1
|
Yang C, Zhang H, Hou C, Sun F, Xu G. Self-assembly fluorescent copper nanoclusters in alginate-based hydrogel sensor for histamine detection and visual monitoring of food spoilage. Talanta 2025; 294:128292. [PMID: 40344842 DOI: 10.1016/j.talanta.2025.128292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/03/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Histamine is one of typical biogenic amines related with foodborne illness induced by eating spoiled food. Thus, it is vital to establish a reliable and efficient approach for histamine detection and food safety monitoring. In this work, a ratiometric fluorescent sensor based on CuNCs/SiQDs and CuNCs/SiQDs-alginate hydrogel test strip were established for histamine detection and fluorescent visual monitoring of food spoilage. Due to fluorescent spectrum of SiQDs overlaps obviously with the UV-vis absorption spectrum of CuNCs, which indicates sensing mechanism of this sensor may be fluorescent inner filter effect (IFE). The fluorescence of CuNCs would be quenched by histamine. With histamine level arising, the fluorescence peak of CuNCs decreases and SiQDs increases gradually, which realize the fluorescent ratiometric detection of histamine. The proposed sensor shows a good linear correlation between fluorescence ratio (F615/F437) and histamine concentration in the range of 0.4-7 mM with a detection limit of 16.6 μM. Moreover, a novel CuNCs/SiQDs-alginate hydrogel test strip by integrating with smartphone is designed for fluorescent visual monitoring of spoiled process of aquatic products. The as-prepared sensor and test strip are successfully exploited for histamine detection in food samples and visual monitoring spoiled process of foods.
Collapse
Affiliation(s)
- Chunlei Yang
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, 250100, Jinan, China.
| | - Hongwei Zhang
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, 250100, Jinan, China
| | - Chenghao Hou
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, 250100, Jinan, China
| | - Fangfang Sun
- Shandong Bureau Testing Co., Ltd. of China Metallurgical Geology Bureau, 250014, Jinan, China
| | - Guiju Xu
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, 250100, Jinan, China.
| |
Collapse
|
2
|
Rani D, Singh D, Kumar A, Dhiman M, Saini A, Biswas P, Rachana R, Roy P, Dutta M, Samanta A. Nanoscale Effects in the Room-Temperature UV-Visible Photoluminescence from Silica Particles and Its Cancer Cell Imaging. Bioconjug Chem 2025; 36:203-215. [PMID: 39878688 DOI: 10.1021/acs.bioconjchem.4c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Silica nano/microparticles have generated significant interest for the past decades, emerging as a versatile material with a wide range of applications in photonic crystals, bioimaging, chemical sensors, and catalysis. This study focused on synthesizing silica nano/microparticles ranging from 20 nm to 1.2 μm using the Stöber and modified Stöber methods. The particles exhibited photoluminescence emission across a UV-visible range, specifically in the UV (∼290, ∼327, ∼339, and ∼377 nm), blue (∼450 nm), green (∼500 nm), yellow (∼576 nm), and red (∼634 nm) range of the electromagnetic spectrum. These emissions are due to radiative relaxation processes involving oxygen-deficient centers arising due to unrelaxed oxygen vacancies, strong interacting surface silanols, 2-fold coordinated silicon, self-trapped excitons, hydrogen-related species, strain-induced defects, and nonbridging oxygen hole centers excited via two-photon and single photon absorption. The increased PL intensity with a decreasing particle size was attributed to higher concentrations of defect sites in the case of smaller-sized particles. The MTT assay, AO/EB staining, and the DCFDA assay confirmed the biocompatible nature of silica particles in the HepG2 cell line. In addition, the cell viability assay in a normal cell line (HEK293) also showed no substantial cell death. Successful bioimaging of HepG2 cells was performed with silica nano/microparticles, which exhibited blue and green fluorescence, along with Hoechst33258 dye. Even though 20 nm-sized silica particles showed higher PL emission, particles sized above 20 nm showed better fluorescence in HepG2 cells, citing their potential in in vitro bioimaging applications.
Collapse
Affiliation(s)
- Divya Rani
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Deepika Singh
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Anil Kumar
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Monika Dhiman
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Anjali Saini
- Photovoltaic Metrology Section Advanced Materials and Device Metrology Division CSIR-National Physical Laboratory, New Delhi 110012, India
| | - Partho Biswas
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Rachana Rachana
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Mrinal Dutta
- National Institute of Solar Energy, Gurgaon 122003, Haryana, India
| | - Arup Samanta
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
3
|
Tanaka YK, Ogra Y. Quantitative determination of the intracellular uptake of silica nanoparticles using asymmetric flow field flow fractionation coupled with ICP mass spectrometry and their cytotoxicity in HepG2 cells. Arch Toxicol 2024; 98:769-777. [PMID: 38221537 DOI: 10.1007/s00204-023-03672-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024]
Abstract
We established a size separation method for silica nanoparticles (SiNPs) measuring 10, 30, 50, 70, and 100 nm in diameter using asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry (AF4-ICP-MS), and evaluated the cytotoxicity of SiNPs in human hepatoma HepG2 cells. Analysis of the mixture sample revealed that nanoparticles of different sizes were eluted at approximately 2-min intervals, with no effect on each elution time or percentage recovery. Compared with larger SiNPs, smaller SiNPs exhibited high cytotoxicity when the volume of SiNPs exposed to the cells was the same. We measured SiNPs in culture medium and inside cells by AF4-ICP-MS and found that approximately 17% of SiNPs in the mixture of five differently sized particles were absorbed by the cells. Transmission electron microscopy revealed that 10 nm SiNPs formed aggregates and accumulated in the cells. Based on AF4-ICP-MS analysis, there is no clear difference in the particle volume absorbed by the cells among different sizes. Therefore, the high toxicity of small SiNPs can be explained by the fact that their large surface area relative to particle volume efficiently induces toxicological influences. Indeed, the large surface area of 10 nm SiNPs significantly contributed to the production of reactive oxygen species.
Collapse
Affiliation(s)
- Yu-Ki Tanaka
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba, 260-8675, Japan.
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba, 260-8675, Japan
| |
Collapse
|
4
|
Yuan M, Kermanian M, Agarwal T, Yang Z, Yousefiasl S, Cheng Z, Ma P, Lin J, Maleki A. Defect Engineering in Biomedical Sciences. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304176. [PMID: 37270664 DOI: 10.1002/adma.202304176] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/28/2023] [Indexed: 06/05/2023]
Abstract
With the promotion of nanochemistry research, large numbers of nanomaterials have been applied in vivo to produce desirable cytotoxic substances in response to endogenous or exogenous stimuli for achieving disease-specific therapy. However, the performance of nanomaterials is a critical issue that is difficult to improve and optimize under biological conditions. Defect-engineered nanoparticles have become the most researched hot materials in biomedical applications recently due to their excellent physicochemical properties, such as optical properties and redox reaction capabilities. Importantly, the properties of nanomaterials can be easily adjusted by regulating the type and concentration of defects in the nanoparticles without requiring other complex designs. Therefore, this tutorial review focuses on biomedical defect engineering and briefly discusses defect classification, introduction strategies, and characterization techniques. Several representative defective nanomaterials are especially discussed in order to reveal the relationship between defects and properties. A series of disease treatment strategies based on defective engineered nanomaterials are summarized. By summarizing the design and application of defective engineered nanomaterials, a simple but effective methodology is provided for researchers to design and improve the therapeutic effects of nanomaterial-based therapeutic platforms from a materials science perspective.
Collapse
Affiliation(s)
- Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Mehraneh Kermanian
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology (School of Pharmacy), Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| | - Tarun Agarwal
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, 522502, India
| | - Zhuang Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Satar Yousefiasl
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Ziyong Cheng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology (School of Pharmacy), Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| |
Collapse
|
5
|
Boruah A, Bora S, Thakur A, Dutta HS, Saikia BK. Solid-State Phosphors from Coal-Derived Carbon Quantum Dots. ACS OMEGA 2023; 8:25410-25423. [PMID: 37483255 PMCID: PMC10357543 DOI: 10.1021/acsomega.3c02884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023]
Abstract
With unique optical and chemical properties, carbon quantum dots (CQDs) find tremendous applications in chemistry, biology, and materials science to medicine. To expand the applicability of coal-derived CQDs from the liquid to solid state, we herein report the sustainable synthesis of solid phosphors from coal-derived CQDs using poly(vinyl alcohol) (PVA) and silica (SiO2) as an organic and inorganic matrix. Two coal-derived CQDs were obtained using an eco-friendly ultrasonic-assisted wet oxidation method. The structural and chemical properties of the CQDs were extensively investigated and compared with commercial CQDs. The coal-derived CQDs exhibited blue fluorescence with 8.9 and 14.9% quantum yields. The CQDs were found to be self-co-doped with nitrogen and sulfur heteroatoms through surface and edge functional groups. Solid-state fluorescence of PVA/CQD composite films confirmed that the CQDs retained their excellent blue emission in a dry solid matrix. A facile one-pot sol-gel method was employed to fabricate SiO2/CQD phosphors with the unique fluorescence emission. Due to their special structural features, coal-derived CQDs favored the heterogeneous nucleation and rapid formation of SiO2/CQD phosphors. Further, coal-derived CQDs caused high-intensity white light emission with CIE coordinates of (0.312, 0.339) by endowing a suitable band gap structure in a SiO2/CQD solid phosphor for potential optical applications.
Collapse
Affiliation(s)
- Anusuya Boruah
- Coal
and Energy Division, CSIR-North East Institute
of Science and Technology, Jorhat 785006, Assam, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sarmistha Bora
- Coal
and Energy Division, CSIR-North East Institute
of Science and Technology, Jorhat 785006, Assam, India
| | - Ashutosh Thakur
- Coal
and Energy Division, CSIR-North East Institute
of Science and Technology, Jorhat 785006, Assam, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hemant Sankar Dutta
- Analytical
Chemistry Group, Materials Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Binoy K. Saikia
- Coal
and Energy Division, CSIR-North East Institute
of Science and Technology, Jorhat 785006, Assam, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Fernandes NB, Nayak Y, Garg S, Nayak UY. Multifunctional engineered mesoporous silica/inorganic material hybrid nanoparticles: Theranostic perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Gogoi H, Banerjee S, Datta A. Photoluminescent silica nanostructures and nanohybrids. Chemphyschem 2022; 23:e202200280. [PMID: 35686692 DOI: 10.1002/cphc.202200280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/02/2022] [Indexed: 11/06/2022]
Abstract
The complicated photophysics of wide variety of defects existing in silica (SiO2) layer of nanometer thickness determines wide spread photoluminescence bands of Si/SiO2 based system as well as SiO2 nanoparticles (NPs) for their applications in photovoltaic and optoelectronic devices. This review attempts to summarize different photophysical processes in pure SiO2 NPs. Moreover, these NPs also act as scaffolds for various guest molecules to perform their specific functions. Guest fluorophore molecules when trapped inside pores of SiO2 NPs exhibit a different photodynamics than free state, which opens up several important applications of hybrid SiO2 NPs in artificial photosynthesis, sensing, biology and optical fiber.
Collapse
Affiliation(s)
- Hemen Gogoi
- Indian Institute of Technology Bombay, Chemistry, Department of Chemistry, IIT Bombay, Powai, 400076, Mumbai, INDIA
| | - Subhasree Banerjee
- Panchmura Mahavidyalaya, Chemistry, Department of Chemistry Panchmura Mahavidyalaya Bankura, West Bengal 722156, Ind, 722156, Bankura, INDIA
| | - Anindya Datta
- Indian Institute of Technology Bombay, Department of Chemistry, Powai, 400076, Mumbai, INDIA
| |
Collapse
|
8
|
O2 Loaded Germanosilicate Optical Fibers: Experimental In Situ Investigation and Ab Initio Simulation Study of GLPC Evolution under Irradiation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work we present a combined experimental and ab initio simulation investigation concerning the Germanium Lone Pair Center (GLPC), its interaction with molecular oxygen (O2), and evolution under irradiation. First, O2 loading has been applied here to Ge-doped optical fibers to reduce the concentration of GLPC point defects. Next, by means of cathodoluminescence in situ experiments, we found evidence that the 10 keV electron irradiation of the treated optical fibers induces the generation of GLPC centers, while in nonloaded optical fibers, the irradiation causes the bleaching of the pre-existing GLPC. Ab initio calculations were performed to investigate the reaction of the GLPC with molecular oxygen. Such investigations suggested the stability of the dioxagermirane (DIOG) bulk defect, and its back conversion into GLPC with a local release of O2 under irradiation. Furthermore, it is also inferred that a remarkable portion of the O2 passivated GLPC may form Ge tetrahedra connected to peroxy bridges. Such structures may have a larger resistance to the irradiation and not be back converted into GLPC.
Collapse
|
9
|
Sun Y, Qu H, Zhang J, Duan X, Zhang X. Room temperature phosphorescence, thermally activated delayed fluorescence and multicolor mechanochromic luminescence of emitters through molecular interaction and conformational modulations. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
10
|
Yang C, Gao N, Liu Y, Zhao H, Jing J, Zhang X. A silicon nanoparticle-based nanoprobe for ratiometric fluorescence and visual detection of glucose. NEW J CHEM 2021. [DOI: 10.1039/d1nj03826e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We synthesized SiNPs by a one-step method and established, for the first time, a novel SiNP-based nanoprobe (denoted as SiNPs/OPD/HRP/GOx) for ratiometric fluorescence and visual detection of glucose in serum samples.
Collapse
Affiliation(s)
- Chunlei Yang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Na Gao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yazhou Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hengzhi Zhao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jing Jing
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiaoling Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
11
|
Wu G, Chen X, Zhang Z, Zhu N, Yu Q, Liu H, Liu L. Vacancy-induced toxicity of CoSe 2 nanomaterials in rat lung macrophages. Nanotoxicology 2020; 14:968-984. [PMID: 32633691 DOI: 10.1080/17435390.2020.1778808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rich vacancies of semiconductor nanomaterials (NMs) give rise to great enhancement of their physical and chemical properties such as magnetic, catalytic, optical, etc. These NMs possessing extensive applications could inevitably enter into the environment and increase the toxic effects on organisms, so it is imperative to investigate the cytotoxicity of NMs with different types of vacancies. Here, one-dimensional cobalt selenide (CoSe2) NMs with different vacancies were synthesized through the same precursor while calcined at different temperatures (P-CoSe2 which calcined at 200 °C and N-CoSe2 which calcined at 230 °C). According to the positron annihilation spectrum, the VSeSe vacancy associate in P-CoSe2 was endowed with two positive charges, while the VCoCoCoSeSe vacancy associate in N-CoSe2 possessed four negative charges. Cell viability assays revealed that N-CoSe2 had higher toxicity to macrophages than P-CoSe2, which was attributed to higher levels of intracellular reactive oxygen species induced by N-CoSe2. Further investigation showed that N-CoSe2 had higher affinity to the mitochondrion-targeting peptide, leading to its preferential distribution in the mitochondria and consequent induction of mitochondrial superoxide production. In contrast, P-CoSe2 exhibited higher affinity to the endoplasmic reticulum (ER)-targeting peptide, facilitating its preferential distribution in the ER and the nuclei and causing higher damage to both organelles as compared to N-CoSe2. These results demonstrated that type of surface vacancies significantly affected biodistribution of NMs in subcellular organelles, which contributed to differential biological behaviors of the NMs.
Collapse
Affiliation(s)
- Guizhu Wu
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Xue Chen
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Ze Zhang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Nali Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Huajie Liu
- School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Lu Liu
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|