1
|
Shanmugasundaram KB, Ahmed E, Miao X, Kulasinghe A, Fletcher JA, Monkman J, Mainwaring P, Masud MK, Park H, Hossain MSA, Yamauchi Y, Sina AAI, O'Byrne K, Wuethrich A, Trau M. A Mesoporous Gold Sensor Unveils Phospho PD-L1 in Extracellular Vesicles as a Proxy for PD-L1 Expression in Lung Cancer Tissue. ACS Sens 2024; 9:3009-3016. [PMID: 38836608 DOI: 10.1021/acssensors.4c00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Immune checkpoint inhibitors (ICIs) targeting programmed cell death ligand 1 (PD-L1), or its receptor, PD-1 have improved survival in patients with non-small-cell lung cancer (NSCLC). Assessment of PD-L1 expression requires tissue biopsy or fine needle aspiration that are currently used to identify patients most likely to respond to single agent anti-PD-1/PD-L1 therapy. However, obtaining sufficient tissue to generate a PD-L1 tissue proportion score (TPS) ≥ 50% using immunohistochemistry remains a challenge that potentially may be overcome by liquid biopsies. This study utilized a mesoporous gold sensor (MGS) assay to examine the phosphorylation status of PD-L1 in plasma extracellular vesicles (EV pPD-L1) and PD-L1 levels in plasma from NSCLC patient samples and their association with tumor PD-L1 TPS. The 3-dimensional mesoporous network of the electrodes provides a large surface area, high signal-to-noise ratio, and a superior electro-conductive framework, thereby significantly improving the detection sensitivity of PD-L1 nanosensing. Test (n = 20) (Pearson's r = 0.99) and validation (n = 45) (Pearson's r = 0.99) cohorts show that EV pPD-L1 status correlates linearly with the tumor PD-L1 TPS assessed by immunohistochemistry irrespective of the tumor stage, with 64% of patients overall showing detectable EV pPD-L1 levels in plasma. In contrast to the EV pPD-L1 results, plasma PD-L1 levels did not correlate with the tumor PD-L1 TPS score or EV pPD-L1 levels. These data demonstrate that EV pPD-L1 levels may be used to select patients for appropriate PD-1 and PD-L1 ICI therapy regimens in early, locally advanced, and advanced NSCLC and should be tested further in randomized controlled trials. Most importantly, the assay used has a less than 24h turnaround time, facilitating adoption of the test into the routine diagnostic evaluation of patients prior to therapy.
Collapse
Affiliation(s)
- Karthik B Shanmugasundaram
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Emtiaz Ahmed
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xinzhe Miao
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - James A Fletcher
- Division of Cancer Services, Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia
| | - James Monkman
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Paul Mainwaring
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mostafa Kamal Masud
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hyeongyu Park
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Md Shahriar A Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Abu A I Sina
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kenneth O'Byrne
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4102, Australia
| | - Alain Wuethrich
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Matt Trau
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
2
|
Wang Q, Ge G, Liang X, Bai J, Wang W, Zhang W, Zheng K, Yang S, Wei M, Yang H, Xu Y, Liu B, Geng D. Punicalagin ameliorates wear-particle-induced inflammatory bone destruction by bi-directional regulation of osteoblastic formation and osteoclastic resorption. Biomater Sci 2020; 8:5157-5171. [PMID: 32840273 DOI: 10.1039/d0bm00718h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Periprosthetic osteolysis (PPO) and subsequent aseptic loosening are the main causes of implant failure and revision surgery. Emerging evidence has suggested that wear-particle-induced chronic inflammation, osteoblast inhibition and osteoclast formation at the biointerface of implant materials are responsible for PPO. Punicalagin (PCG), a polyphenolic compound molecularly extracted from pomegranate rinds, plays a critical role in antioxidant, anticancer and anti-inflammatory activities. However, whether PCG could attenuate chronic inflammation and bone destruction at sites of titanium (Ti)-particle-induced osteolysis remains to be determined. In this study, we explored the effect of PCG on Ti-particle-induced osteolysis in vivo and osteoblast and osteoclast differentiation in vitro. We found that PCG could relieve wear-particle-induced bone destruction in a murine calvarial osteolysis model by increasing bone formation activity and suppressing bone resorption activity. PCG treatment also reduced the Ti-particle-induced inflammatory response in vivo and vitro. In addition, we also observed that PCG promotes osteogenic differentiation of MC3T3-E1 cells under inflammatory conditions and inhibits RANKL-induced osteoclast formation of bone marrow-derived macrophages (BMMs). Meanwhile, the induction of the RANKL to OPG ratio was reversed by PCG treatment in vivo and in vitro, which demonstrated that PCG could also indirectly inhibit osteoclastogenesis. Collectively, our findings suggest that PCG represents a potential approach for the treatment of wear-particle-induced inflammatory osteolysis.
Collapse
Affiliation(s)
- Qing Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|