1
|
Kang F, Zhu G, Ding X, Zhang Y, Zhao Z, Zhang T, He Z, Liu FQ. In situ growth of two-dimensional MXene/Nano-copper metal-organic framework composites for antimicrobial applications in epoxy coatings. Bioelectrochemistry 2025; 165:108952. [PMID: 40014899 DOI: 10.1016/j.bioelechem.2025.108952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/19/2025] [Accepted: 02/22/2025] [Indexed: 03/01/2025]
Abstract
Marine biofouling and corrosion are serious impediments to the promotion and development of the marine industry. The short service life and limited application of single coatings have greatly increased the economic burden on the industry. The development of multi-functional composite coatings has become a particularly pressing issue. The combination of Cu-BTC and Ti3C2Tx as a specific resin filler represents a new strategy (Ti3C2Tx@Cu-BTC@EP). HAADF-STEM, PXRD and XPS were used to verify the successful synthesis of the materials. Ti3C2Tx@Cu-BTC@EP was able to achieve 100 % lethality of E. coli under the condition of light exposure within 24 h. In addition, the impedance modulus of the coating in the low-frequency range was increased by about 3.15 times compared to the blank group with the addition of 1 wt% filler, reaching as high as 7.06 × 108 Ω. Overall, the novel Ti3C2Tx@Cu-BTC@EP composite coating is expected to promote new advances in epoxy resin research.
Collapse
Affiliation(s)
- Fuyan Kang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Guangyu Zhu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Xiaoya Ding
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Yabei Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Zilong Zhao
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Tao Zhang
- Zhuhai Research Institute of Civil Construction-Safety Co., Ltd., Zhuhai 519060, China
| | - Zhongyi He
- Zhuhai Research Institute of Civil Construction-Safety Co., Ltd., Zhuhai 519060, China
| | - Fa-Qian Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| |
Collapse
|
2
|
Rasitha TP, Krishna NG, Anandkumar B, Vanithakumari SC, Philip J. A comprehensive review on anticorrosive/antifouling superhydrophobic coatings: Fabrication, assessment, applications, challenges and future perspectives. Adv Colloid Interface Sci 2024; 324:103090. [PMID: 38290251 DOI: 10.1016/j.cis.2024.103090] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Superhydrophobicity (SHP) is an incredible phenomenon of extreme water repellency of surfaces ubiquitous in nature (E.g. lotus leaves, butterfly wings, taro leaves, mosquito eyes, water-strider legs, etc). Historically, surface exhibiting water contact angle (WCA) > 150° and contact angle hysteresis <10° is considered as SHP. The SHP surfaces garnered considerable attention in recent years due to their applications in anti-corrosion, anti-fouling, self-cleaning, oil-water separation, viscous drag reduction, anti-icing, etc. As corrosion and marine biofouling are global problems, there has been focused efforts in combating these issues using innovative environmentally friendly coatings designs taking cues from natural SHP surfaces. Over the last two decades, though significant progress has been made on the fabrication of various SHP surfaces, the practical adaptation of these surfaces for various applications is hampered, mainly because of the high cost, non-scalability, lack of simplicity, non-adaptability for a wide range of substrates, poor mechanical robustness and chemical inertness. Despite the extensive research, the exact mechanism of corrosion/anti-fouling of such coatings also remains elusive. The current focus of research in recent years has been on the development of facile, eco-friendly, cost-effective, mechanically robust chemically inert, and scalable methods to prepare durable SHP coating on a variety of surfaces. Although there are some general reviews on SHP surfaces, there is no comprehensive review focusing on SHP on metallic and alloy surfaces with corrosion-resistant and antifouling properties. This review is aimed at filling this gap. This review provides a pedagogical description with the necessary background, key concepts, genesis, classical models of superhydrophobicity, rational design of SHP, coatings characterization, testing approaches, mechanisms, and novel fabrication approaches currently being explored for anticorrosion and antifouling, both from a fundamental and practical perspective. The review also provides a summary of important experimental studies with key findings, and detailed descriptions of the evaluation of surface morphologies, chemical properties, mechanical, chemical, corrosion, and antifouling properties. The recent developments in the fabrication of SHP -Cr-Mo steel, Ti, and Al are presented, along with the latest understanding of the mechanism of anticorrosion and antifouling properties of the coating also discussed. In addition, different promising applications of SHP surfaces in diverse disciplines are discussed. The last part of the review highlights the challenges and future directions. The review is an ideal material for researchers practicing in the field of coatings and also serves as an excellent reference for freshers who intend to begin research on this topic.
Collapse
Affiliation(s)
- T P Rasitha
- Corrosion Science and Technology Division, Materials Characterization Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
| | - Nanda Gopala Krishna
- Corrosion Science and Technology Division, Materials Characterization Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
| | - B Anandkumar
- Corrosion Science and Technology Division, Materials Characterization Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India; Homi Bhabha National Institute, Kalpakkam 603102, India
| | - S C Vanithakumari
- Corrosion Science and Technology Division, Materials Characterization Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India; Homi Bhabha National Institute, Kalpakkam 603102, India
| | - John Philip
- Corrosion Science and Technology Division, Materials Characterization Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India; Homi Bhabha National Institute, Kalpakkam 603102, India.
| |
Collapse
|
3
|
Liu P, Wang B, Chen Y. Flexible Poly(vinyl chloride) with Durable Antibiofouling Property via Blending Star-Shaped Amphiphilic Poly(ε-caprolactone)- block-poly(methacryloxyethyl sulfobetaine). ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38050820 DOI: 10.1021/acsami.3c16060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Flexible poly(vinyl chloride) (PVC) plastics have been widely used in medical devices, but the preparation of antibiofouling flexible PVC materials that can maintain their antibiofouling performance when suffering deformation is still a challenge. In this work, we synthesized a series of amphiphilic star-shaped three-arm block copolymers SPCL-b-PSB, consisting of hydrophobic inner blocks poly(ε-caprolactone) (PCL) and hydrophilic outer blocks poly(methacryloxyethyl sulfobetaine) (PSB). Then, flexible PVC films were prepared by blending SPCL-b-PSB with PVC and plasticizer. Benefiting from the specific star-shaped topological structure of SPCL-b-PSB, hydrophilic PSB blocks of the copolymer could efficiently migrate to the surface of the film via annealing treatment, which give the film surface excellent hydrophilicity, while the latch-like entanglements between hydrophobic PCL blocks and PVC give the hydrophilic surface excellent stability. Antibiofouling properties of the blended films were investigated. The optimized blended film could reduce ∼94% of bovine serum albumin adsorption, ∼ 87% of lysozyme adsorption, and ∼89% of platelet adhesion and resist bacterial adhesion effectively. What is more, the blended films could maintain their antibiofouling performance when suffering stretching, rubbing, or bending. More than 86% of bovine serum albumin adsorption could be reduced, even when the film was stretched by 50%. This work provides a new strategy for the preparation of durable antibiofouling flexible plastics.
Collapse
Affiliation(s)
- Peiyi Liu
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, P. R. China
| | - Bin Wang
- Department of Chemistry, School of Science, Tianjin Chengjian University, Tianjin 300384, P. R. China
| | - Yu Chen
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, P. R. China
| |
Collapse
|
4
|
Wei Y, Li W, Liu H, Liu H. In situ preparation of spindle calcium carbonate-chitosan/poly (vinyl alcohol) anti-biofouling hydrogels inspired by Shellfish. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
5
|
Zhou H, Niu H, Wang H, Lin T. Self-Healing Superwetting Surfaces, Their Fabrications, and Properties. Chem Rev 2023; 123:663-700. [PMID: 36537354 DOI: 10.1021/acs.chemrev.2c00486] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The research on superwetting surfaces with a self-healing function against various damages has progressed rapidly in the recent decade. They are expected to be an effective approach to increasing the durability and application robustness of superwetting materials. Various methods and material systems have been developed to prepare self-healing superwetting surfaces, some of which mimic natural superwetting surfaces. However, they still face challenges, such as being workable only for specific damages, external stimulation to trigger the healing process, and poor self-healing ability in the water, marine, or biological systems. There is a lack of fundamental understanding as well. This article comprehensively reviews self-healing superwetting surfaces, including their fabrication strategies, essential rules for materials design, and self-healing properties. Self-healing triggered by different external stimuli is summarized. The potential applications of self-healing superwetting surfaces are highlighted. This article consists of four main sections: (1) the functional surfaces with various superwetting properties, (2) natural self-healing superwetting surfaces (i.e., plants, insects, and creatures) and their healing mechanism, (3) recent research development in various self-healing superwetting surfaces, their preparation, wetting properties in the air or liquid media, and healing mechanism, and (4) the prospects including existing challenges, our views and potential solutions to the challenges, and future research directions.
Collapse
Affiliation(s)
- Hua Zhou
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Centre for Eco-textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Haitao Niu
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Centre for Eco-textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Hongxia Wang
- Institute for Frontier Materials, Deakin University, Geelong Victoria 3216, Australia.,Institute for Nanofiber Intelligent Manufacture and Applications, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Tong Lin
- Institute for Nanofiber Intelligent Manufacture and Applications, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.,State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
6
|
Cao P, Wang H, Zhu M, Fu Y, Yuan C. Integration of Antifouling and Underwater Sound Absorption Properties into PDMS/MWCNT/SiO 2 Coatings. Biomimetics (Basel) 2022; 7:biomimetics7040248. [PMID: 36546948 PMCID: PMC9775102 DOI: 10.3390/biomimetics7040248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Any surface immersed in sea water will suffer from marine fouling, including underwater sound absorption coatings. Traditional underwater sound absorption coatings rely heavily on the use of toxic, biocide-containing paints to combat biofouling. In this paper, an environmentally-friendly nanocomposite with integrated antifouling and underwater sound absorption properties was fabricated by adopting MWCNTs-COOH and SiO2 into PDMS at different ratios. SEM, FTIR and XPS results demonstrated MWCNTs were mixed into PDMS, and the changes in elements were also analyzed. SiO2 nanoparticles in PDMS decreased the tensile properties of the coating, while erosion resistance was enhanced. Antibacterial properties of the coatings containing MWCNTs-COOH and SiO2 at a ratio of 1:1, 1:3, and 1:5 reached 62.02%, 72.36%, and 74.69%, respectively. In the frequency range of 1500-5000 Hz, the average sound absorption coefficient of PDMS increased from 0.5 to greater than 0.8 after adding MWCNTs-COOH and SiO2, which illustrated that the addition of nanoparticles enhanced the underwater sound absorption performance of the coating. Incorporating MWCNTs-COOH and SiO2 nanoparticles into the PDMS matrix to improve its sound absorption and surface antifouling properties provides a promising idea for marine applications.
Collapse
Affiliation(s)
- Pan Cao
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
- Correspondence: (P.C.); (Y.F.); (C.Y.)
| | - Huming Wang
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Mingyi Zhu
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yifeng Fu
- School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (P.C.); (Y.F.); (C.Y.)
| | - Chengqing Yuan
- National Engineering Research Center for Water Transportation Safety, Reliability Engineering Institute, Wuhan University of Technology, Wuhan 430063, China
- School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China
- Correspondence: (P.C.); (Y.F.); (C.Y.)
| |
Collapse
|
7
|
Rasitha. T, Sofia. S, Anandkumar B, Philip J. Long term antifouling performance of superhydrophobic surfaces in seawater environment: Effect of substrate material, hierarchical surface feature and surface chemistry. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
One-step efficient separation of heavy/light oils, dyes and water by simple filtration with a 3D architecture of functional mesh and sisal fiber felt. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Ma L, Wang J, He J, Yao Y, Zhu X, Peng L, Yang J, Liu X, Qu M. Biotemplated Fabrication of a Multifunctional Superwettable Shape Memory Film for Wearable Sensing Electronics and Smart Liquid Droplet Manipulation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31285-31297. [PMID: 34170664 DOI: 10.1021/acsami.1c08319] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Wearable superwettable surfaces with dynamic tunable wettability and self-healability are promising for advanced wearable electronics, whereas have been rarely reported. Herein, a flexible superhydrophobic shape memory film (SSMF) with switchable surface wettability and high strain sensitivity has been conveniently fabricated. The surface topography of the SSMF can be finely adjusted by a reversible stretching (bending)/recovery way, which makes it feasible to control the surface-switchable adhesive superhydrophobicity by simple body movements, demonstrating great advantages in selective droplet manipulation and smart control of droplet movement. Moreover, benefitting from the hierarchical micro/nanostructures and outstanding sensing performance, the flexible SSMFs with good adaptivity and durability can serve as smart wearable sensors attached to human skin to achieve full-range and real-time detection of human motions and intelligent control of Internet of Things. More interestingly, the unique dynamic dewetting property enables the sensors to work in a humid environment or rainy days. Overall, this work successfully integrates dynamic tunable superwettability into design of intelligent wearable electronics with multifunctions. The obtained SSMF-based wearable surface with dynamic dewetting properties reveals great potential in versatile application fields such as liquid-repellent electronics, wearable droplet manipulators, and all-weather intelligent actuators.
Collapse
Affiliation(s)
- Lili Ma
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jiaxin Wang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jinmei He
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yali Yao
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Xuedan Zhu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Lei Peng
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jie Yang
- College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Xiangrong Liu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Mengnan Qu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
10
|
Enhanced anti-biofouling ability of polyurethane anti-cavitation coating with ZIF-8: A comparative study of various sizes of ZIF-8 on coating. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Liu M, Li S, Wang H, Jiang R, Zhou X. Research progress of environmentally friendly marine antifouling coatings. Polym Chem 2021. [DOI: 10.1039/d1py00512j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The antifouling mechanisms and research progress in the past three years of environmentally friendly marine antifouling coatings are introduced in this work.
Collapse
Affiliation(s)
- Mengyue Liu
- School of Chemistry and Life Sciences
- Suzhou University of Science andTechnology
- Suzhou 215009
- China
| | - Shaonan Li
- School of Chemistry and Life Sciences
- Suzhou University of Science andTechnology
- Suzhou 215009
- China
| | - Hao Wang
- School of Chemistry and Life Sciences
- Suzhou University of Science andTechnology
- Suzhou 215009
- China
| | - Rijia Jiang
- School of Chemistry and Life Sciences
- Suzhou University of Science andTechnology
- Suzhou 215009
- China
| | - Xing Zhou
- School of Chemistry and Life Sciences
- Suzhou University of Science andTechnology
- Suzhou 215009
- China
| |
Collapse
|
12
|
Li P, Wang S, Zhou S. Pickering emulsion approach for fabrication of waterborne cross-linkable polydimethylsiloxane coatings with high mechanical performance. J Colloid Interface Sci 2020; 585:627-639. [PMID: 33127058 DOI: 10.1016/j.jcis.2020.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
HYPOTHESIS The Pickering emulsion approach has been frequently employed to fabricate various emulsions. However, the direct formation of cross-linked polymer films from Pickering emulsions and double functions (emulsified and mechanical reinforcement) of Pickering agents have not been sufficiently reported. EXPERIMENTS Fumed silica was co-modified with vinyltrimethoxysilane (VTMS) and hexamethyl disilylamine (HMDS) and was further adopted to emulsify vinyl or hydrogen dimethicone. The as-obtained Pickering emulsions were mixed with Karstedt catalyst capsules to produce one-component waterborne cross-linkable polydimethylsiloxane (PDMS) coatings that were subsequently transformed into elastic films after drying at ambient temperature. FINDINGS The co-modification of fumed silica with VTMS/HMDS is shown to balance the Pickering emulsion effect and film-forming ability of the coatings. Greater amounts of grafted VTMS/HMDS or higher modified silica dosages demonstrated better Pickering emulsion effects. Nevertheless, because Pickering agents hinder the coalescence of silicone oil droplets, the appropriate modified silica concentration is crucial for achieving the highest cross-link density and thus the highest mechanical strength. The grafted CC groups can endow the modified silica with hydrosilylation reactivity and can thus additionally contribute to the mechanical performance of PDMS film. In addition, the Pickering emulsion approach is shown to be superior to the traditional emulsion approach for acquiring waterborne coatings with high mechanical performance.
Collapse
Affiliation(s)
- Ping Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200433, China.
| | - Shen Wang
- Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Shuxue Zhou
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200433, China.
| |
Collapse
|
13
|
Li J, Yang L, Liu H, Li G, Li R, Cao Y, Zeng H. Simple Preparation Method for Hydrophilic/Oleophobic Coatings. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45266-45273. [PMID: 32916043 DOI: 10.1021/acsami.0c11596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work provides a simple method to prepare a hydrophilic/oleophobic coating using polyester filter cloth as the substrate, a mixture of three hydrophilic polymers (poly(aspartic acid), poly(acrylic acid), and poly(vinyl alcohol)); SiO2 with an average particle size of 30 nm is used to improve the surface roughness of the filter cloth. Then, a long fluorocarbon chain of 1H,1H,2H,2H-perfluorooctyltriethoxysilane is grafted onto the surface by a vacuum silanization coupling reaction to obtain hydrophilic/oleophobic properties. The water and hexadecane contact angles of the treated filter cloth are 3 and 99.8°, respectively. A separation efficiency of 98% was achieved in hexadecane/water separation. The durability test shows that the separation efficiency of toward hexadecane-water mixture remains more than 98% after 20 cycles. The obtained material also presents a strong underwater antipollution property when using hexane, rapeseed oil, mineral oil, and pump oil as model pollutants. For oils with higher viscosity, the separation efficiency remains above 97%. However, the separation efficiency is ∼80% when treating emulsions.
Collapse
Affiliation(s)
- Jinhui Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Le Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Haifeng Liu
- College of Materials and Energy, South China Agricultural University, Guangzhou 510000, China
| | - Guobin Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Rui Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Ying Cao
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Hui Zeng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
14
|
Huang Z, Ghasemi H. Hydrophilic polymer-based anti-biofouling coatings: Preparation, mechanism, and durability. Adv Colloid Interface Sci 2020; 284:102264. [PMID: 32947152 DOI: 10.1016/j.cis.2020.102264] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/16/2023]
Abstract
Anti-biofouling materials that combat microorganism attachment have been intensively studied due to the ever-growing demand on smart and durable coatings. Although various hydrophilic polymer surfaces demonstrated superior anti-biofouling properties, their practical application was hampered by the undesired mechanical vulnerability and complicated fabrication process. In this review, we summarized the mechanically and chemically robust anti-biofouling coatings into six strategies namely (i) 3D-grafted coatings, (ii) hierarchical spheres-based coatings, (iii) inorganic nanomaterials-reinforced coatings, (iv) hydrolysis-based coating, (v) semi-interpenetrating structure-based coatings, and (vi) layer-by-layer (LbL) assembled coatings. The anti-biofouling efficacy and durability of these coatings over a series of challenges were also comprehensively presented. The purpose of this review is to inspire researchers to develop novel anti-biofouling coatings for future practical applications.
Collapse
|
15
|
Preparation and synergistic antifouling effect of self-renewable coatings containing quaternary ammonium-functionalized SiO2 nanoparticles. J Colloid Interface Sci 2020; 563:261-271. [DOI: 10.1016/j.jcis.2019.12.086] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022]
|
16
|
Gu Y, Zhou S, Yang J. Aza‐
Michael Addition Chemistry for Tuning the Phase Separation of PDMS/PEG Blend Coatings and Their Anti‐Fouling Potentials. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.201900477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yunjiao Gu
- Department of Materials ScienceState Key Laboratory of Molecular Engineering of PolymersAdvanced Coatings Research Center of Ministry of Education of ChinaFudan University Shanghai 200433 China
| | - Shuxue Zhou
- Department of Materials ScienceState Key Laboratory of Molecular Engineering of PolymersAdvanced Coatings Research Center of Ministry of Education of ChinaFudan University Shanghai 200433 China
| | - Jinlong Yang
- International Research Center for Marine BiosciencesMinistry of Science and TechnologyShanghai Ocean University Shanghai 201306 China
| |
Collapse
|
17
|
Dai G, Xie Q, Ai X, Ma C, Zhang G. Self-Generating and Self-Renewing Zwitterionic Polymer Surfaces for Marine Anti-Biofouling. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41750-41757. [PMID: 31603306 DOI: 10.1021/acsami.9b16775] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Regeneration of antifouling polymer surfaces after contamination or damage is an important issue, especially in complex marine environments. Here, inspired by the self-renewal of silyl acrylate polymers and the protein resistance of zwitterionic polymers, we prepared a novel hydrolysis-induced zwitterionic monomer, tertiary carboxybetaine triisopropylsilyl ester ethyl acrylate (TCBSA), and copolymerized it with methyl methacrylate (MMA). Such a copolymer rapidly self-generates a zwitterionic surface and provides fouling resistance in marine environments. Furthermore, TCBSA was copolymerized with MMA and 2-methylene-1,3-dioxepane (MDO), where MDO causes degradation of the polymers. Our study demonstrates that the degradation of the polymer is controlled, and the degradation rate increases with the external enzyme concentration in the seawater, leading to a self-renewing dynamic surface. Quartz crystal microbalance with dissipation measurements show that the polymeric coating with self-generating zwitterions has excellent protein resistance in seawater. Bioassays demonstrate that the coating can effectively inhibit the adhesion of marine bacteria (Pseudomonas sp.) and diatoms (Navicula incerta). The coating with a self-generating and self-renewing zwitterionic surface is potential to find applications in marine anti-biofouling.
Collapse
Affiliation(s)
- Guoxiong Dai
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Qingyi Xie
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Xiaoqing Ai
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| |
Collapse
|