1
|
Appavoo D, Azim N, Elshatoury M, Antony DX, Rajaraman S, Zhai L. Four-Dimensional Printing of Multi-Material Origami and Kirigami-Inspired Hydrogel Self-Folding Structures. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5028. [PMID: 39459734 PMCID: PMC11509088 DOI: 10.3390/ma17205028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Four-dimensional printing refers to a process through which a 3D printed object transforms from one structure into another through the influence of an external energy input. Self-folding structures have been extensively studied to advance 3D printing technology into 4D using stimuli-responsive polymers. Designing and applying self-folding structures requires an understanding of the material properties so that the structural designs can be tailored to the targeted applications. Poly(N-iso-propylacrylamide) (PNIPAM) was used as the thermo-responsive material in this study to 3D print hydrogel samples that can bend or fold with temperature changes. A double-layer printed structure, with PNIPAM as the self-folding layer and polyethylene glycol (PEG) as the supporting layer, provided the mechanical robustness and overall flexibility to accommodate geometric changes. The mechanical properties of the multi-material 3D printing were tested to confirm the contribution of the PEG support to the double-layer system. The desired folding of the structures, as a response to temperature changes, was obtained by adding kirigami-inspired cuts to the design. An excellent shape-shifting capability was obtained by tuning the design. The experimental observations were supported by COMSOL Multiphysics® software simulations, predicting the control over the folding of the double-layer systems.
Collapse
Affiliation(s)
- Divambal Appavoo
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Nilab Azim
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
| | - Maged Elshatoury
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Dennis-Xavier Antony
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Swaminathan Rajaraman
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
| | - Lei Zhai
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
2
|
Jiao P, Mueller J, Raney JR, Zheng XR, Alavi AH. Mechanical metamaterials and beyond. Nat Commun 2023; 14:6004. [PMID: 37752150 PMCID: PMC10522661 DOI: 10.1038/s41467-023-41679-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Mechanical metamaterials enable the creation of structural materials with unprecedented mechanical properties. However, thus far, research on mechanical metamaterials has focused on passive mechanical metamaterials and the tunability of their mechanical properties. Deep integration of multifunctionality, sensing, electrical actuation, information processing, and advancing data-driven designs are grand challenges in the mechanical metamaterials community that could lead to truly intelligent mechanical metamaterials. In this perspective, we provide an overview of mechanical metamaterials within and beyond their classical mechanical functionalities. We discuss various aspects of data-driven approaches for inverse design and optimization of multifunctional mechanical metamaterials. Our aim is to provide new roadmaps for design and discovery of next-generation active and responsive mechanical metamaterials that can interact with the surrounding environment and adapt to various conditions while inheriting all outstanding mechanical features of classical mechanical metamaterials. Next, we deliberate the emerging mechanical metamaterials with specific functionalities to design informative and scientific intelligent devices. We highlight open challenges ahead of mechanical metamaterial systems at the component and integration levels and their transition into the domain of application beyond their mechanical capabilities.
Collapse
Affiliation(s)
- Pengcheng Jiao
- Ocean College, Zhejiang University, Zhoushan, Zhejiang, China
| | - Jochen Mueller
- Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jordan R Raney
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaoyu Rayne Zheng
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Amir H Alavi
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Li L, Yao H, Mi S. Magnetically Driven Modular Mechanical Metamaterials with High Programmability, Reconfigurability, and Multiple Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3486-3496. [PMID: 36598348 DOI: 10.1021/acsami.2c19679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Shape transformation and motion guidance are emerging research hotspots of mechanical metamaterials. In this case, the key issue is how to improve the programmability and reconfigurability of metamaterials. The magnetically driven method enables materials to accomplish remote, fast, and reversible deformation, so it is desired for improving the programmability and reconfigurability of metamaterials. However, conventional magnetically driven materials are often pure elastomer materials. Their magnetic programming method is single, and their overall shape is unchangeable after fabrication, which limits their programmability and reconfigurability. Herein, this article proposes a kind of magnetically driven, programmable, and reconfigurable modular mechanical metamaterial based on origami and kirigami design mechanisms. The motion and deformation were designed to follow the predefined creases and incisions that could be transformed into each other. This metamaterial enabled more discrete motion and force transmission and integrated the fold of origami, the rotation of kirigami, and the fold guided by cuts. Such designs laid the foundation for complex, three-dimensional structures which could be quickly reassembled and constructed to deal with complex situations. This paper also demonstrated applications of this metamaterial in information storage and manifestation, mechanical logic computing, reconfigurable robotics, deployable mechanisms, and so on. The results indicated that the high programmability and reconfigurability expanded the application potential of the metamaterial for broader needs.
Collapse
Affiliation(s)
- Linzhi Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen518000, China
| | - Hongyi Yao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen518000, China
| | - Shengli Mi
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen518000, China
| |
Collapse
|
4
|
Tao J, Khosravi H, Deshpande V, Li S. Engineering by Cuts: How Kirigami Principle Enables Unique Mechanical Properties and Functionalities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2204733. [PMID: 36310142 PMCID: PMC9811446 DOI: 10.1002/advs.202204733] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Kirigami, the ancient art of paper cutting, has evolved into a design and fabrication framework to engineer multi-functional materials and structures at vastly different scales. By slit cutting with carefully designed geometries, desirable mechanical behaviors-such as accurate shape morphing, tunable auxetics, super-stretchability, buckling, and multistability-can be imparted to otherwise inflexible sheet materials. In addition, the kirigami sheet provides a versatile platform for embedding different electronic and responsive components, opening up avenues for building the next generations of metamaterials, sensors, and soft robotics. These promising potentials of kirigami-based engineering have inspired vigorous research activities over the past few years, generating many academic publications. Therefore, this review aims to provide insights into the recent advance in this vibrant field. In particular, this paper offers the first comprehensive survey of unique mechanical properties induced by kirigami cutting, their underlying physical principles, and their corresponding applications. The synergies between design methodologies, mechanics modeling, advanced fabrication, and material science will continue to mature this promising discipline.
Collapse
Affiliation(s)
- Jiayue Tao
- Department of Mechanical EngineeringClemson University224 Fluor Daniel Building, 216 South Palmetto BoulevardClemsonSC29631USA
| | - Hesameddin Khosravi
- Department of Mechanical EngineeringClemson University224 Fluor Daniel Building, 216 South Palmetto BoulevardClemsonSC29631USA
| | - Vishrut Deshpande
- Department of Mechanical EngineeringVirginia Tech153 Durham Hall, 1145 Perry StreetBlacksburgVA24060USA
| | - Suyi Li
- Department of Mechanical EngineeringVirginia Tech153 Durham Hall, 1145 Perry StreetBlacksburgVA24060USA
| |
Collapse
|
5
|
Jeong HY, An SC, Jun YC. Light activation of 3D-printed structures: from millimeter to sub-micrometer scale. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:461-486. [PMID: 39633788 PMCID: PMC11501357 DOI: 10.1515/nanoph-2021-0652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/21/2021] [Indexed: 12/07/2024]
Abstract
Three-dimensional (3D) printing enables the fabrication of complex, highly customizable structures, which are difficult to fabricate using conventional fabrication methods. Recently, the concept of four-dimensional (4D) printing has emerged, which adds active and responsive functions to 3D-printed structures. Deployable or adaptive structures with desired structural and functional changes can be fabricated using 4D printing; thus, 4D printing can be applied to actuators, soft robots, sensors, medical devices, and active and reconfigurable photonic devices. The shape of 3D-printed structures can be transformed in response to external stimuli, such as heat, light, electric and magnetic fields, and humidity. Light has unique advantages as a stimulus for active devices because it can remotely and selectively induce structural changes. There have been studies on the light activation of nanomaterial composites, but they were limited to rather simple planar structures. Recently, the light activation of 3D-printed complex structures has attracted increasing attention. However, there has been no comprehensive review of this emerging topic yet. In this paper, we present a comprehensive review of the light activation of 3D-printed structures. First, we introduce representative smart materials and general shape-changing mechanisms in 4D printing. Then, we focus on the design and recent demonstration of remote light activation, particularly detailing photothermal activations based on nanomaterial composites. We explain the light activation of 3D-printed structures from the millimeter to sub-micrometer scale.
Collapse
Affiliation(s)
- Hoon Yeub Jeong
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| | - Soo-Chan An
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| | - Young Chul Jun
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| |
Collapse
|
6
|
Qi J, Chen Z, Jiang P, Hu W, Wang Y, Zhao Z, Cao X, Zhang S, Tao R, Li Y, Fang D. Recent Progress in Active Mechanical Metamaterials and Construction Principles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102662. [PMID: 34716676 PMCID: PMC8728820 DOI: 10.1002/advs.202102662] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/31/2021] [Indexed: 05/03/2023]
Abstract
Active mechanical metamaterials (AMMs) (or smart mechanical metamaterials) that combine the configurations of mechanical metamaterials and the active control of stimuli-responsive materials have been widely investigated in recent decades. The elaborate artificial microstructures of mechanical metamaterials and the stimulus response characteristics of smart materials both contribute to AMMs, making them achieve excellent properties beyond the conventional metamaterials. The micro and macro structures of the AMMs are designed based on structural construction principles such as, phase transition, strain mismatch, and mechanical instability. Considering the controllability and efficiency of the stimuli-responsive materials, physical fields such as, the temperature, chemicals, light, electric current, magnetic field, and pressure have been adopted as the external stimuli in practice. In this paper, the frontier works and the latest progress in AMMs from the aspects of the mechanics and materials are reviewed. The functions and engineering applications of the AMMs are also discussed. Finally, existing issues and future perspectives in this field are briefly described. This review is expected to provide the basis and inspiration for the follow-up research on AMMs.
Collapse
Affiliation(s)
- Jixiang Qi
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Zihao Chen
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Peng Jiang
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Wenxia Hu
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Yonghuan Wang
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Zeang Zhao
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Xiaofei Cao
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Shushan Zhang
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Ran Tao
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Ying Li
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Daining Fang
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| |
Collapse
|
7
|
Sun X, Guo R, Yuan B, Chen S, Wang H, Dou M, Liu J, He ZZ. Low-Temperature Triggered Shape Transformation of Liquid Metal Microdroplets. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38386-38396. [PMID: 32846493 DOI: 10.1021/acsami.0c10409] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Shape transformable materials that can respond to external environments have attracted widespread interest over the fields of soft robotics, flexible electronics, and tissue engineering. Among stimuli-responsive materials, liquid metals exhibit rather unique characteristics of versatile morphological changes upon diverse stimuli, including chemicals, electrical field, and mechanical force, etc. Herein, a superfast (few milliseconds), large-scaled (13.8% deformation increase), and fierce (cracks formation) transformation of liquid metal microdroplets (LMMs) with strong impulse expanded force due to liquid-solid phase transition in a dual fluid system composed of LMMs and aqueous solution is reported. When subject to low-temperature stimulus, LMM would transform from ellipsoidal shape to amorphous shape induced by thermal stress, driving the shape morphing. Furthermore, the phase changes of LMMs as well as the formation of surrounding ice crystals are proven to be responsible for this phenomenal behavior. The densification of ice crystals is demonstrated to play a significant role in the transformable behavior. In particular, these nonconductive LMMs in aqueous solutions are discovered to turn into conducive materials with an impedance change of about 105 times. The present discovery is of fundamental and practical significance, and would open new venues in fields such as fluid mechanics, thermal science, flexible electronics, biomedicine, and so forth.
Collapse
Affiliation(s)
- Xuyang Sun
- Beijing Key Laboratory of Cryo-Biomedical Engineering and CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Rui Guo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University Beijing 100084, P. R. China
| | - Bo Yuan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University Beijing 100084, P. R. China
| | - Sen Chen
- Beijing Key Laboratory of Cryo-Biomedical Engineering and CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hongzhang Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University Beijing 100084, P. R. China
| | - Mengjia Dou
- Beijing Key Laboratory of Cryo-Biomedical Engineering and CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jing Liu
- Beijing Key Laboratory of Cryo-Biomedical Engineering and CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Department of Biomedical Engineering, School of Medicine, Tsinghua University Beijing 100084, P. R. China
| | - Zhi-Zhu He
- Department of Vehicle Engineering College of Engineering China Agricultural University Beijing 100083, P. R. China
| |
Collapse
|
8
|
|
9
|
McCracken JM, Donovan BR, White TJ. Materials as Machines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906564. [PMID: 32133704 DOI: 10.1002/adma.201906564] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/19/2019] [Indexed: 05/23/2023]
Abstract
Machines are systems that harness input power to extend or advance function. Fundamentally, machines are based on the integration of materials with mechanisms to accomplish tasks-such as generating motion or lifting an object. An emerging research paradigm is the design, synthesis, and integration of responsive materials within or as machines. Herein, a particular focus is the integration of responsive materials to enable robotic (machine) functions such as gripping, lifting, or motility (walking, crawling, swimming, and flying). Key functional considerations of responsive materials in machine implementations are response time, cyclability (frequency and ruggedness), sizing, payload capacity, amenability to mechanical programming, performance in extreme environments, and autonomy. This review summarizes the material transformation mechanisms, mechanical design, and robotic integration of responsive materials including shape memory alloys (SMAs), piezoelectrics, dielectric elastomer actuators (DEAs), ionic electroactive polymers (IEAPs), pneumatics and hydraulics systems, shape memory polymers (SMPs), hydrogels, and liquid crystalline elastomers (LCEs) and networks (LCNs). Structural and geometrical fabrication of these materials as wires, coils, films, tubes, cones, unimorphs, bimorphs, and printed elements enables differentiated mechanical responses and consistently enables and extends functional use.
Collapse
Affiliation(s)
- Joselle M McCracken
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Brian R Donovan
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| |
Collapse
|