1
|
Dong B, Hu K, Mao Y, Wen K, Wang Z, Qu H, Zheng L. A nanomaterial-independent and fluorescent immunoassay based on Eu-micelles for rapid and sensitive detection of fluoroquinolones in chicken. Food Chem 2024; 459:140419. [PMID: 39024876 DOI: 10.1016/j.foodchem.2024.140419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Fluorescent nanoprobes are widely applied in innovate enzyme-linked immunosorbent assays (ELISA) for detection of fluoroquinolones (FQs) residue in foodstuffs. Nevertheless, the complicated synthesis of nanoprobes hampers their practical applications. Herein, a nanomaterial-independent and fluorescent ELISA for sensitive detection of FQs is developed using the Eu-micelles as signal probe. Non-nanostructured Eu-micelles with high quantum yield and stability are facilely synthesized through the assembly of Eu3+ and ligands. Alkaline phosphatase catalyzes hydrolysis of 4-nitrophenyl phosphate to 4-nitrophenol. The fluorescent Eu-micelles can be readily quenched by 4-nitrophenol via static quenching. The signal generation mechanism integrates well with conventional ELISA systems. The established fluorescent ELISA achieves sensitive detection of FQs with a limit of detection of 0.03 μg/kg. The validation results from LC-MS show that the fluorescent ELISA exhibits good accuracy and recoveries. Our study presents a nanomaterial-independent strategy for developing the rapid immunoassay for FQs, which holds good promise for practical applications.
Collapse
Affiliation(s)
- Baolei Dong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kaiying Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
2
|
Torabi M, Yaghoobi F, Shervedani RK, Kefayat A, Ghahremani F, Harsini PR. Mn(II) & Gd(III) Deferrioxamine Complex Contrast Agents & Temozolomide Cancer Prodrug Immobilized on Folic Acid Targeted Graphene/Polyacrylic Acid Nanocarrier: MRI Efficiency, Drug Stability & Interactions with Cancer Cells. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Xu J, Liu K, Chen T, Zhan T, Ouyang Z, Wang Y, Liu W, Zhang X, Sun Y, Xu G, Wang X. Rotating magnetic field delays human umbilical vein endothelial cell aging and prolongs the lifespan of Caenorhabditis elegans. Aging (Albany NY) 2019; 11:10385-10408. [PMID: 31757933 PMCID: PMC6914427 DOI: 10.18632/aging.102466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/08/2019] [Indexed: 01/05/2023]
Abstract
The biological effects of magnetic fields are a research hotspot in the field of biomedical engineering. In this study, we further investigated the effects of a rotating magnetic field (RMF; 0.2 T, 4 Hz) on the growth of human umbilical vein endothelial cells (HUVECs) and Caenorhabditis elegans. The results showed that RMF exposure prolonged the lifespan of C. elegans and slowed the aging of HUVECs. RMF treatment of HUVECs showed that activation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) was associated with decreased mitochondrial membrane potential (MMP) due to increased intracellular Ca2+ concentrations induced by endoplasmic reticulum stress in anti-aging mechanisms. RMF also promoted the health status of C. elegans by improving activity, reducing age-related pigment accumulation, delaying Aβ-induced paralysis and increasing resistance to heat and oxidative stress. The prolonged lifespan of C. elegans was associated with decreased levels of daf-16 which related to the insulin/insulin-like growth factor signaling pathway (IIS) activity and reactive oxygen species (ROS), whereas the heat shock transcription factor-1 (hsf-1) pathway was not involved. Moreover, the level of autophagy was increased after RMF treatment. These findings expand our understanding of the potential mechanisms by which RMF treatment prolongs lifespan.
Collapse
Affiliation(s)
- Jiangyao Xu
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen 518055, China
| | - Kan Liu
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen 518055, China
| | - Tingting Chen
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen 518055, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen 518055, China
| | - Tianying Zhan
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen 518055, China
| | - Zijun Ouyang
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen 518055, China
| | - Yushu Wang
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen 518055, China
| | - Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiaoyun Zhang
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen 518055, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen 518055, China
| | - Xiaomei Wang
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
4
|
Harris M, Biju S, Parac‐Vogt TN. High‐Field MRI Contrast Agents and their Synergy with Optical Imaging: the Evolution from Single Molecule Probes towards Nano‐architectures. Chemistry 2019; 25:13838-13847. [DOI: 10.1002/chem.201901141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/03/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Michael Harris
- Department of ChemistryKU Leuven Celestijnenlaan 200F Heverlee 3001 Belgium
| | - Silvanose Biju
- Department of ChemistryGovt. Arts College Thiruvananthapuram Kerala 695014 India
| | | |
Collapse
|