial Engineering, University of Dar es Salaam, P.O. Box 35131, Dar es Salaam, Tanzania
| | - Dong-Ha Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hamin Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
- Human-Centered Sensing Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Hee-Jin Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| | - Won-Tae Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Chungseong Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| | - Jaewan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| | - Andreas T Güntner
- Human-Centered Sensing Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Reginald M Penner
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Yang R, Yuan Z, Jiang C, Zhang X, Qiao Z, Zhang J, Liang J, Wang S, Duan Z, Wu Y, Li W, Jiang Y, Tai H. Ultrafast Hydrogen Detection System Using Vertical Thermal Conduction Structure and Neural Network Prediction Algorithm Based on Sensor Response Process. ACS Sens 2025; 10:2181-2190. [PMID: 40068112 DOI: 10.1021/acssensors.4c03487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Hydrogen detection plays a crucial role in various scenes of hydrogen energy such as hydrogen vehicles, hydrogen transportation and hydrogen storage. It is essential to develop a hydrogen detection system with ultrafast response times (<1 s) for the timely detection of hydrogen leaks. Here we report an ultrafast (0.4 s) hydrogen detection system based on a wafer-scale fabrication process. It consists of a low power (20.2 mW) hydrogen sensor based on vertical thermal conduction structure and a signal processing circuit introduced with a neural network prediction algorithm based on sensor response process. The fabricated sensor exhibits rapid response, wide detection range, and wide operating temperature, while showing good long-term stability and excellent selectivity. Meanwhile, the model significantly enhanced the detection speed by enabling hydrogen concentration prediction using only the initial 40 data points (sampling frequency of 100 Hz) from the sensor response before the sensor completes the entire response process. This work introduces a novel approach to achieve an ultrafast hydrogen detection system, which demonstrates significant application promise in the fields of low-power sensors and rapid gas detection.
Collapse
Affiliation(s)
- Ruilin Yang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Zhen Yuan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiao Tong University, Xi'an 710054, China
| | - Changrong Jiang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Xinjie Zhang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Zilong Qiao
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Jianping Zhang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Junge Liang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Si Wang
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
| | - Zaihua Duan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Yuanming Wu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Weizhi Li
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Yadong Jiang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Huiling Tai
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| |
Collapse
|
3
|
Park K, Kim MP. Advancements in Flexible and Stretchable Electronics for Resistive Hydrogen Sensing: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:6637. [PMID: 39460116 PMCID: PMC11510921 DOI: 10.3390/s24206637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/26/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024]
Abstract
Flexible and stretchable electronics have emerged as a groundbreaking technology with wide-ranging applications, including wearable devices, medical implants, and environmental monitoring systems. Among their numerous applications, hydrogen sensing represents a critical area of research, particularly due to hydrogen's role as a clean energy carrier and its explosive nature at high concentrations. This review paper provides a comprehensive overview of the recent advancements in flexible and stretchable electronics tailored for resistive hydrogen sensing applications. It begins by introducing the fundamental principles underlying the operation of flexible and stretchable resistive sensors, highlighting the innovative materials and fabrication techniques that enable their exceptional mechanical resilience and adaptability. Following this, the paper delves into the specific strategies employed in the integration of these resistive sensors into hydrogen detection systems, discussing the merits and limitations of various sensor designs, from nanoscale transducers to fully integrated wearable devices. Special attention is paid to the sensitivity, selectivity, and operational stability of these resistive sensors, as well as their performance under real-world conditions. Furthermore, the review explores the challenges and opportunities in this rapidly evolving field, including the scalability of manufacturing processes, the integration of resistive sensor networks, and the development of standards for safety and performance. Finally, the review concludes with a forward-looking perspective on the potential impacts of flexible and stretchable resistive electronics in hydrogen energy systems and safety applications, underscoring the need for interdisciplinary collaboration to realize the full potential of this innovative technology.
Collapse
Affiliation(s)
- Kwonpil Park
- Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Minsoo P. Kim
- Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
4
|
Xie B, Liu Y, Lei Y, Qian H, Li Y, Yan W, Zhou C, Wen HM, Xia S, Mao P, Han M, Hu J. Innovative Thermocatalytic H 2 Sensor with Double-Sided Pd Nanocluster Films on an Ultrathin Mica Substrate. ACS Sens 2024; 9:2529-2539. [PMID: 38723609 DOI: 10.1021/acssensors.4c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Hydrogen (H2) is crucial in the future global energy landscape due to its eco-friendly properties, but its flammability requires precise monitoring. This study introduces an innovative thermocatalytic H2 sensor utilizing ultrathin mica sheets as substrates, coated on both sides with Pd nanocluster (NC) films. The ultrathin mica substrate ensures robustness and flexibility, enabling the sensor to withstand high temperatures and mechanical deformation. Additionally, it simplifies the fabrication process by eliminating the need for complex microelectro-mechanical systems (MEMS) technology. Constructed through cluster beam deposition, the sensor exhibits exceptional characteristics, including a wide concentration range (from 500 ppm to 4%), rapid response and recovery times (3.1 and 2.4 s for 1% H2), good selectivity, high stability, and repeatability. The operating temperature can be as low as 40 °C, achieving remarkably low power consumption. The study explores the impact of double-sided versus single-sided catalytic layers, revealing significantly higher sensitivity and response with the double-sided configuration due to the increased catalytic surface area. Additionally, the research investigates the relationship between the deposition amount of Pd NCs and the sensor's sensitivity, identifying an optimal value that maximizes performance without excessive use of Pd. The sensor's innovative design and excellent performance position it as a promising candidate for meeting the demands of a hydrogen-based energy economy.
Collapse
Affiliation(s)
- Bo Xie
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Yini Liu
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Yingshuang Lei
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Haoyu Qian
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Yingzhu Li
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Wenjing Yan
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Changjiang Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Hui-Min Wen
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Shengjie Xia
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Peng Mao
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Min Han
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Jun Hu
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| |
Collapse
|
5
|
Xie B, Sun J, Zhang A, Qian H, Mao X, Li Y, Yan W, Zhou C, Wen HM, Xia S, Han M, Milani P, Mao P. Development of Pd/In 2O 3 hybrid nanoclusters to optimize ethanol vapor sensing. Phys Chem Chem Phys 2024; 26:13364-13373. [PMID: 38639921 DOI: 10.1039/d4cp00868e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
In this study, we successfully synthesize palladium-decorated indium trioxide (Pd/In2O3) hybrid nanoclusters (NCs) using an advanced dual-target cluster beam deposition (CBD) method, a significant stride in developing high-performance ethanol sensors. The prepared Pd/In2O3 hybrid NCs exhibit exceptional sensitivity, stability, and selectivity to low concentrations of ethanol vapor, with a maximum response value of 101.2 at an optimal operating temperature of 260 °C for 6 at% Pd loading. The dynamic response of the Pd/In2O3-based sensor shows an increase in response with increasing ethanol vapor concentrations within the range of 50 to 1000 ppm. The limit of detection is as low as 24 ppb. The sensor exhibits a high sensitivity of 28.24 ppm-1/2, with response and recovery times of 2.7 and 4.4 seconds, respectively, for 100 ppm ethanol vapor. Additionally, the sensor demonstrates excellent repeatability and stability, with only a minor decrease in response observed over 30 days and notable selectivity for ethanol compared to other common volatile organic compounds. The study highlights the potential of Pd/In2O3 NCs as promising materials for ethanol gas sensors, leveraging the unique capabilities of CBD for controlled synthesis and the catalytic properties of Pd for enhanced gas-sensing performance.
Collapse
Affiliation(s)
- Bo Xie
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Jian Sun
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Aoxue Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Haoyu Qian
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Xibing Mao
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Yingzhu Li
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Wenjing Yan
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Changjiang Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Hui-Min Wen
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Shengjie Xia
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Min Han
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China.
| | - Paolo Milani
- CIMAINA and Department of Physics, Università degli Studi di Milano, via Celoria 16, I-20133, Milano, Italy
| | - Peng Mao
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China.
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
6
|
Yang GG, Ko J, Choi HJ, Kim DH, Han KH, Kim JH, Kim MH, Park C, Jin HM, Kim ID, Kim SO. Multilevel Self-Assembly of Block Copolymers and Polymer Colloids for a Transparent and Sensitive Gas Sensor Platform. ACS NANO 2022; 16:18767-18776. [PMID: 36374261 DOI: 10.1021/acsnano.2c07499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The recent emerging significance of the Internet of Things (IoT) demands sensor devices to be integrated with many different functional structures and devices while conserving their original functionalities. To this end, optical transparency and mechanical flexibility of sensor devices are critical requirements for optimal integration as well as high sensitivity. In this work, a transparent, flexible, and sensitive gas sensor building platform is introduced by using multilevel self-assembly of block copolymers (BCPs) and polystyrene (PS) colloids. For the demonstration of an H2 gas sensor, a hierarchically porous Pd metal mesh structure is obtained by overlaying the two different patterned template structures with synergistic, distinctive characteristic length scales. The hierarchical Pd mesh shows not only high transparency over 90% but also superior sensing performance in terms of response and recovery time owing to enhanced Pd-to-hydride ratio and short H2 diffusion lengths from the enlarged active surface areas. The hierarchical morphology also endows high mechanical flexibility while securing reliable sensing performance even under severe mechanical deformation cycles. Our scalable self-assembly based multiscale nanopatterning offers an intriguing generalized platform for many different multifunctional devices requiring hidden in situ monitoring of environmental signals.
Collapse
Affiliation(s)
- Geon Gug Yang
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, Korea Advance Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | | | - Hee Jae Choi
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, Korea Advance Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | | | - Kyu Hyo Han
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, Korea Advance Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jang Hwan Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, Korea Advance Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Min Hyuk Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, Korea Advance Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | | | - Hyeon Min Jin
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea
| | | | - Sang Ouk Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, Korea Advance Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
7
|
Wang C, Du L, Xing X, Feng D, Yang D. Lightweight Porous Polyurethane Foam Integrated with Graphene Oxide for Flexible and High-Concentration Hydrogen Sensing. ACS Sens 2022; 7:2420-2428. [PMID: 35854426 DOI: 10.1021/acssensors.2c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Reliable detection of high-concentration hydrogen (H2) leakage in sharp-vibration environments is highly desired such as in the application of space rockets. As hydrogen has to be detected simultaneously in a wide concentration range and at high concentrations (e.g., 100 v/v%) with outstanding linearity in response/concentration, lightweight features, and excellent tolerance against saturation and vibration, it remains challenging. Here, a flexible and high-concentration H2 sensing has been developed through "dipping-drying" a three-dimensional (3D) porous polyurethane (PU) foam integrated with graphene oxide (GO-PU). Multilayered honeycomb-structured graphene oxide appears to be tightly adhered to faveolate PU. Benefiting from the numerous adsorption sites of the "dual honeycomb" structure and abundant surface functional groups of GO, the GO-PU foam exhibits distinguished response and linearity toward 2-100 v/v% H2 and shows excellent lightweight, tailorability, and flexibility. Remarkably, the foam possesses outstanding sensing stability against 0-180° bending and low 0-20% straining, along with outstanding H2 sensing performance even after being pressed by a weight of 200 g, immersed in water, and frozen in a refrigerator at -10.8 °C. Practically, the GO-PU foam has potential for high-concentration H2 leakage detection, and our synthetic strategy may provide a way to avoid adsorbing saturation in other flexible gas sensing.
Collapse
Affiliation(s)
- Chen Wang
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education and Department of Electronics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Lingling Du
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education and Department of Electronics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Xiaxia Xing
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education and Department of Electronics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Dongliang Feng
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education and Department of Electronics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Dachi Yang
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education and Department of Electronics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
8
|
Chen H, Wang X, Ma B, Wang H, Chen Y, Jiang C, Huang G, Kou H, Tang T, Luo D. Graphene-Promoted Adhesion-Reduced Expansion of Discontinuous Palladium Nanowires upon Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33686-33693. [PMID: 35844153 DOI: 10.1021/acsami.2c05525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Monitoring conductivity changes of discontinuous palladium (Pd) nanostructures upon hydrogenation is becoming one of the most promising approaches toward hydrogen sensing. Development of sensors in this type has long been impeded due to strong ubiquitous interfacial adhesion which could distinctly restrict Pd expansion so as to hinder the closing of a nanogap. Herein, graphene underlayers were applied in the fabrication of nanogap-based hydrogen sensors to promote the lateral expansion of a Pd nanowire upon hydrogenation by reducing the adhesion between the metal and the substrate. In order to clarify details as well as mechanisms underlaid of graphene-enhanced Pd expansion, nanowire samples with serial lengths (6-48 μm) and gaps (0-260 nm in width) were controllably prepared on single-layer graphene (SLG), double-layer graphene (DLG), and quadruple-layer graphene (QLG, DLG × 2) via the combination of electron beam lithography (EBL) and electron beam deposition (EBD) technology. Response features and intrinsic analysis in physical sense of the graphene-based discontinuous Pd circuits upon hydrogen were established, in light of which the effects of underlayers on Pd expansion and on nanogap closing process were investigated. Such graphene-promoted expansion was demonstrated through the achievement of the closure of a large gap threshold (Gt) up to 260 nm as well as the systematical investigation of its influence on the sensing performance.
Collapse
Affiliation(s)
- Huaming Chen
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Mianyang 621907 Sichuan, P. R. China
| | - Xiaolong Wang
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Mianyang 621907 Sichuan, P. R. China
| | - Bangjun Ma
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Mianyang 621907 Sichuan, P. R. China
| | - Hanbin Wang
- Microsystem & Terahertz Research Center, China Academy of Engineering Physics, Chengdu, 610200 Sichuan, P. R. China
- Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621900 Sichuan, P. R. China
| | - Yi Chen
- Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics, Chengdu, 610200 Sichuan, P. R. China
| | - Chunli Jiang
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Mianyang 621907 Sichuan, P. R. China
| | - Guoqiang Huang
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Mianyang 621907 Sichuan, P. R. China
| | - Huaqin Kou
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Mianyang 621907 Sichuan, P. R. China
| | - Tao Tang
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Mianyang 621907 Sichuan, P. R. China
| | - Deli Luo
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Mianyang 621907 Sichuan, P. R. China
| |
Collapse
|
9
|
Xie B, Ding B, Mao P, Wang Y, Liu Y, Chen M, Zhou C, Wen HM, Xia S, Han M, Palmer RE, Wang G, Hu J. Metal Nanocluster-Metal Organic Framework-Polymer Hybrid Nanomaterials for Improved Hydrogen Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200634. [PMID: 35435324 DOI: 10.1002/smll.202200634] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/26/2022] [Indexed: 06/14/2023]
Abstract
The development of hydrogen sensors is of paramount importance for timely leak detection and remains a crucial unmet need. Palladium-based materials, well known as hydrogen sensors, still suffer from poisoning and deactivation. Here, a hybrid hydrogen sensor consisting of a Pd nanocluster (NC) film, a metal-organic framework (MOF), and a polymer, are proposed. The polymer coating, as a protection layer, endows the sensor with excellent H2 selectivity and CO-poisoning resistance. The MOF serves as an interface layer between the Pd NC film and the polymer layer, which alters the nature of the interaction with hydrogen and leads to significant sensing performance improvements, owing to the interfacial electronic coupling between Pd NCs and the MOF. The strategy overcomes the shortcomings of retarded response speed and degraded sensitivity induced by the polymer coating of a Pd NC film-polymer hybrid system. This is the first exhibition of a hydrogen-sensing enhancement mechanism achieved by engineering the electronic coupling between Pd and a MOF. The work establishes a deep understanding of the hydrogen-sensing enhancement mechanism at the nanoscale and provides a feasible strategy to engineer next-generation gas-sensing nanodevices with superior sensing figures of merit via hybrid material systems.
Collapse
Affiliation(s)
- Bo Xie
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, 310014, P. R. China
| | - Bosheng Ding
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, 310014, P. R. China
| | - Peng Mao
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
- Department of Physics, University of Hong Kong, Hong Kong, 999077, China
| | - Ying Wang
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, 310014, P. R. China
| | - Yini Liu
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, 310014, P. R. China
| | - Minrui Chen
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, 310014, P. R. China
| | - Changjiang Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, 310014, P. R. China
| | - Hui-Min Wen
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, 310014, P. R. China
| | - Shengjie Xia
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, 310014, P. R. China
| | - Min Han
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Richard E Palmer
- College of Engineering, Bay Campus, Swansea University, Swansea, SA1 8EN, UK
| | - Guanghou Wang
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Jun Hu
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, 310014, P. R. China
| |
Collapse
|
10
|
Wu Y, Fu C, Shi W, Chen J. Recent advances in catalytic hairpin assembly signal amplification-based sensing strategies for microRNA detection. Talanta 2021; 235:122735. [PMID: 34517602 DOI: 10.1016/j.talanta.2021.122735] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022]
Abstract
Accumulative evidences have indicated that abnormal expression of microRNAs (miRNAs) is closely associated with many health disorders, making them be regarded as potentialbiomarkers for early clinical diagnosis. Therefore, it is extremely necessary to develop a highly sensitive, specific and reliable approach for miRNA analysis. Catalytic hairpin assembly (CHA) signal amplification is an enzyme-free toehold-mediated strand displacement method, exhibiting significant potential in improving the sensitivity of miRNA detection strategies. In this review, we first describe the potential of miRNAs as disease biomarkers and therapeutics, and summarize the latest advances in CHA signal amplification-based sensing strategies for miRNA monitoring. We describe the characteristics and mechanism of CHA signal amplification and classify the CHA-based miRNA sensing strategies into several categories based on the "signal conversion substance", including fluorophores, enzymes, nanomaterials, and nucleotide sequences. Sensing performance, limit of detection, merits and disadvantages of these miRNA sensing strategies are discussed. Moreover, the current challenges and prospects are also presented.
Collapse
Affiliation(s)
- Yan Wu
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China.
| | - Cuicui Fu
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China
| | - Wenbing Shi
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China
| | - Jinyang Chen
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China.
| |
Collapse
|
11
|
Peng YJ, Huang H, Wang CJ. DFT investigation on electronic structure, chemical bonds and optical properties of Cu6(SR)6 nanocluster. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Shen Y, Pan J, Hu X, Wen HM, Xiao JQ, Hu J. Hydrogen Bubble-Directed Tubular Structure: A Novel Mechanism to Facilely Synthesize Nanotube Arrays with Controllable Wall Thickness. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5418-5424. [PMID: 33464804 DOI: 10.1021/acsami.0c14740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanowire arrays can be conveniently fabricated by electrodeposition methods using porous anodized alumina oxide templates. They have found applications in numerous fields. Nanotube arrays, with their hollow structure and much enhanced surface-to-volume ratio, as well as an additional tuning parameter in tube wall thickness, promise additional functions compared with nanowire arrays. Using a similar fabrication method, we have developed a facile and general method to fabricate metallic nanotubes (NTs). Using Ni NTs as a model system, the mechanism of the hydrogen-assisted NT growth was postulated and confirmed by controlling the hydrogen formation with conductive salts in an electrodeposition solution, which improves the H2 concentration but prevents the large H2 bubbles from blocking the nanochannel of a template. The controlled hydrogen generation forces the growth along the wall of nanochannels in the templates, leading to the NT formation. The magnetic properties can be controlled by the NT wall thickness, making these NTs useful for various applications.
Collapse
Affiliation(s)
- Yanfang Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jiannan Pan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xinyue Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hui-Min Wen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - John Q Xiao
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - Jun Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
13
|
Won C, Lee S, Jung HH, Woo J, Yoon K, Lee J, Kwon C, Lee M, Han H, Mei Y, Jang KI, Lee T. Ultrasensitive and Stretchable Conductive Fibers Using Percolated Pd Nanoparticle Networks for Multisensing Wearable Electronics: Crack-Based Strain and H 2 Sensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45243-45253. [PMID: 32893618 DOI: 10.1021/acsami.0c10460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The need for wearable electronic devices continues to grow, and the research is under way for stretchable fiber-type sensors that are sensitive to the surrounding atmosphere and will provide proficient measurement capabilities. Currently, one-dimensional fiber sensors have several limitations for their extensive use because of the complex structures of the sensing mechanisms. Thus, it is essential to miniaturize these materials with durability while integrating multiple sensing capabilities. Herein, we present an ultrasensitive and stretchable conductive fiber sensor using PdNP networks embedded in elastomeric polymers for crack-based strain and H2 sensing. The fiber multimodal sensors show a gauge factor of ∼2040 under 70% strain and reliable mechanical deformation tolerance (10,000 stretching cycles) in the strain-sensor mode. For H2 sensing, the fiber multimodal sensors exhibit a wide sensing range of high sensitivity: -0.43% response at 5 ppm (0.0005%) H2 gas and -27.3% response at 10% H2 gas. For the first time, we demonstrate highly stretchable H2 sensors that can detect H2 gas under 110% strain with mechanical durability. As demonstrated, their stable performance allows them to be used in wearable applications that integrate fiber multimodal sensors into industrial safety clothing along with a microinorganic light-emitting diode for visual indication, which exhibits proper activation upon H2 gas exposure.
Collapse
Affiliation(s)
- Chihyeong Won
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sanggeun Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Han Hee Jung
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Janghoon Woo
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Kukro Yoon
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jaehong Lee
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Chaebeen Kwon
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Minkyu Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Heetak Han
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yongfeng Mei
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Kyung-In Jang
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Taeyoon Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| |
Collapse
|
14
|
Kim H, Kim W, Cho S, Park J, Jung GY. Molecular Sieve Based on a PMMA/ZIF-8 Bilayer for a CO-Tolerable H 2 Sensor with Superior Sensing Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28616-28623. [PMID: 32466637 DOI: 10.1021/acsami.0c05369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Semiconductor sensors equipped with Pd catalysts are promising candidates as low-powered and miniaturized surveillance devices that are used to detect flammable hydrogen (H2) gas. However, the following issues remain unresolved: (i) a sluggish sensing speed at room temperature and (ii) deterioration of sensing performance caused by interfering gases, particularly, carbon monoxide (CO). Herein, a bilayer comprising poly(methyl methacrylate) (PMMA) and zeolitic imidazolate framework-8 (ZIF-8) is utilized as a molecular sieve for diode-type H2 sensors based on a Pd-decorated indium-gallium-zinc oxide film on a p-type silicon substrate. While the PMMA effectively blocks the penetration of CO gas molecules into the sensing entity, the ZIF-8 improves sensing performances by modifying the catalytic activity of Pd, which is preferable for splitting H2 and O2 molecules. Consequently, the bilayer-covered sensor achieves outstanding CO tolerance with superior sensing figures of merit (response/recovery times of <10 s and sensing response of >5000% at 1% H2).
Collapse
Affiliation(s)
- Hyeonghun Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Woochul Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sungjun Cho
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jiyoon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Gun Young Jung
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
15
|
Evolution of surface and bulk carbon species derived from propylene and their influence on the interaction of hydrogen with palladium. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Zhang L, Jiang H, Zhang J, Huang Y, Tian J, Deng X, Zhao X, Zhang W. Flexible nanofiber sensor for low-concentration hydrogen detection. NANOTECHNOLOGY 2020; 31:015504. [PMID: 31509818 DOI: 10.1088/1361-6528/ab435f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A palladium nanoparticle-decorated three-dimensional polyacrylonitrile nanofiber network (Pd-PAN) is prepared as a hydrogen sensor by a chemical bath method. A simple low-temperature annealing treatment is adopted to stabilize the active materials and eliminate the zero-drift of the sensor. The prepared Pd-PAN device exhibits stable performance for hydrogen detection with high sensitivity, especially in a low-concentration hydrogen environment. A minimum detectable limitation of 2 ppm is achieved. In addition, an excellent repeatability is confirmed by continuous measurement under 1% hydrogen. Although the response amplitude decreases with the increased temperature from 30 °C to 70 °C, the fast and stable sensitivity demonstrate the excellent environmental adaptivity and device stability. Notably, due to the accelerated diffusion speed under higher testing temperature, the response time and recovery time are shortened. Moreover, the difference of response as low as 0.01% under bending states at 70 °C strongly confirms the robust mechanical flexibility and superior device performance. The systematic measurements demonstrate the promising application of Pd-PAN sensors for low-concentration hydrogen detection.
Collapse
Affiliation(s)
- Luying Zhang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|