1
|
Chen Q, Furrer R, Jamilpanah L, Chumakov A, Bulut Y, Harder C, Müller-Buschbaum P, Roth SV, Braun A. Responsive Magnetic Polymer Nanocomposites through Thermal-Induced Structural Reorganization. ACS NANO 2025; 19:6165-6179. [PMID: 39912791 PMCID: PMC11841046 DOI: 10.1021/acsnano.4c14311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/07/2025]
Abstract
Polymer nanocomposites (PNCs), which feature a hybrid network of soft polymers filled with nanoparticles, hold promise for application in soft robots due to their tunable physiochemical properties. Under certain environmental conditions, PNCs undergo stimuli-responsive structural rearrangement and transform the energy of the ambient environment into diverse uses, for example, repairing the injuries and reconfiguring the shapes of the materials. We develop PNCs with the ability of thermal-responsive restructuring by the stepwise assembly of functional components, including magnetite nanoparticles, silylated cellulose, and polydimethylsiloxane. We investigate the dynamic changes of the nano- and submicron structure of the magnetic PNCs upon the stimulation of heating based on a combined analytical approach: using dynamic mechanical analysis to interpret the viscoelastic properties of the PNC and in situ small-angle X-ray scattering to quantify the clustering of NPs. Based on these results, we formulate a structural model for the heating-induced evolution of the nano- to submicrometer assemblies in the magnetic PNC. Moreover, thermal-induced restructuring of magnetic PNCs leads to additional favorable functions, such as the abilities of healing, welding, reprocessing, and responses to photo and magneto stimuli. Our design provides a versatile means to develop responsive PNCs for applications in soft robots, sensors, and actuators.
Collapse
Affiliation(s)
- Qing Chen
- Spallation
Neutron Source Science Center, 523803 Dongguan, China
- Institute
of High Energy Physics, Chinese Academy of Science, 100049 Beijing, China
- Laboratory
for High Performance Ceramics, Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Roman Furrer
- Transport
at Nanoscale Interfaces Laboratory, Empa,
Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Loghman Jamilpanah
- Laboratory
for High Performance Ceramics, Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Magnetic
and Functional Thin Films Laboratory, Empa,
Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | | | - Yusuf Bulut
- Deutsches
Elektronen-Synchrotron, 22607 Hamburg, Germany
- TUM
School of Natural Sciences, Department of Physics, Chair for Functional
Materials, Technical University of Munich, 85748 Garching, Germany
| | | | - Peter Müller-Buschbaum
- TUM
School of Natural Sciences, Department of Physics, Chair for Functional
Materials, Technical University of Munich, 85748 Garching, Germany
| | - Stephan V. Roth
- Deutsches
Elektronen-Synchrotron, 22607 Hamburg, Germany
- Department
of Fiber and Polymer Technology, KTH Royal
Institute of Technology, 10044 Stockholm, Sweden
| | - Artur Braun
- Laboratory
for High Performance Ceramics, Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
2
|
Lee MK, Kim MO, Lee T, Cho S, Kim D, Chang W, Kwon Y, Lee SM, Kim JK, Son BC. Epoxy-Based Vitrimers for Sustainable Infrastructure: Emphasizing Recycling and Self-Healing Properties. Polymers (Basel) 2025; 17:373. [PMID: 39940575 PMCID: PMC11820172 DOI: 10.3390/polym17030373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Epoxy-based vitrimers represent a paradigm shift in material science, offering an unprecedented combination of mechanical robustness, environmental sustainability, and reconfigurability. These dynamic polymer systems utilize associative dynamic covalent bonds (DCBs) such as transesterification to blend the structural integrity of thermosets with the recyclability and self-healing properties of thermoplastics. This unique combination makes vitrimers ideal candidates for high-performance applications in industries such as civil engineering, where material durability, repairability, and environmental compatibility are critical. Epoxy-based vitrimers, in particular, exhibit exceptional self-healing capabilities, allowing them to autonomously repair microcracks and damage, restoring mechanical properties under appropriate stimuli such as heat or light. Their recyclability further aligns with global sustainability goals by reducing material waste and lifecycle costs. Recent advancements have also integrated bio-based feedstocks and scalable manufacturing methods, enhancing the feasibility of these materials for industrial applications. This review explores the underlying self-healing mechanisms, dynamic recycling processes, and the emerging role of epoxy-based vitrimers in civil engineering. Challenges related to scalability, mechanical optimization, and regulatory acceptance are also discussed, with a focus on their potential to drive sustainable innovation in infrastructure materials.
Collapse
Affiliation(s)
- Myung Kue Lee
- Department of Civil and Environmental Engineering, Jeonju University, 303 Cheonjam-ro, Wansan-gu, Jeonju-si 55069, Jeollabuk-do, Republic of Korea; (M.K.L.); (W.C.); (Y.K.)
| | - Min Ook Kim
- Department of Civil Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea; (T.L.); (S.C.); (D.K.)
| | - Taehwi Lee
- Department of Civil Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea; (T.L.); (S.C.); (D.K.)
| | - Sanghwan Cho
- Department of Civil Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea; (T.L.); (S.C.); (D.K.)
| | - Dongchan Kim
- Department of Civil Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea; (T.L.); (S.C.); (D.K.)
| | - Wonghil Chang
- Department of Civil and Environmental Engineering, Jeonju University, 303 Cheonjam-ro, Wansan-gu, Jeonju-si 55069, Jeollabuk-do, Republic of Korea; (M.K.L.); (W.C.); (Y.K.)
| | - Yongseok Kwon
- Department of Civil and Environmental Engineering, Jeonju University, 303 Cheonjam-ro, Wansan-gu, Jeonju-si 55069, Jeollabuk-do, Republic of Korea; (M.K.L.); (W.C.); (Y.K.)
| | - Seongkwan Mark Lee
- School of Liberal Studies, Kunsan National University, 558 Daehak-ro, Gunsan-si 54150, Jeollabuk-do, Republic of Korea;
| | - Ju Kwang Kim
- IAN GEOTEC, 39 Nangsan Agricultural Complex-gil, Nangsan-myeon, Iksan-si 54521, Jeollabuk-do, Republic of Korea;
| | - Bong Cheol Son
- GROVES, 102-19, Sinbok-ro, Deokjin-gu, Jeonju-si 54842, Jeollabuk-do, Republic of Korea;
| |
Collapse
|
3
|
Xu W, Ping Z, Gong X, Xie F, Liu Y, Leng J. Self-Healing Polymers Coupling Shape Memory Effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15957-15968. [PMID: 39039655 DOI: 10.1021/acs.langmuir.4c01369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
In recent years, shape memory polymers (SMPs) and self-healing polymers (SHPs) have been research hotspots in the field of smart polymers owing to their unique stimulus response mechanisms. Previous research on SHPs has primarily focused on contact repair. However, in instances where substantial cracks occur during practical use, autonomous closure becomes challenging, impeding effective repair. By integration of the shape memory effect (SME) with SHPs, physical wound closure can be achieved via the SME, facilitating subsequent chemical/physical repair processes and enhancing self-healing effectiveness. This article reviews key findings from previous research on shape memory-assisted self-healing (SMASH) materials and addresses the challenges and opportunities for future investigation.
Collapse
Affiliation(s)
- Wanting Xu
- Department of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, P. R. China
| | - Zhongxin Ping
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Xiaobo Gong
- Department of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, P. R. China
| | - Fang Xie
- Department of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, P. R. China
| | - Yanju Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Jinsong Leng
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| |
Collapse
|
4
|
Fan J, Wu W, Zeng X, Zhang J, Zhang H, He H. Dual Reversible Network Nanoarchitectonics for Ultrafast Light-Controlled Healable and Tough Polydimethylsiloxane-Based Composite Elastomers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38996-39007. [PMID: 37530652 DOI: 10.1021/acsami.3c08041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
It is highly desirable to develop polydimethylsiloxane (PDMS) elastomers with high self-healing efficiency and excellent mechanical properties. However, most self-healable materials reported to date still take several hours to self-heal and improving the self-healing property often comes at the expense of mechanical properties. Herein, a simple design strategy of dual reversible network nanoarchitectonics is reported for constructing ultrafast light-controlled healable (40 s) and tough (≈7.2 MJ m-3) PDMS-based composite elastomers. The rupture reconstruction of dynamic bonds and the reinforcement effect of carbon nanotubes (10 wt %) endowed our composite elastomer with excellent fracture toughness that originated from a good yield strength (≈1.1 MPa) and stretchability (≈882%). Moreover, carbon nanotubes can quickly and directly heat the damaged area of the composite to achieve its ultrafast repair with the assistance of dynamic polymer/filler interfacial interaction, greatly shortening the self-healing time (12 h). The self-healing performance is superior to that of reported self-healable PDMS-based materials. This novel strategy and the as-prepared supramolecular elastomer can inspire further various practical applications, such as remote anti-icing/deicing materials.
Collapse
Affiliation(s)
- Jianfeng Fan
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Weijian Wu
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiangliang Zeng
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiahao Zhang
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Huanhuan Zhang
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Hezhi He
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
5
|
Liao Z, Zoumhani O, Boutry CM. Recent Advances in Magnetic Polymer Composites for BioMEMS: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3802. [PMID: 37241429 PMCID: PMC10223786 DOI: 10.3390/ma16103802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
The objective of this review is to investigate the potential of functionalized magnetic polymer composites for use in electromagnetic micro-electro-mechanical systems (MEMS) for biomedical applications. The properties that make magnetic polymer composites particularly interesting for application in the biomedical field are their biocompatibility, their adjustable mechanical, chemical, and magnetic properties, as well as their manufacturing versatility, e.g., by 3D printing or by integration in cleanroom microfabrication processes, which makes them accessible for large-scale production to reach the general public. The review first examines recent advancements in magnetic polymer composites that possess unique features such as self-healing capabilities, shape-memory, and biodegradability. This analysis includes an exploration of the materials and fabrication processes involved in the production of these composites, as well as their potential applications. Subsequently, the review focuses on electromagnetic MEMS for biomedical applications (bioMEMS), including microactuators, micropumps, miniaturized drug delivery systems, microvalves, micromixers, and sensors. The analysis encompasses an examination of the materials and manufacturing processes involved and the specific fields of application for each of these biomedical MEMS devices. Finally, the review discusses missed opportunities and possible synergies in the development of next-generation composite materials and bioMEMS sensors and actuators based on magnetic polymer composites.
Collapse
Affiliation(s)
| | | | - Clementine M. Boutry
- Department of Microelectronics, Delft University of Technology, 2628 CD Delft, The Netherlands
| |
Collapse
|
6
|
Utrera-Barrios S, Verdejo R, López-Manchado MÁ, Hernández Santana M. Self-Healing Elastomers: A sustainable solution for automotive applications. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
Bonardd S, Nandi M, Hernández García JI, Maiti B, Abramov A, Díaz Díaz D. Self-Healing Polymeric Soft Actuators. Chem Rev 2023; 123:736-810. [PMID: 36542491 PMCID: PMC9881012 DOI: 10.1021/acs.chemrev.2c00418] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 12/24/2022]
Abstract
Natural evolution has provided multicellular organisms with sophisticated functionalities and repair mechanisms for surviving and preserve their functions after an injury and/or infection. In this context, biological systems have inspired material scientists over decades to design and fabricate both self-healing polymeric materials and soft actuators with remarkable performance. The latter are capable of modifying their shape in response to environmental changes, such as temperature, pH, light, electrical/magnetic field, chemical additives, etc. In this review, we focus on the fusion of both types of materials, affording new systems with the potential to revolutionize almost every aspect of our modern life, from healthcare to environmental remediation and energy. The integration of stimuli-triggered self-healing properties into polymeric soft actuators endow environmental friendliness, cost-saving, enhanced safety, and lifespan of functional materials. We discuss the details of the most remarkable examples of self-healing soft actuators that display a macroscopic movement under specific stimuli. The discussion includes key experimental data, potential limitations, and mechanistic insights. Finally, we include a general table providing at first glance information about the nature of the external stimuli, conditions for self-healing and actuation, key information about the driving forces behind both phenomena, and the most important features of the achieved movement.
Collapse
Affiliation(s)
- Sebastian Bonardd
- Departamento
de Química Orgánica, Universidad
de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Instituto
Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
| | - Mridula Nandi
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - José Ignacio Hernández García
- Departamento
de Química Orgánica, Universidad
de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Instituto
Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
| | - Binoy Maiti
- School
of Chemistry & Biochemistry, Georgia
Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United
States
| | - Alex Abramov
- Institute
of Organic Chemistry, University of Regensburg, Universitätstrasse 31, Regensburg 93053, Germany
| | - David Díaz Díaz
- Departamento
de Química Orgánica, Universidad
de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Instituto
Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Institute
of Organic Chemistry, University of Regensburg, Universitätstrasse 31, Regensburg 93053, Germany
| |
Collapse
|
8
|
Aiswarya S, Awasthi P, Banerjee SS. Self-healing thermoplastic elastomeric materials: Challenges, opportunities and new approaches. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Utrera-Barrios S, Ricciardi O, González S, Verdejo R, López-Manchado MÁ, Hernández Santana M. Development of Sustainable, Mechanically Strong, and Self-Healing Bio-Thermoplastic Elastomers Reinforced with Alginates. Polymers (Basel) 2022; 14:polym14214607. [PMID: 36365601 PMCID: PMC9653809 DOI: 10.3390/polym14214607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
New bio-thermoplastic elastomer composites with self-healing capacities based on epoxidized natural rubber and polycaprolactone blends reinforced with alginates were developed. This group of salts act as natural reinforcing fillers, increasing the tensile strength of the unfilled rubber from 5.6 MPa to 11.5 MPa without affecting the elongation at break (~1000% strain). In addition, the presence of ionic interactions and hydrogen bonds between the components provides the material with a thermally assisted self-healing capacity, as it is able to restore its catastrophic damages and recover diverse mechanical properties up to ~100%. With the results of this research, an important and definitive step is planned toward the circularity of elastomeric materials.
Collapse
|
10
|
Liu J, Li J, Qiao S, Wang Z, Zhang P, Fan X, Cheng P, Li Y, Chen Y, Zhang Z. Self‐Healing and Shape Memory Hypercrosslinked Metal‐Organic Polyhedra Polymers via Coordination Post‐Assembly. Angew Chem Int Ed Engl 2022; 61:e202212253. [DOI: 10.1002/anie.202212253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Jinjin Liu
- State Key Laboratory of Medicinal Chemical biology College of Chemistry Nankai University Tianjin 300071 China
| | - Jiamin Li
- State Key Laboratory of Medicinal Chemical biology College of Chemistry Nankai University Tianjin 300071 China
| | - Shan Qiao
- College of Pharmacy Nankai University Tianjin 300071 China
| | - Zhifang Wang
- State Key Laboratory of Medicinal Chemical biology College of Chemistry Nankai University Tianjin 300071 China
| | - Penghui Zhang
- State Key Laboratory of Medicinal Chemical biology College of Chemistry Nankai University Tianjin 300071 China
| | - Xiangqian Fan
- School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin 300350 China
| | - Peng Cheng
- State Key Laboratory of Medicinal Chemical biology College of Chemistry Nankai University Tianjin 300071 China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Nankai University Tianjin 300071 China
| | - Yue‐Sheng Li
- Tianjin Key Lab Composite & Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical biology College of Chemistry Nankai University Tianjin 300071 China
- College of Pharmacy Nankai University Tianjin 300071 China
| | - Zhenjie Zhang
- State Key Laboratory of Medicinal Chemical biology College of Chemistry Nankai University Tianjin 300071 China
- College of Pharmacy Nankai University Tianjin 300071 China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Nankai University Tianjin 300071 China
| |
Collapse
|
11
|
Xun Lu, Sun L, Xiong K, Wang Z. Fabrication of Novel Thermoplastic Vulcanizates Based on Ethylene-Vinyl Acetate Copolymer/Chloroprene Rubber with Heat-Triggered Shape Memory Behavior. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22700274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Liu J, Li J, Qiao S, Wang Z, Zhang P, Fan X, Cheng P, Li YS, Chen Y, Zhang Z. Self‐Healing and Shape Memory Hypercrosslinked Metal‐Organic Polyhedra Polymers via Coordination Post‐Assembly. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202212253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jinjin Liu
- Nankai University College of Chemistry CHINA
| | - Jiamin Li
- Nankai University College of Chemistry CHINA
| | - Shan Qiao
- Nankai University College of Chemistry CHINA
| | | | | | | | - Peng Cheng
- Nankai University College of Chemistry CHINA
| | | | - Yao Chen
- Nankai University College of Chemistry CHINA
| | - Zhenjie Zhang
- Nankai University Chemistry Weijin Road 94# 300071 Tianjin CHINA
| |
Collapse
|
13
|
Wen J, Chen T, Wang J, Tuo X, Gong Y, Guo J. Study on the healing performance of poly(
ε
‐caprolactone) filled ultraviolet‐curable
3D
printed cyclic trimethylolpropane formal acrylate shape memory polymers. J Appl Polym Sci 2022. [DOI: 10.1002/app.53085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jia Wen
- Dalian Polytechnic University Dalian People's Republic of China
| | - Tingjun Chen
- Dalian Polytechnic University Dalian People's Republic of China
| | - Jiayao Wang
- Dalian Polytechnic University Dalian People's Republic of China
| | - Xiaohang Tuo
- Dalian Polytechnic University Dalian People's Republic of China
| | - Yumei Gong
- Dalian Polytechnic University Dalian People's Republic of China
| | - Jing Guo
- Dalian Polytechnic University Dalian People's Republic of China
| |
Collapse
|
14
|
Cerdan K, Moya C, Van Puyvelde P, Bruylants G, Brancart J. Magnetic Self-Healing Composites: Synthesis and Applications. Molecules 2022; 27:3796. [PMID: 35744920 PMCID: PMC9228312 DOI: 10.3390/molecules27123796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/25/2022] [Accepted: 06/04/2022] [Indexed: 12/17/2022] Open
Abstract
Magnetic composites and self-healing materials have been drawing much attention in their respective fields of application. Magnetic fillers enable changes in the material properties of objects, in the shapes and structures of objects, and ultimately in the motion and actuation of objects in response to the application of an external field. Self-healing materials possess the ability to repair incurred damage and consequently recover the functional properties during healing. The combination of these two unique features results in important advances in both fields. First, the self-healing ability enables the recovery of the magnetic properties of magnetic composites and structures to extend their service lifetimes in applications such as robotics and biomedicine. Second, magnetic (nano)particles offer many opportunities to improve the healing performance of the resulting self-healing magnetic composites. Magnetic fillers are used for the remote activation of thermal healing through inductive heating and for the closure of large damage by applying an alternating or constant external magnetic field, respectively. Furthermore, hard magnetic particles can be used to permanently magnetize self-healing composites to autonomously re-join severed parts. This paper reviews the synthesis, processing and manufacturing of magnetic self-healing composites for applications in health, robotic actuation, flexible electronics, and many more.
Collapse
Affiliation(s)
- Kenneth Cerdan
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium; (K.C.); (P.V.P.)
| | - Carlos Moya
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP165/64, 1050 Brussels, Belgium;
| | - Peter Van Puyvelde
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium; (K.C.); (P.V.P.)
| | - Gilles Bruylants
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP165/64, 1050 Brussels, Belgium;
| | - Joost Brancart
- Physical Chemistry and Polymer Science, Department of Materials and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium;
| |
Collapse
|
15
|
Xu X, Ma L, Liu C. Bio‐based polylactic acid or epoxy natural rubber thermoplastic vulcanizates with dual interfacial compatibilization networks. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xinhu Xu
- School of Mechanical and Automotive Engineering Shanghai University of Engineering Science Shanghai China
| | - Lifeng Ma
- School of Mechanical and Automotive Engineering Shanghai University of Engineering Science Shanghai China
- College of Polymer Science and Engineering Sichuan University, State Key Laboratory of Polymer Materials Engineering Chengdu China
| | - Congchao Liu
- School of Mechanical and Automotive Engineering Shanghai University of Engineering Science Shanghai China
| |
Collapse
|
16
|
Wang Q, Li Y, Zhang B, Ding X, Zheng A. Shape memory performances of homogeneous poly(L-lactide-co-ε-caprolactone)/polytrimethylene carbonate-grafted functionalized graphene oxide nanocomposites. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Wang Y, Cui H, Esworthy T, Mei D, Wang Y, Zhang LG. Emerging 4D Printing Strategies for Next-Generation Tissue Regeneration and Medical Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109198. [PMID: 34951494 DOI: 10.1002/adma.202109198] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/17/2021] [Indexed: 06/14/2023]
Abstract
The rapid development of 3D printing has led to considerable progress in the field of biomedical engineering. Notably, 4D printing provides a potential strategy to achieve a time-dependent physical change within tissue scaffolds or replicate the dynamic biological behaviors of native tissues for smart tissue regeneration and the fabrication of medical devices. The fabricated stimulus-responsive structures can offer dynamic, reprogrammable deformation or actuation to mimic complex physical, biochemical, and mechanical processes of native tissues. Although there is notable progress made in the development of the 4D printing approach for various biomedical applications, its more broad-scale adoption for clinical use and tissue engineering purposes is complicated by a notable limitation of printable smart materials and the simplistic nature of achievable responses possible with current sources of stimulation. In this review, the recent progress made in the field of 4D printing by discussing the various printing mechanisms that are achieved with great emphasis on smart ink mechanisms of 4D actuation, construct structural design, and printing technologies, is highlighted. Recent 4D printing studies which focus on the applications of tissue/organ regeneration and medical devices are then summarized. Finally, the current challenges and future perspectives of 4D printing are also discussed.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Fluid Power and Mechatronics Systems, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronics Systems, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yancheng Wang
- State Key Laboratory of Fluid Power and Mechatronics Systems, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Electrical and Computer Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Biomedical Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Medicine, The George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
18
|
Utrera-Barrios S, Verdejo R, López-Manchado MÁ, Santana MH. The Final Frontier of Sustainable Materials: Current Developments in Self-Healing Elastomers. Int J Mol Sci 2022; 23:4757. [PMID: 35563147 PMCID: PMC9101787 DOI: 10.3390/ijms23094757] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/24/2022] [Indexed: 02/01/2023] Open
Abstract
It is impossible to describe the recent progress of our society without considering the role of polymers; however, for a broad audience, "polymer" is usually related to environmental pollution. The poor disposal and management of polymeric waste has led to an important environmental crisis, and, within polymers, plastics have attracted bad press despite being easily reprocessable. Nonetheless, there is a group of polymeric materials that is particularly more complex to reprocess, rubbers. These macromolecules are formed by irreversible crosslinked networks that give them their characteristic elastic behavior, but at the same time avoid their reprocessing. Conferring them a self-healing capacity stands out as a decisive approach for overcoming this limitation. By this mean, rubbers would be able to repair or restore their damage automatically, autonomously, or by applying an external stimulus, increasing their lifetime, and making them compatible with the circular economy model. Spain is a reference country in the implementation of this strategy in rubbery materials, achieving successful self-healable elastomers with high healing efficiency and outstanding mechanical performance. This article presents an exhaustive summary of the developments reported in the previous 10 years, which demonstrates that this property is the last frontier in search of truly sustainable materials.
Collapse
Affiliation(s)
| | | | - Miguel Ángel López-Manchado
- Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (S.U.-B.); (R.V.)
| | - Marianella Hernández Santana
- Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (S.U.-B.); (R.V.)
| |
Collapse
|
19
|
Zhang J, Cao L, Chen Y. Mechanically robust, self-healing and conductive rubber with dual dynamic interactions of hydrogen bonds and borate ester bonds. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Jin WS, Sahu P, Park SM, Jeon JH, Kim NI, Lee JH, Oh JS. Design of Self-Healing EPDM/Ionomer Thermoplastic Vulcanizates by Ionic Cross-Links for Automotive Application. Polymers (Basel) 2022; 14:polym14061156. [PMID: 35335487 PMCID: PMC8953676 DOI: 10.3390/polym14061156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
The development of smart elastomeric materials with inherent self-repairing abilities after mechanical damage has important technological and scientific implications, particularly in regard to the durability and life cycle of rubber products. The interest in self-healing materials for automotive applications is rapidly growing along with the increasing importance of vehicle scratch quality and quantity. The creation of a reversible network by noncovalent ionic cross-linking in elastomer/rubber blends is an effective approach to generate the self-healing phenomenon, with reprocessing and recycling properties. In this work, thermoplastic vulcanizates (TPVs) were prepared using ethylene-propylene-diene (EPDM) polymers and high-acid-containing thermoplastic ionomers. Along with the general EPDM, maleic anhydride grafted EPDM (EPDM-g-MAH) was also used for the preparation of the TPVs. The strategy was based on a simple ionic crosslinking reaction between the carboxyl groups present in the ionomer and zinc oxide (ZnO), where the formation of reversible Zn2+ salt bondings exhibits the self-healing behavior. The heterogeneous blending of EPDM and ionomers was also used to investigate the thermal and mechanical properties of the TPVs. The experimental findings were further supported by the surface morphology of the fracture surfaces viewed using microscopy. The self-healing behavior of the TPVs has been identified by scratch resistance testing, where the EPDM-g-MAH TPVs showed excellent healing efficiency of the scratch surface. Therefore, this work provides an efficient approach to fabricate new ionically cross-linked thermoplastic vulcanizates with excellent mechanical and self-repairing properties for the skins of automotive interior door trims and instrument panel applications.
Collapse
Affiliation(s)
- Woo Seok Jin
- Department of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University, 501, Jinju-daero, Jinju 52828, Korea; (W.S.J.); (P.S.)
| | - Pranabesh Sahu
- Department of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University, 501, Jinju-daero, Jinju 52828, Korea; (W.S.J.); (P.S.)
| | - Sung Min Park
- With Advanced Passion & System, WAPS Co., Ltd., 8F, 45, Centum dong-ro, Haeundae-gu, Busan 48059, Korea;
| | - Jun Ha Jeon
- Industrial Materials Research Center, Korea Institute of Footwear & Leather Technology, 152, Danggamseo-ro, Busanjin-gu, Busan 47154, Korea;
| | - Nam Il Kim
- Energy Materials R&D Center, Korea Automotive Technology Institute, Cheonan 31214, Korea; (N.I.K.); (J.H.L.)
| | - Jae Hyeon Lee
- Energy Materials R&D Center, Korea Automotive Technology Institute, Cheonan 31214, Korea; (N.I.K.); (J.H.L.)
| | - Jeong Seok Oh
- Department of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University, 501, Jinju-daero, Jinju 52828, Korea; (W.S.J.); (P.S.)
- Correspondence: ; Tel.: +82-055-772-1658
| |
Collapse
|
21
|
Sun W, Luo N, Liu Y, Li H, Wang D. A New Self-Healing Triboelectric Nanogenerator Based on Polyurethane Coating and Its Application for Self-Powered Cathodic Protection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10498-10507. [PMID: 35179862 DOI: 10.1021/acsami.2c00881] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the increasing demand for carbon neutrality, the development of renewable and recycle green energy has attracted wide attention from researchers. A novel self-healing triboelectric nanogenerator (TENG) was constructed by applying a linear silicone-modified polyurethane (PU) coating as a triboelectric layer, which was obtained by reacting hydroxypropyl silicone oil and hexamethylene diisocyanate under the catalysis of Sn. The linear self-healing coating as the friction electrode could effectively alleviate the damages of TENG devices during long-term energy harvesting. When the triboelectric layer of the TENG device shows abrasion, the broken silicone-modified polyurethane polymer chains would gradually be cross-linked again through hydrogen bonding to achieve a self-healing effect. The entire self-healing process of the friction coating could be completed in 30 min at room temperature. The PU-based self-healing TENG exhibits an evident and stable output performance with a short-circuit current of 31.9 μA and output voltage of 517.5 V after multiple cutting-healing cycles, which could light 480 commercial LEDs. Besides, a self-powered cathodic protection system supplied by the self-healing TENG was constructed, which could transfer negative triboelectric charges to the protected metal surface to achieve an anti-corrosion effect by harvesting mechanical energy. Due to the self-healing characteristics of the TENG device as the power supply part, this intelligent system possesses great application potential in the long-term corrosion protection of multiple metal application industries, such as the marine industry.
Collapse
Affiliation(s)
- Weixiang Sun
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Ning Luo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China
| | - Yubo Liu
- Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China
| | - Hao Li
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Daoai Wang
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China
| |
Collapse
|
22
|
Su E, Bayazit G, Ide S, Okay O. Butyl rubber-based interpenetrating polymer networks with side chain crystallinity: Self-healing and shape-memory polymers with tunable thermal and mechanical properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
23
|
Huang J, Gong Z, Chen Y. A stretchable elastomer with recyclability and shape memory assisted self-healing capabilities based on dynamic disulfide bonds. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Zhou X, Gong Z, Fan J, Chen Y. Self-healable, recyclable, mechanically tough transparent polysiloxane elastomers based on dynamic microphase separation for flexible sensor. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Niu D, Xu P, Sun Z, Yang W, Dong W, Ji Y, Liu T, Du M, Lemstra PJ, Ma P. Superior toughened bio-compostable Poly(glycolic acid)-based blends with enhanced melt strength via selective interfacial localization of in-situ grafted copolymers. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124269] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Li Z, Yu R, Guo B. Shape-Memory and Self-Healing Polymers Based on Dynamic Covalent Bonds and Dynamic Noncovalent Interactions: Synthesis, Mechanism, and Application. ACS APPLIED BIO MATERIALS 2021; 4:5926-5943. [PMID: 35006922 DOI: 10.1021/acsabm.1c00606] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Shape-memory and self-healing polymers have been a hotspot of research in the field of smart polymers in the past decade. Under external stimulation, shape-memory and self-healing polymers can complete programed shape transformation, and they can spontaneously repair damage, thereby extending the life of the materials. In this review, we focus on the progress in polymers with shape-memory and self-healing properties in the past decade. The physical or chemical changes in the materials during the occurrence of shape memory as well as self-healing were analyzed based on the polymer molecular structure. We classified the polymers and discussed the preparation methods for shape-memory and self-healing polymers based on the dynamic interactions which can make the polymers exhibit self-healing properties including dynamic covalent bonds (DA reaction, disulfide exchange reaction, imine exchange reaction, alkoxyamine exchange reaction, and boronic acid ester exchange reaction) and dynamic noncovalent interactions (crystallization, hydrogen bonding, ionic interaction, metal coordination interaction, host-guest interactions, and hydrophobic interactions) and their corresponding triggering conditions. In addition, we discussed the advantages and the mechanism that the shape-memory property promotes self-healing in polymers, as well as the future trends in shape-memory and self-healing polymers.
Collapse
Affiliation(s)
- Zhenlong Li
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Rui Yu
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baolin Guo
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
27
|
Nie J, Fan J, Gong Z, Xu C, Chen Y. Frame-structured and self-healing ENR-based nanocomposites for strain sensors. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
28
|
Su E, Bilici C, Bayazit G, Ide S, Okay O. Solvent-Free UV Polymerization of n-Octadecyl Acrylate in Butyl Rubber: A Simple Way to Produce Tough and Smart Polymeric Materials at Ambient Temperature. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21786-21799. [PMID: 33908244 DOI: 10.1021/acsami.1c03814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
One of the most fascinating challenges in recent years has been to produce mechanically robust and tough polymers with smart functions such as self-healing and shape-memory behavior. Here, we report a simple and versatile strategy for the preparation of a highly tough and highly stretchable interconnected interpenetrating polymer network (c-IPN) based on butyl rubber (IIR) and poly(n-octadecyl acrylate) (PC18A) with thermally induced healing and shape-memory functions. Solvent-free UV polymerization of n-octadecyl acrylate (C18A) at 30 ± 2 °C in the presence of IIR leads to IIR/PC18A c-IPNs with sea-island or co-continuous morphologies depending on their IIR contents. The lamellar crystals with a melting temperature Tm of 51-52 °C formed by side-by-side packed octadecyl (C18) side chains are responsible for more than 99% of effective cross-links in c-IPNs, the rest being hydrophobic associations and chemical cross-links. The c-IPNs exhibit varying stiffness (9-34 MPa), stretchability (72-740%), and a significantly higher toughness (1.9-12 MJ·m-3) than their components, which can be tuned by changing the IIR/PC18A weight ratio. The properties of c-IPNs could also be tuned by incorporating a second, noncrystallizable hydrophobic monomer, namely, lauryl methacrylate (C12M), in the melt mixture. We show that the lamellar clusters acting as sacrificial bonds break at the yield point by dissipation of energy, while the ductile amorphous continuous phase keeps the structure together, leading to the toughness improvement of c-IPNs. They exhibit a two-step healing process with >90% healing efficiency with respect to the modulus and a complete shape-recovery ratio induced by heating above Tm of alkyl crystals. The temperature-induced healing occurs via a quick step where C18 bridges form between the damaged surfaces followed by a slow step controlled by the interdiffusion of C18A segments in the bulk. We also show that the strategy developed here is suitable for a variety of rubbers and n-alkyl (meth)acrylates of various side-chain lengths.
Collapse
Affiliation(s)
- Esra Su
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Cigdem Bilici
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Gozde Bayazit
- Department of Physics Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Semra Ide
- Department of Physics Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
- Department of Nanotechnology and Nanomedicine, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Oguz Okay
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| |
Collapse
|
29
|
Lei L, Han L, Ma H, Zhang R, Li X, Zhang S, Li C, Bai H, Li Y. Well-Tailored Dynamic Liquid Crystal Networks with Anionically Polymerized Styrene-Butadiene Rubbers toward Modulating Shape Memory and Self-Healing Capacity. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lan Lei
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Li Han
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hongwei Ma
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ruixue Zhang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuwen Li
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Songbo Zhang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Chao Li
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hongyuan Bai
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
30
|
Influence of Characteristics of Thermoplastic Polyurethane on Graphene-Thermoplastic Polyurethane Composite Film. MICROMACHINES 2021; 12:mi12020129. [PMID: 33530426 PMCID: PMC7911175 DOI: 10.3390/mi12020129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 01/03/2023]
Abstract
Graphene-thermoplastic polyurethane (G-TPU) composite films were fabricated by traditional blending method and tape casting process with commercial graphene sheets as functional fillers and TPU masterbatches of four different melting points as matrix, respectively. The effects of matrix on the distribution of graphene, the electrical conductivity, and infrared (IR) light thermal properties of the G-TPU composite films were investigated. The experimental results reveal that the characteristics of TPU has little influence on the electrical conductivity of the G-TPU composite films, although the four TPU solutions have different viscosities. However, under the same graphene mass content, the thermal conductivity of four G-TPU composite films with different melting points is significantly different. The four kinds of G-TPU composite films have obvious infrared (IR) thermal effect. There is little difference in the temperatures between the composite films prepared by TPU with melting a point of 100 °C, 120 °C, and 140 °C, respectively; however, when the content of graphene is less than 5 wt%, the temperature of the composite film prepared by TPU with a melting point of 163 °C is obviously lower than that of the other three composite films. The possible reason for this phenomenon is related to the structure of TPU.
Collapse
|
31
|
Xiong J, Huang J, Wang W, Mou W, Chen Y. Study on Shape Memory Behavior of Ternary Poly(Lactic Acid)/Poly(Methyl Methacrylate)-grafted Natural Rubber/Natural Rubber Thermoplastic Vulcanizates. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1858099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Jianxiang Xiong
- Lab of Advanced Elastomer, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, China
| | - Jiamei Huang
- Lab of Advanced Elastomer, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, China
| | - Wentao Wang
- Lab of Advanced Elastomer, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, China
| | - Wenjie Mou
- Lab of Advanced Elastomer, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yukun Chen
- Lab of Advanced Elastomer, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
32
|
Wu S, Hu W, Ze Q, Sitti M, Zhao R. Multifunctional magnetic soft composites: a review. MULTIFUNCTIONAL MATERIALS 2020; 3:042003. [PMID: 33834121 PMCID: PMC7610551 DOI: 10.1088/2399-7532/abcb0c] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Magnetically responsive soft materials are soft composites where magnetic fillers are embedded into soft polymeric matrices. These active materials have attracted extensive research and industrial interest due to their ability to realize fast and programmable shape changes through remote and untethered control under the application of magnetic fields. They would have many high-impact potential applications in soft robotics/devices, metamaterials, and biomedical devices. With a broad range of functional magnetic fillers, polymeric matrices, and advanced fabrication techniques, the material properties can be programmed for integrated functions, including programmable shape morphing, dynamic shape deformation-based locomotion, object manipulation and assembly, remote heat generation, as well as reconfigurable electronics. In this review, an overview of state-of-the-art developments and future perspectives in the multifunctional magnetically responsive soft materials is presented.
Collapse
Affiliation(s)
- Shuai Wu
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, United States of America
| | - Wenqi Hu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Qiji Ze
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, United States of America
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Ruike Zhao
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, United States of America
| |
Collapse
|
33
|
Kobyliukh A, Olszowska K, Szeluga U, Pusz S. Iron oxides/graphene hybrid structures - Preparation, modification, and application as fillers of polymer composites. Adv Colloid Interface Sci 2020; 285:102285. [PMID: 33070104 DOI: 10.1016/j.cis.2020.102285] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/30/2020] [Accepted: 10/10/2020] [Indexed: 01/06/2023]
Abstract
The current status of knowledge regarding magnetic hybrid structures based on graphene or carbon nanotubes with various forms of iron oxides is reviewed. The paper starts with a summary of the preparation and properties of iron oxide nanoparticles, both untreated and coated with silica or polymer layers. In the next section, organic-inorganic hybrid materials obtained as a result of a combination of graphene or carbon nanotubes and iron chemical compounds are characterized and discussed. These hybrids constitute an increasing percentage of all consumable high performance biomedical, electronic, and energy materials due to their valuable properties and low production costs. The potential of their application as components of materials used in corrosion protection, catalysis, spintronics, biomedicine, photoelectrochemical water splitting and groundwater remediation, as well as magnetic nanoparticles in polymer matrices, are also presented. The last part of this review article is focused on reporting the most recent developments in design and the understanding of the properties of polymer composites reinforced with nanometer-sized iron oxide/graphene and iron oxide/carbon nanotubes hybrid fillers. The discussion presents comparative analysis of the magnetic, electromagnetic shielding, electrical, thermal, and mechanical properties of polymer composites with various iron oxide/graphene structures. It is shown that the introduction of hybrid filler nanoparticles into polymer matrices enhances both the macro- and microproperties of final composites as a result of synergistic effects of individual components and the simultaneous formation of an oriented filler network in the polymer. The reinforcing effect is related to the structure and geometry of hybrid nanoparticles applied as a filler, the interactions between the filler particles, their concentration in a composite, and the method of composite processing.
Collapse
Affiliation(s)
- Anastasiia Kobyliukh
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, Zabrze, Poland
| | - Karolina Olszowska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, Zabrze, Poland
| | - Urszula Szeluga
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, Zabrze, Poland.
| | - Sławomira Pusz
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, Zabrze, Poland
| |
Collapse
|
34
|
Cao Y, Xu P, Lv P, Lemstra PJ, Cai X, Yang W, Dong W, Chen M, Liu T, Du M, Ma P. Excellent UV Resistance of Polylactide by Interfacial Stereocomplexation with Double-Shell-Structured TiO 2 Nanohybrids. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49090-49100. [PMID: 33074663 DOI: 10.1021/acsami.0c14423] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The durable application of polylactide (PLA) under atmospheric conditions is restricted by its poor ultraviolet (UV) stability. To improve the UV stability of polymers, titanium dioxide (TiO2) is often used as a UV light capture agent. However, TiO2 is also a photocatalytic agent, with detrimental effects on the polymer properties. To overcome these two conflicting issues, we used the following approach. TiO2 nanoparticles were first coated with silicon dioxide (SiO2) (with a SiO2 shell content of 5.3 wt %). Subsequently, poly(d-lactide) (PDLA) was grafted onto TiO2@SiO2 nanoparticles, approximately 20 wt %, via a ring-opening polymerization of d-lactide to obtain well-designed double-shell TiO2@SiO2-g-PDLA nanohybrids. These double-shell nanoparticles could be well dispersed in a poly(l-lactide) (PLLA) matrix making use of the stereocomplexation between the two enantiomers. In our concept, the inner SiO2 shell on the TiO2 nanoparticles prevents the direct contact between TiO2 and the PLLA matrix and hence considerably restricts the detrimental photocatalytic effect of TiO2 on PLLA degradation. Additionally, the outer PDLA shell facilitates an improved dispersion of these nanohybrid particles by interfacial stereocomplexation with its enantiomer PLLA. As a consequence, the PLLA/TiO2@SiO2-g-PDLA nanocomposites simultaneously possess excellent UV-shielding property, high(er) tensile strength (>60 MPa), and superior UV resistance, for example, the mechanical properties remain at a level of >90% after 72 h of UV irradiation. In our view, this work provides a novel strategy to make advanced PLA nanocomposites with improved mechanical properties and excellent UV resistance, which enables potential application of PLA in more critical areas such as in durable packaging and fiber/textile applications.
Collapse
Affiliation(s)
- Ying Cao
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Pengwu Xu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Pei Lv
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Pieter Jan Lemstra
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- PlemPolco B. V., De Zicht 11, HV Veldhoven 5502, The Netherlands
| | - Xiaoxia Cai
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weijun Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Mingqing Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Tianxi Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Mingliang Du
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Piming Ma
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
35
|
Qu Q, Wang H, He J, Qin T, Da Y, Tian X. Analysis of the microphase structure and performance of self-healing polyurethanes containing dynamic disulfide bonds. SOFT MATTER 2020; 16:9128-9139. [PMID: 32926046 DOI: 10.1039/d0sm01072c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-healable polyurethanes can be used in various fields for extended service life and reduced maintenance costs. It is generally believed that the shape memory effect is helpful for achieving a high healing efficiency. The morphological features were focused on in this study as microphase separation is one of the main factors affecting various performances of polyurethanes, including their shape memory behavior and mechanical properties. Microphase separation can be regulated by changing the content and types of the hard segments. With this in mind, polyurethanes from polycaprolactone diol, hexamethylene diisocyanate, and different chain extenders were synthesized, characterized, and designed as promising self-healing polymers. All the polyurethane specimens were equipped with a similar content of hard segments but diverse types, such as aliphatic, aromatic, and disulfide-bonded. Differential scanning calorimetry, thermogravimetric analysis, X-ray diffractometry, infrared spectroscopy, and atomic force microscopy were used to describe the microstructures of the polyurethanes, including the crystalline regions. The relationship between the microphase separation structures and material properties was focused on in this examination. Various properties, including the thermal stability, mechanical behavior, hydrophobicity, and self-healing efficiency showed significant differences due to the change in the hard segments' structure and multiphase distribution. The aliphatic disulfide stimulated the conformation of a proper microphase separation structure (the large heterogeneous structure at physical length scales as well as a more sufficient combination of soft and hard phases), which helped to improve the healing effect as much as possible by effective wound closure and the exchange reactions of disulfide bonds.
Collapse
Affiliation(s)
- Qiqi Qu
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China. and University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hua Wang
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China. and Hefei Institute of Technology Innovation, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Jing He
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China. and University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tengfei Qin
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China. and University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yunsheng Da
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China. and University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xingyou Tian
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
36
|
Luo N, Feng Y, Wang D, Zheng Y, Ye Q, Zhou F, Liu W. New Self-Healing Triboelectric Nanogenerator Based on Simultaneous Repair Friction Layer and Conductive Layer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30390-30398. [PMID: 32530268 DOI: 10.1021/acsami.0c07037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new self-healing triboelectric nanogenerator (TENG) was fabricated by combining a temperature responsive polymer material of polycaprolactone (PCL) with flexible silver nanowires (Ag NWs), which could cope with the damages of TENGs in the long-term use of energy harvesting. Two different structured TENGs were designed to investigate their properties of self-recovery of the friction surfaces and conducting layers. When the top surface of the friction electrode is damaged, the healable PCL polymer will intenerate by heating and flow to the wound to realize the self-healing purpose. If the conductive layer at the bottom of the TENG electrode is also damaged, PCL will also drive the Ag NW network at the bottom of the electrode to move for healing during the heating process. This type of self-healing TENGs with a sandwich structure can exhibit a stable and high output performance with an output voltage of 800 V and a short-circuit current of 30 μA after several cutting-healing cycles, which can easily light up 372 commercial light-emitting diodes. This work proposes a simple and effective method to design a self-healing TENG, which has a widespread application prospect to prolong the life of TENGs for restoring the loss of output caused by rapid and repeated cutting.
Collapse
Affiliation(s)
- Ning Luo
- Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yange Feng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China
| | - Daoai Wang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Youbin Zheng
- Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China
| | - Qian Ye
- Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Feng Zhou
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Weimin Liu
- Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
37
|
Lv F, Fan J, Huang J, Cao L, Yan X, Ge L, Abubakar S, Chen Y. Preparation of polypropylene/ethylene‐propylene‐diene terpolymer/nitrile rubber ternary
thermoplastics vulcanizates
with good mechanical properties and oil resistance by core‐shell dynamic vulcanization. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Fei Lv
- Lab of Advanced Elastomer, School of Mechanical and Automotive EngineeringSouth China University of Technology Guangzhou China
| | - Jianfeng Fan
- Lab of Advanced Elastomer, School of Mechanical and Automotive EngineeringSouth China University of Technology Guangzhou China
| | - Jiarong Huang
- Lab of Advanced Elastomer, School of Mechanical and Automotive EngineeringSouth China University of Technology Guangzhou China
| | - Liming Cao
- Lab of Advanced Elastomer, School of Mechanical and Automotive EngineeringSouth China University of Technology Guangzhou China
| | - Xuesong Yan
- ExxonMobil Asia Pacific Research & Development Co., Ltd Shanghai China
| | - Ling Ge
- ExxonMobil Asia Pacific Research & Development Co., Ltd Shanghai China
| | - Saifudin Abubakar
- ExxonMobil Asia Pacific Research & Development Co., Ltd Shanghai China
| | - Yukun Chen
- Lab of Advanced Elastomer, School of Mechanical and Automotive EngineeringSouth China University of Technology Guangzhou China
| |
Collapse
|
38
|
Huang J, Fan J, Yuan D, Zhang S, Chen Y. Facile Preparation of Supertoughened Polylactide-Based Thermoplastic Vulcanizates without Sacrificing the Stiffness Based on the Selective Distribution of Silica. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jiarong Huang
- Lab of Advanced Elastomer, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jianfeng Fan
- Lab of Advanced Elastomer, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Daosheng Yuan
- Lab of Advanced Elastomer, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuidong Zhang
- Lab of Advanced Elastomer, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yukun Chen
- Lab of Advanced Elastomer, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
39
|
Lai SM, Liu JL, Huang YH. Preparation of Self-healing Natural Rubber/Polycaprolactone (NR/PCL) Blends. J MACROMOL SCI B 2020. [DOI: 10.1080/00222348.2020.1757218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sun-Mou Lai
- Dept. of Chemical and Materials Engineering, National I-Lan University, Yilan, Taiwan, ROC
| | - Jung-Liang Liu
- Dept. of Chemical and Materials Engineering, National I-Lan University, Yilan, Taiwan, ROC
| | - Yu-Han Huang
- Dept. of Chemical and Materials Engineering, National I-Lan University, Yilan, Taiwan, ROC
| |
Collapse
|
40
|
Li J, Chen JL, Tang XH, Cai JH, Liu JH, Wang M. Constructing nanopores in poly(oxymethylene)/multi-wall carbon nanotube nanocomposites via poly(l-lactide) assisting for improving electromagnetic interference shielding. J Colloid Interface Sci 2020; 565:536-545. [DOI: 10.1016/j.jcis.2020.01.057] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/15/2022]
|
41
|
Dutta S, Sengupta S, Chanda J, Das A, Wiessner S, Ray SS, Bandyopadhyay A. Distribution of nanoclay in a new TPV/nanoclay composite prepared through dynamic vulcanization. POLYMER TESTING 2020; 83:106374. [DOI: 10.1016/j.polymertesting.2020.106374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
42
|
Utrera-Barrios S, Hernández Santana M, Verdejo R, López-Manchado MA. Design of Rubber Composites with Autonomous Self-Healing Capability. ACS OMEGA 2020; 5:1902-1910. [PMID: 32039326 PMCID: PMC7003207 DOI: 10.1021/acsomega.9b03516] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/09/2019] [Indexed: 05/03/2023]
Abstract
The development of self-healing rubbers is currently under investigation as a strategy to promote their reuse and, hence, reduce their waste. However, autonomous, multicycle self-healing rubbers with good mechanical properties have so far proven difficult to achieve. Here, mechanically robust composites based on epoxidized natural rubber (ENR) and thermally reduced graphene oxide (TRGO) were successfully designed and prepared with a high healing efficiency of up to 85% at room temperature without applying external stimuli. The incorporation of TRGO not only improves the mechanical performance in more than 100% in relation to pristine ENR but also promotes the hydrogen bonding interactions with the rubber. This leads to a homogenous dispersion of TRGO within the ENR matrix, which further increases its self-healing capability.
Collapse
Affiliation(s)
- Saul Utrera-Barrios
- Institute of Polymer Science
and Technology
(ICTP-CSIC), Juan de
la Cierva 3, 28006 Madrid, Spain
| | | | - Raquel Verdejo
- Institute of Polymer Science
and Technology
(ICTP-CSIC), Juan de
la Cierva 3, 28006 Madrid, Spain
| | - Miguel A. López-Manchado
- Institute of Polymer Science
and Technology
(ICTP-CSIC), Juan de
la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
43
|
Using cellulose nanocrystals as sustainable additive to enhance mechanical and shape memory properties of PLA/ENR thermoplastic vulcanizates. Carbohydr Polym 2020; 230:115618. [DOI: 10.1016/j.carbpol.2019.115618] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023]
|
44
|
Crystallization kinetics and morphology of dynamically vulcanized poly(vinylidene fluoride)/silicone rubber blends. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-019-02768-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
45
|
Dzhardimalieva GI, Yadav BC, Singh S, Uflyand IE. Self-healing and shape memory metallopolymers: state-of-the-art and future perspectives. Dalton Trans 2020; 49:3042-3087. [DOI: 10.1039/c9dt04360h] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent achievements and problems associated with the use of metallopolymers as self-healing and shape memory materials are presented and evaluated.
Collapse
Affiliation(s)
- Gulzhian I. Dzhardimalieva
- Laboratory of Metallopolymers
- The Institute of Problems of Chemical Physics RAS
- Chernogolovka
- 142432 Russian Federation
| | - Bal C. Yadav
- Nanomaterials and Sensors Research Laboratory
- Department of Physics
- Babasaheb Bhimrao Ambedkar University
- Lucknow-226025
- India
| | - Shakti Singh
- Nanomaterials and Sensors Research Laboratory
- Department of Physics
- Babasaheb Bhimrao Ambedkar University
- Lucknow-226025
- India
| | - Igor E. Uflyand
- Department of Chemistry
- Southern Federal University
- Rostov-on-Don
- 344006 Russian Federation
| |
Collapse
|
46
|
Muradyan H, Mozhdehi D, Guan Z. Self-healing magnetic nanocomposites with robust mechanical properties and high magnetic actuation potential prepared from commodity monomers via graft-from approach. Polym Chem 2020. [DOI: 10.1039/c9py01700c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the design, synthesis and characterization of self-healing magnetic nanocomposites prepared from readily available commodity monomers.
Collapse
Affiliation(s)
- Hurik Muradyan
- Department of Chemistry
- University of California
- Irvine
- USA
| | - Davoud Mozhdehi
- Department of Chemistry
- Syracuse University
- 1-014 Center for Science and Technology
- Syracuse
- USA 13244
| | - Zhibin Guan
- Department of Chemistry
- University of California
- Irvine
- USA
| |
Collapse
|
47
|
Huang J, Mou W, Wang W, Lv F, Chen Y. Influence of DCP content on the toughness and morphology of fully biobased ternary PLA/NR-PMMA/NR TPVs with co-continuous phase structure. POLYM-PLAST TECH MAT 2019. [DOI: 10.1080/25740881.2019.1695265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Jiamei Huang
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, P. R. China
| | - Wenjie Mou
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, P. R. China
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Wentao Wang
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, P. R. China
| | - Fei Lv
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, P. R. China
| | - Yukun Chen
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, P. R. China
| |
Collapse
|
48
|
Yu L, Lu F, Huang X, Liu Y, Li M, Pan H, Wu L, Huang Y, Hu Z. Facile Interface Design Strategy for Improving the Uvioresistant and Self-Healing Properties of Poly( p-phenylene benzobisoxazole) Fibers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39292-39303. [PMID: 31569942 DOI: 10.1021/acsami.9b11595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphene-based coaxial hybrid fibers (CHFs) with a typical core-sheath structure have attracted extensive attention in recent years because of their potentially excellent mechanical performance. However, direct introduction of the micrometer-thick graphene stack structure on the extremely inert fiber surface with little negative effect has barely been reported so far and is still a great challenge. In the present work, a facile and cost-efficient dimensionally confined hydrothermal reduction, static adsorption, and thermal-assisted shrinkage sequential treatment strategy was developed to fabricate one-dimensional CHFs. The large-scale reduced graphene oxide-metal organic framework (RGO-UIO-66) hybrid layer and poly(p-phenylene benzobisoxazole) (PBO) fiber serve as the sheath part and core part, respectively, and the final product is denoted as PGU-CHFs. The experimental results confirmed that the prepared monofilament composite with thermoplastic polyurethane (PGU-CHF-TPU) exhibited an excellent and stable intrinsically self-healing efficiency (about 85%) over 5 cycles and an extraordinary uvioresistant performance (increased by 128%) compared to those of pristine PBO fibers after 288 h UV aging irradiation. Moreover, the anti-ultraviolet (UV) properties of PGU-CHFs at 96 h are basically at the optimum level among most of the reported literatures at present after comparison. The highly near-infrared photothermal conversion ability and stability of micrometer-thick RGO stack structure and the synergism of RGO-UIO-66 hybrid sheath layer including UV adsorption, shielding attenuation, and reflection are responsible for the satisfactorily interfacial self-healing efficiency and UV-resistance properties of PGU-CHFs, respectively. Considering the diversities and versatilities of RGO and MOFs, the proposed fabrication strategy will promisingly endow PBO fibers with great application potential in the other fields such as fiber-based sensors and smart fibers.
Collapse
Affiliation(s)
- Long Yu
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage , Harbin Institute of Technology , Harbin 150001 , China
| | - Fei Lu
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage , Harbin Institute of Technology , Harbin 150001 , China
| | - Xinghao Huang
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage , Harbin Institute of Technology , Harbin 150001 , China
| | - Yingying Liu
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage , Harbin Institute of Technology , Harbin 150001 , China
| | - Meiyu Li
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage , Harbin Institute of Technology , Harbin 150001 , China
| | - Haoze Pan
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage , Harbin Institute of Technology , Harbin 150001 , China
| | - Leiyu Wu
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage , Harbin Institute of Technology , Harbin 150001 , China
| | - Yudong Huang
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage , Harbin Institute of Technology , Harbin 150001 , China
| | - Zhen Hu
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage , Harbin Institute of Technology , Harbin 150001 , China
| |
Collapse
|
49
|
Fan J, Yan M, Huang J, Cao L, Chen Y. Fabrication of Smart Shape Memory Fluorosilicon Thermoplastic Vulcanizates: The Effect of Interfacial Compatibility and Tiny Crystals. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jianfeng Fan
- Lab of Advanced Elastomer, School of Mechanical and Automotive Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Mengwen Yan
- Lab of Advanced Elastomer, School of Mechanical and Automotive Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Jiarong Huang
- Lab of Advanced Elastomer, School of Mechanical and Automotive Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Liming Cao
- Lab of Advanced Elastomer, School of Mechanical and Automotive Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Yukun Chen
- Lab of Advanced Elastomer, School of Mechanical and Automotive Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| |
Collapse
|
50
|
Tanasi P, Hernández Santana M, Carretero-González J, Verdejo R, López-Manchado MA. Thermo-reversible crosslinked natural rubber: A Diels-Alder route for reuse and self-healing properties in elastomers. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.04.059] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|