1
|
Yao T, Zhang M, Guo D, Ran F. Nanofiltration Membrane via Organic Nanoparticle-Assisted Interface Polymerization for Efficient Dye/Salt Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:10490-10500. [PMID: 40235158 DOI: 10.1021/acs.langmuir.5c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Nanofiltration membranes have the advantages of high flux and good selectivity, making them ideal materials for solving water resource pollution and scarcity; however, the mechanism of interface polymer membrane wrinkling induced by nanofillers is not clear, and the low flux of interface polymer membranes is a pressing issue for researchers. In this work, superhydrophilic l-histidine-modified nanoparticles are successfully synthesized and added to the interface polymerization process, where the nanoparticles also participate in the interface polymerization reaction, inducing interface polymerization. The formation of layered wrinkles on the membrane surface greatly increases the contact area of the membrane surface and enhances the hydrophilicity. The water contact angle on the membrane surface decreases from the original 51.85 to 28.72°. When the modifier-modified dopamine particles are added at a concentration of 0.1 wt %, the water permeance of the nanofiltration membrane reaches 145.57 L m-2 h-1 MPa-1, with a dye rejection rate of over 99% and high permeability to inorganic salt ions, confirming that the membrane can be used for efficient dye/salt separation. Furthermore, the stability of the membrane is improved, greatly enhancing its practical applicability.
Collapse
Affiliation(s)
- Tao Yao
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Engineering, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Mingyu Zhang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Engineering, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Dongli Guo
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Engineering, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Engineering, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| |
Collapse
|
2
|
Xu H, Chen S, Zhao YF, Wang F, Guo F. MOF-Based Membranes for Remediated Application of Water Pollution. Chempluschem 2024; 89:e202400027. [PMID: 38369654 DOI: 10.1002/cplu.202400027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Membrane separation plays a crucial role in the current increasingly complex energy environment. Membranes prepared by metal-organic framework (MOF) materials usually possess unique advantages in common, such as uniform pore size, ultra-high porosity, enhanced selectivity and throughput, and excellent adsorption property, which have been contributed to the separation fields. In this comprehensive review, we summarize various designs and synthesized strategies of free-standing MOF and composite MOF-based membranes for water treatment. Special emphases are given not only on the effects of MOF on membrane performance, removal efficiencies, and elimination mechanisms, but also on the importance of MOF-based membranes for the applications of oily and micro-pollutant removal, adsorption, separation, and catalysis. The challenges and opportunities in the future for the industrial implementation of MOF-based membranes are also discussed.
Collapse
Affiliation(s)
- Huan Xu
- School of art and design, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Shuyuan Chen
- School of art and design, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Ye-Fan Zhao
- School of art and design, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Fangfang Wang
- School of art and design, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Fan Guo
- School of art and design, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
3
|
Ni L, Li M, Xie J, Chen K, Yang Y, Zhou Y, Zhu Z, Qi J, Li J. Micelles regulated thin film nanocomposite membrane with enhanced nanofiltration performance. J Colloid Interface Sci 2024; 662:545-554. [PMID: 38364479 DOI: 10.1016/j.jcis.2024.02.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
The desalination performance of thin film nanocomposite (TFN) membranes is significantly influenced by the nature of nanofillers and the structure of the polyamide (PA) layer. Herein, a micelles regulated interfacial polymerization (MRIP) strategy is reported for the preparation of TFN membranes with enhanced nanofiltration (NF) performance. Specially, stable and ultrafine micelles, synthesized from the poly(ethylene oxide)-b-poly(4-vinyl pyridine)-b-polystyrene (PEO-PVP-PS) triblock copolymers, were utilized as regulators in the aqueous phase during the interfacial polymerization (IP) process. TFN membranes were fabricated with varying concentrations of micelles to improve their properties and performances. The structure of the PA layer was further regulated by modulating the content of trimesoyl chloride (TMC), which significantly enhances the performance of the TFN membrane with micelles. Attributable to the homogeneously dispersed micelles and the modified PA layer, the optimized membrane denoted as TFN-2-0.3 exhibits an improved separation performance of 20.7 L m-2h-1 bar-1 and 99.3 % Na2SO4 rejection, demonstrating nearly twice the permeance and 2.7 % higher rejection than that of the original control membrane, respectively. The mechanism of this MRIP strategy was investigated through the diffusion experiments of piperazine (PIP) and interfacial tension tests. The incorporated micelles effectively lower the interfacial tension, promote the diffusion of PIP and accelerate the IP reaction, resulting in a denser and thinner PA layer. Collectively, these findings demonstrate that TFN membranes with micelles exhibit increased roughness, enhanced hydrophilicity, superior rejection to divalent salts, and better acid-base resistance, highlighting their potential applications in the design of TFN membranes.
Collapse
Affiliation(s)
- Linhan Ni
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Min Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jia Xie
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ke Chen
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yue Yang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuqun Zhou
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhigao Zhu
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junwen Qi
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
4
|
Xiao C, Guo X, Li J. From nano- to macroarchitectures: designing and constructing MOF-derived porous materials for persulfate-based advanced oxidation processes. Chem Commun (Camb) 2024; 60:4395-4418. [PMID: 38587500 DOI: 10.1039/d4cc00433g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Persulfate-based advanced oxidation processes (PS-AOPs) have gained significant attention as an effective approach for the elimination of emerging organic contaminants (EOCs) in water treatment. Metal-organic frameworks (MOFs) and their derivatives are regarded as promising catalysts for activating peroxydisulfate (PDS) and peroxymonosulfate (PMS) due to their tunable and diverse structure and composition. By the rational nanoarchitectured design of MOF-derived nanomaterials, the excellent performance and customized functions can be achieved. However, the intrinsic fine powder form and agglomeration ability of MOF-derived nanomaterials have limited their practical engineering application. Recently, a great deal of effort has been put into shaping MOFs into macroscopic objects without sacrificing the performance. This review presents recent advances in the design and synthetic strategies of MOF-derived nano- and macroarchitectures for PS-AOPs to degrade EOCs. Firstly, the strategies of preparing MOF-derived diverse nanoarchitectures including hierarchically porous, hollow, yolk-shell, and multi-shell structures are comprehensively summarized. Subsequently, the approaches of manufacturing MOF-based macroarchitectures are introduced in detail. Moreover, the PS-AOP application and mechanisms of MOF-derived nano- and macromaterials as catalysts to eliminate EOCs are discussed. Finally, the prospects and challenges of MOF-derived materials in PS-AOPs are discussed. This work will hopefully guide the design and development of MOF-derived porous materials in SR-AOPs.
Collapse
Affiliation(s)
- Chengming Xiao
- Key Laboratory of New Membrane Materials, Ministry of Industry and information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Xin Guo
- Key Laboratory of New Membrane Materials, Ministry of Industry and information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Jiansheng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| |
Collapse
|
5
|
Han J, Zhang H, Fan Y, Zhou L, Zhang Z, Li P, Li Z, Du Y, Meng Q. Progressive Insights into Metal-Organic Frameworks and Metal-Organic Framework-Membrane Composite Systems for Wastewater Management. Molecules 2024; 29:1615. [PMID: 38611894 PMCID: PMC11013246 DOI: 10.3390/molecules29071615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/20/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
The sustainable management of wastewater through recycling and utilization stands as a pressing concern in the trajectory of societal advancement. Prioritizing the elimination of diverse organic contaminants is paramount in wastewater treatment, garnering significant attention from researchers worldwide. Emerging metal-organic framework materials (MOFs), bridging organic and inorganic attributes, have surfaced as novel adsorbents, showcasing pivotal potential in wastewater remediation. Nevertheless, challenges like limited water stability, elevated dissolution rates, and inadequate hydrophobicity persist in the context of wastewater treatment. To enhance the performance of MOFs, they can be modified through chemical or physical methods, and combined with membrane materials as additives to create membrane composite materials. These membrane composites, derived from MOFs, exhibit remarkable characteristics including enhanced porosity, adjustable pore dimensions, superior permeability, optimal conductivity, and robust water stability. Their ability to effectively sequester organic compounds has spurred significant research in this field. This paper introduces methods for enhancing the performance of MOFs and explores their potential applications in water treatment. It delves into the detailed design, synthesis strategies, and fabrication of composite membranes using MOFs. Furthermore, it focuses on the application prospects, challenges, and opportunities associated with MOF composite membranes in water treatment.
Collapse
Affiliation(s)
- Jilong Han
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; (J.H.); (H.Z.); (Y.F.); (L.Z.); (Z.Z.); (P.L.)
| | - Hanya Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; (J.H.); (H.Z.); (Y.F.); (L.Z.); (Z.Z.); (P.L.)
| | - Yuheng Fan
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; (J.H.); (H.Z.); (Y.F.); (L.Z.); (Z.Z.); (P.L.)
| | - Lilong Zhou
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; (J.H.); (H.Z.); (Y.F.); (L.Z.); (Z.Z.); (P.L.)
| | - Zhikun Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; (J.H.); (H.Z.); (Y.F.); (L.Z.); (Z.Z.); (P.L.)
| | - Pengfei Li
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; (J.H.); (H.Z.); (Y.F.); (L.Z.); (Z.Z.); (P.L.)
| | - Zhengjie Li
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; (J.H.); (H.Z.); (Y.F.); (L.Z.); (Z.Z.); (P.L.)
| | - Yongsheng Du
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
| | - Qingfen Meng
- Qinghai Qaeidam Xinghua Lithium Salt Co., Ltd., Golmud 817000, China;
| |
Collapse
|
6
|
Qiu ZL, Yu WH, Yang WS, Sun T, Zhao ZH, Su QW, Zhu BK. Ionic Hyperbranched Poly(amido-amine)-Incorporated Nanofiltration Membranes for High-Efficiency Dye Desalination. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:915-926. [PMID: 38154048 DOI: 10.1021/acs.langmuir.3c03119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
High-efficiency dye desalination is crucial in the textile industry, considering its importance for human health, safe aquatic ecological systems, and resource recovery. In order to solve the problem of effective separation of univalent salt and ionic dye under the condition of high salt, ionic hyperbranched poly(amido-amine) (HBPs) were synthesized based on a simple and scalable one-step polycondensation method and then incorporated into the polyamide (PA) selective layers to construct charged nanochannels through interfacial polymerization (IP) on the surface of a polyvinyl chloride ultrafiltration (PVC-UF) hollow fiber membrane. Both the internal nanopores of HBPs (internal nanochannels) and the interfacial voids between HBPs and the PA matrix (external nanochannels) can be regarded as a fast water molecule transport pathway, while the terminal ionic groups of ionic HBPs endow the nanochannels with charge characteristics for improving ionic dye/salt selectivities. The permeate fluxes and dye/salt selectivities of HBP-TAC/PIP (57.3 L m-2 h-1 and rhodamine B (RB)/NaCl selectivity of 224.0) and HBP-PS/PIP (63.7 L m-2 h-1 and lemon yellow (LY)/NaCl selectivity of 664.0) membranes under 0.4 MPa operation pressure are much higher than PIP-only and HBP-NH2/PIP membranes. At the same time, this project also studied the membrane desalination process in a simulated high-salinity dye/salt mixture system to provide a theoretical basis and technical support for the actual dye desalination process.
Collapse
Affiliation(s)
- Ze-Lin Qiu
- Key Laboratory of Macromolecule Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wen-Han Yu
- Key Laboratory of Macromolecule Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wu-Shang Yang
- Key Laboratory of Macromolecule Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tong Sun
- Key Laboratory of Macromolecule Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zi-Hao Zhao
- Key Laboratory of Macromolecule Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qian-Wei Su
- Key Laboratory of Macromolecule Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bao-Ku Zhu
- Key Laboratory of Macromolecule Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
7
|
Wang H, Wang F, Li Z, Zheng Y, Gu T, Zhang R, Jiang Z. In situ reaction enabled surface segregation toward dual-heterogeneous antifouling membranes for oil-water separation. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132425. [PMID: 37647665 DOI: 10.1016/j.jhazmat.2023.132425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Fabricating membranes with superior antifouling property and long-term high performance is in great demand for efficient oil-water separation. Herein, we reported a reaction enabled surface segregation method for antifouling membrane fabrication, in which the pre-synthesized fluorinated ternary copolymer Pluronic F127 was coordinated with Ti4+ as segregation additive in the membrane casting bath. Additionally, tannic acid was utilized to enhance the self-assembly of the copolymer in the coagulation bath, and freshly-biomineralized TiO2 was anchored into the membrane surface through hydrogen bond. A hydrogel layer was constructed onto the membrane surface with synergistically tailored heterogeneous chemical composition and heterogeneous geometrical roughness. The dual-heterogeneous membrane exhibited hydrophilic and underwater superoleophobic features, resulting in high water flux (621.7 L m-2 h-1) at low operation pressure of 0.05 MPa and an excellent antifouling property (only 4.8% flux decline during 24-hour filtration). In situ reaction enabled surface segregation method will accelerate the development of antifouling membranes for oil-in-water emulsion separation.
Collapse
Affiliation(s)
- Hui Wang
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Fei Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhichao Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yu Zheng
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Tianrun Gu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Runnan Zhang
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China; Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| | - Zhongyi Jiang
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China; Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| |
Collapse
|
8
|
Tayel A, Abdelaal AB, Esawi AMK, Ramadan AR. Thin-Film Nanocomposite (TFN) Membranes for Water Treatment Applications: Characterization and Performance. MEMBRANES 2023; 13:membranes13050477. [PMID: 37233538 DOI: 10.3390/membranes13050477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Thin-film nanocomposite (TFN) membranes have been widely investigated for water treatment applications due to their promising performance in terms of flux, salt rejection, and their antifouling properties. This review article provides an overview of the TFN membrane characterization and performance. It presents different characterization techniques that have been used to analyze these membranes and the nanofillers within them. The techniques comprise structural and elemental analysis, surface and morphology analysis, compositional analysis, and mechanical properties. Additionally, the fundamentals of membrane preparation are also presented, together with a classification of nanofillers that have been used so far. The potential of TFN membranes to address water scarcity and pollution challenges is significant. This review also lists examples of effective TFN membrane applications for water treatment. These include enhanced flux, enhanced salt rejection, antifouling, chlorine resistance, antimicrobial properties, thermal stability, and dye removal. The article concludes with a synopsis of the current status of TFN membranes and future perspectives.
Collapse
Affiliation(s)
- Amr Tayel
- Department of Chemistry, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Ahmed B Abdelaal
- Department of Chemistry, McGill University, 845 Rue Sherbrooke O, Montreal, QC H3A 0G4, Canada
| | - Amal M K Esawi
- Department of Mechanical Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Adham R Ramadan
- Department of Chemistry, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| |
Collapse
|
9
|
Wu LK, Xu ZL, Tong M, Li EC, Tang YJ. Dissecting the role of nanomaterials on permeation enhancement of the thin-film nanocomposite membrane: ZIF-8 as an example. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
10
|
Dually charged polyamide nanofiltration membrane incorporated UiO-66-(NH2)2: Synergistic rejection of divalent cations and anions. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Zhao B, Sun M, Guo Z, Wang L, Qian Y, He X, Li J. Enhanced water permeance and EDCs rejection using a UiO-66-NH 2-predeposited polyamide membrane. CHEMOSPHERE 2023; 312:137114. [PMID: 36334752 DOI: 10.1016/j.chemosphere.2022.137114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Endocrine disrupting compounds (EDCs) have been increasingly detected in drinking water sources, and pose severe threat to human health. Polyamide (PA) based nanofiltration (NF) membrane has great potential for EDCs removal from water, but the removal of hydrophobic EDCs is not satisfying due to strong hydrophobic affinity. In this study, UiO-66-NH2/PA membranes were prepared by predepositing hydrophilic UiO-66-NH2 onto the substrate prior to interfacial polymerization. The UiO-66-NH2 aggregates increased the permeable area and strengthened the "gutter effect". Therefore, the pure water flux of UiO-66-NH2/PA increased by 115% compared with that of the thin-film composite (TFC) membrane, and its rejection of Na2SO4 was 96%. The hydrophilicity-enhanced PA film reduced its adsorption of EDCs and decreased the driving force for EDCs diffusion. Moreover, the UiO-66-NH2-induced hydrophilic nanochannels, including the interfacial gaps between PA film and UiO-66-NH2 aggregates, the gaps in UiO-66-NH2 aggregates, and the inherent pores in UiO-66-NH2 crystals, alleviated the hydrophobic affinity and effectively restricted EDCs diffusion. The rejection rates of methylparaben, propylparaben, bisphenol A, and benzylparaben by the optimal UiO-66-NH2/PA were 50%, 67%, 75%, and 85%, respectively, and the water/benzylparaben selectivity was 4.4 times as high as that of TFC. The results demonstrate that incorporating hydrophilic metal-organic frameworks (MOFs) can improve the membrane hydrophilicity and create hydrophilic nanochannels, and is an effective strategy to enhance EDCs removal by nanofiltration.
Collapse
Affiliation(s)
- Bin Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Min Sun
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhiqiang Guo
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Liang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China.
| | - Yiran Qian
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Xiaojia He
- The Administrative Center for China's Agenda 21, Beijing, 100038, China
| | - Jixiang Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 200120, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Ahmad NNR, Mohammad AW, Mahmoudi E, Ang WL, Leo CP, Teow YH. An Overview of the Modification Strategies in Developing Antifouling Nanofiltration Membranes. MEMBRANES 2022; 12:membranes12121276. [PMID: 36557183 PMCID: PMC9780855 DOI: 10.3390/membranes12121276] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 05/12/2023]
Abstract
Freshwater deficiency has become a significant issue affecting many nations' social and economic development because of the fast-growing demand for water resources. Nanofiltration (NF) is one of the promising technologies for water reclamation application, particularly in desalination, water, and wastewater treatment fields. Nevertheless, membrane fouling remains a significant concern since it can reduce the NF membrane performance and increase operating expenses. Consequently, numerous studies have focused on improving the NF membrane's resistance to fouling. This review highlights the recent progress in NF modification strategies using three types of antifouling modifiers, i.e., nanoparticles, polymers, and composite polymer/nanoparticles. The correlation between antifouling performance and membrane properties such as hydrophilicity, surface chemistry, surface charge, and morphology are discussed. The challenges and perspectives regarding antifouling modifiers and modification strategies conclude this review.
Collapse
Affiliation(s)
- Nor Naimah Rosyadah Ahmad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Abdul Wahab Mohammad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: author:
| | - Ebrahim Mahmoudi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Wei Lun Ang
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Choe Peng Leo
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia
| | - Yeit Haan Teow
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
13
|
Shahbabaei M, Tang T. Molecular modeling of thin-film nanocomposite membranes for reverse osmosis water desalination. Phys Chem Chem Phys 2022; 24:29298-29327. [PMID: 36453147 DOI: 10.1039/d2cp03839k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The scarcity of freshwater resources is a major global challenge causedby population and economic growth. Water desalination using a reverse osmosis (RO) membrane is a promising technology to supply potable water from seawater and brackish water. The advancement of RO desalination highly depends on new membrane materials. Currently, the RO technology mainly relies on polyamide thin-film composite (TFC) membranes, which suffer from several drawbacks (e.g., low water permeability, permeability-selectivity tradeoff, and low fouling resistance) that hamper their real-world applications. Nanoscale fillers with specific characteristics can be used to improve the properties of TFC membranes. Embedding nanofillers into TFC membranes using interfacial polymerization allows the creation of thin-film nanocomposite (TFNC) membranes, and has become an emerging strategy in the fabrication of high-performance membranes for advanced RO water desalination. To achieve optimal design, it is indispensable to search for reliable methods that can provide fast and accurate predictions of the structural and transport properties of the TFNC membranes. However, molecular understanding of permeability-selectivity characteristics of nanofillers remains limited, partially due to the challenges in experimentally exploring microscopic behaviors of water and salt ions in confinement. Molecular modeling and simulations can fill this gap by generating molecular-level insights into the effects of nanofillers' characteristics (e.g., shape, size, surface chemistry, and density) on water permeability and ion selectivity. In this review, we summarize molecular simulations of a diverse range of nanofillers including nanotubes (carbon nanotubes, boron nitride nanotubes, and aquaporin-mimicking nanochannels) and nanosheets (graphene, graphene oxide, boron nitride sheets, molybdenum disulfide, metal and covalent organic frameworks) for water desalination applications. These simulations reveal that water permeability and salt rejection, as the major factors determining the desalination performance of TFNC membranes, significantly depend on the size, topology, density, and chemical modifications of the nanofillers. Identifying their influences and the physicochemical processes behind, via molecular modeling, is expected to yield important insights for the fabrication and optimization of the next generation high-performance TFNC membranes for RO water desalination.
Collapse
Affiliation(s)
- Majid Shahbabaei
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada.
| | - Tian Tang
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
14
|
Liao Z, Wu Y, Cao S, Zhao S, Yan X, Yuan S, Dong K, Qin J, Ou C, Zhu J. Facile engineering of PES ultrafiltration membranes using polyoxometalates for enhanced filtration and antifouling performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Xiao Z, Song K, Huang X, Niu Y, Ke Q, Kou X. A durable and stable hollow carrier based on metal-phenolic network composed of Zn II and proanthocyanidins/polydopamine. Colloids Surf B Biointerfaces 2022; 220:112888. [PMID: 36183634 DOI: 10.1016/j.colsurfb.2022.112888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/17/2022] [Accepted: 09/25/2022] [Indexed: 10/14/2022]
Abstract
Metal-phenolic networks (MPNs), which are formed by phenolic molecules and metal ions via coordination bonds, are emerging as highly templated functional metal-organic materials. These networks are mostly used in the form of particles for short-term in vivo drug delivery; however, there is a lack of research on durable and stable MPN hollow particles as delivery carriers for in vitro applications. In this study, hollow and yolk-like hybrid cubic MPNs were prepared by etching zeolitic imidazolate framework-8 (ZIF-8) with proanthocyanidins (PCs). Polydopamine (PDA) resulting from the oxidative self-polymerisation of dopamine was deposited on the surface of the fabricated MPN to obtain a PDA coating, which enhanced the mechanical properties of the MPN. The prepared ZnII-PC/PDA capsules consisted of two layers: a ZnII-PC layer and a PDA-PDA layer. It showed stability at 25 ℃ for at least 280 days after freeze-drying. Moreover, when loaded with carvacrol, this MPN exhibited an enhanced antibacterial performance. Therefore, this study lays the foundation for the use of MPNs as long-lasting functional carriers.
Collapse
Affiliation(s)
- Zuobing Xiao
- Collaborative Innovation Center of Fragrance Flavor and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavor Industry), Shanghai Institute of Technology, Shanghai, China
| | - Ke Song
- Collaborative Innovation Center of Fragrance Flavor and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavor Industry), Shanghai Institute of Technology, Shanghai, China
| | - Xin Huang
- Collaborative Innovation Center of Fragrance Flavor and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavor Industry), Shanghai Institute of Technology, Shanghai, China
| | - Yunwei Niu
- Collaborative Innovation Center of Fragrance Flavor and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavor Industry), Shanghai Institute of Technology, Shanghai, China
| | - Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavor and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavor Industry), Shanghai Institute of Technology, Shanghai, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Xingran Kou
- Collaborative Innovation Center of Fragrance Flavor and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavor Industry), Shanghai Institute of Technology, Shanghai, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China.
| |
Collapse
|
16
|
Zhang T, Zhang H, Li P, Ding S, Wang X. Highly permeable composite nanofiltration membrane via γ-cyclodextrin modulation for multiple applications. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Fang SY, Gong JL, Tang L, Cao WC, Li J, Tan ZK, Wang YW, Wang WB. Loosely Sandwich-Structured Membranes Decorated with UiO-66-NH 2 for Efficient Antibiotic Separation and Organic Solvent Resistance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38990-39003. [PMID: 35976131 DOI: 10.1021/acsami.2c12146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Thin-film nanocomposite (TFN) membranes with efficient molecular separation and organic solvent resistance are active in demand in wastewater treatment and resource reclamation, meeting the goal of emission peaks and carbon neutrality. In this work, a simple and rational design strategy has been employed to construct a sandwich-structured membrane for removing fluoroquinolone antibiotics and recycling organic solvents. The sandwich-structured membrane is composed of a porous substrate, a hydrophilic tannic acid-polyethyleneimine (TA-PEI) interlayer, and a polyamide (PA) selective layer decorated with metal-organic framework (PA-MOF). Results manifest that the hydrophilic TA-PEI interlayer played a bridging and gutter effect to achieve effective control in amide storage, amine diffusion, and nanomaterial downward leakage at the immiscible interface. The PA-MOF selective layer has been changed to a loosely crumpled surface, endowing functionalities on the sandwich-structured membrane that included limited pores, strengthened electronegativity, and stronger hydrophilicity. Thus, an enhanced water flux of 87.23 ± 7.43 LMH was achieved by the TFN-2 membrane (0.04 mg·mL-1 UiO-66-NH2), which is more than five times that of the thin-film composite membrane (17.46 ± 3.88 LMH). The rejection against norfloxacin, ciprofloxacin, and levofloxacin is 92.94 ± 1.60%, 94.62 ± 1.29%, and 96.92 ± 1.05%, respectively, effectively breaking through the "trade-off" effect between membrane permeability and rejection efficiency. Further antifouling results showed that the sandwich-structured membrane had lower flux decay ratios (3.36∼7.07%) and higher flux recovery ratios (93.40∼98.40%), as well as superior long-term stability after 30 days of filtration. Moreover, organic solvent resistance testing confirms that the sandwich-structured membrane maintained stable solvent flux and better recovery rates in ethanol, acetone, isopropanol, and N,N-dimethylformamide. Detailed nanofiltration mechanism studies revealed that these outstanding performances are based on the joint effect of the TA-PEI interlayer and PA-MOF selective layer, proposing a new perspective to break through the bottleneck of nanofiltration application in a complex environment.
Collapse
Affiliation(s)
- Si-Yuan Fang
- Key Laboratory of Environmental Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Ji-Lai Gong
- Key Laboratory of Environmental Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Changsha 410019, China
- Shenzhen Institute, Hunan University, Shenzhen 518000, China
| | - Lin Tang
- Key Laboratory of Environmental Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Wei-Cheng Cao
- Key Laboratory of Environmental Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Shenzhen Institute, Hunan University, Shenzhen 518000, China
| | - Juan Li
- Key Laboratory of Environmental Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Zi-Kang Tan
- Key Laboratory of Environmental Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yu-Wen Wang
- Key Laboratory of Environmental Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Wen-Bo Wang
- Key Laboratory of Environmental Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
18
|
Zhang X, Zheng J, Jin P, Xu D, Yuan S, Zhao R, Depuydt S, Gao Y, Xu ZL, Van der Bruggen B. A PEI/TMC membrane modified with an ionic liquid with enhanced permeability and antibacterial properties for the removal of heavy metal ions. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129010. [PMID: 35500345 DOI: 10.1016/j.jhazmat.2022.129010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/07/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Heavy metal ions in drinking water severely threaten public health in various places worldwide. Nanofiltration (NF) membrane technology is an attractive option for heavy metal ions removal; however, improving NF membrane filtration performance is required to make their industrial application viable. In this study, a positively charged THPC/PEI-TMC NF membrane was designed via simple one-step incorporation of Tetrakis (hydroxymethyl) phosphonium chloride (THPC) biocide on the surface of PEI-TMC membranes, significantly optimizing surface morphology, roughness, hydrophilicity, and zeta potential of PEI-TMC membranes. It was found that the pure water permeability (11.6 Lm-2h-1bar-1) of the THPC modified membrane was three times larger than that of the original PEI-TMC membrane (3.4 Lm-2h-1bar-1) while maintaining a high level of ion rejections (around 95% for Zn2+, Cd2+, Ni2+, Cu2+ and about 90% for Pb2+). Additionally, the incorporation of the THPC on the original PEI-TMC membrane surface also conferred good antibacterial properties, which protect the organic membrane from bacterial growth and prolong the lifespan of the membrane.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium; State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, China
| | - Junfeng Zheng
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Pengrui Jin
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium.
| | - Daliang Xu
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology Harbin, 1550090, China
| | - Shushan Yuan
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rui Zhao
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Stef Depuydt
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Yujie Gao
- Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium; Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| |
Collapse
|
19
|
Liao Z, Wu Y, Cao S, Yuan S, Fang Y, Qin J, Shi J, Shi C, Ou C, Zhu J. Facile in situ decorating polyacrylonitrile membranes using polyoxometalates for enhanced separation performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Guo Z, Wang H, Wang L, Zhao B, Qian Y, Zhang H. Polyamide thin-film nanocomposite membrane containing star-shaped ZIF-8 with enhanced water permeance and PPCPs removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Yao A, Hua D, Gao ZF, Pan J, Ibrahim AR, Zheng D, Hong Y, Liu Y, Zhan G. Fabrication of organic solvent nanofiltration membrane using commercial PVDF substrate via interfacial polymerization on top of metal-organic frameworks interlayer. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Fabrication of high performance nanofiltration membrane by construction of Noria based nanoparticles interlayer. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Ni L, Chen K, Xie J, Li Q, Qi J, Wang C, Sun X, Li J. Synchronizing formation of polyamide with covalent organic frameworks towards thin film nanocomposite membrane with enhanced nanofiltration performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
Ang MBMY, Deang ABG, Chiao YH, Aquino RR, Millare JC, Huang SH, Tsai HA, Lee KR. Integrating nanoclay intercalated with interlayers of cationic surfactant into thin-film nanocomposite nanofiltration membranes to improve performance and antifouling property. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Shukla AK, Alam J, Alhoshan M. Recent Advancements in Polyphenylsulfone Membrane Modification Methods for Separation Applications. MEMBRANES 2022; 12:247. [PMID: 35207168 PMCID: PMC8876851 DOI: 10.3390/membranes12020247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023]
Abstract
Polyphenylsulfone (PPSU) membranes are of fundamental importance for many applications such as water treatment, gas separation, energy, electronics, and biomedicine, due to their low cost, controlled crystallinity, chemical, thermal, and mechanical stability. Numerous research studies have shown that modifying surface properties of PPSU membranes influences their stability and functionality. Therefore, the modification of the PPSU membrane surface is a pressing issue for both research and industrial communities. In this review, various surface modification methods and processes along with their mechanisms and performance are considered starting from 2002. There are three main approaches to the modification of PPSU membranes. The first one is bulk modifications, and it includes functional groups inclusion via sulfonation, amination, and chloromethylation. The second is blending with polymer (for instance, blending nanomaterials and biopolymers). Finally, the third one deals with physical and chemical surface modifications. Obviously, each method has its own limitations and advantages that are outlined below. Generally speaking, modified PPSU membranes demonstrate improved physical and chemical properties and enhanced performance. The advancements in PPSU modification have opened the door for the advance of membrane technology and multiple prospective applications.
Collapse
Affiliation(s)
- Arun Kumar Shukla
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Javed Alam
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Mansour Alhoshan
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- K.A. CARE Energy Research and Innovation Center at Riyadh, P.O. Box 2022, Riyadh 11451, Saudi Arabia
| |
Collapse
|
26
|
Yang C, Li Y, Long M, Yang P, Li Y, Zheng Y, Zhang R, Su Y, Wu H, Jiang Z. Ultrathin nanofiltration membrane assembled by polyethyleneimine-grafted graphene quantum dots. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Zarshenas K, Dou H, Habibpour S, Yu A, Chen Z. Thin Film Polyamide Nanocomposite Membrane Decorated by Polyphenol-Assisted Ti 3C 2T x MXene Nanosheets for Reverse Osmosis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1838-1849. [PMID: 34936329 DOI: 10.1021/acsami.1c16229] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transition-metal carbides (MXenes), multifunctional 2D materials, have caught the interest of researchers in the fabrication of high-performance nanocomposite membranes. However, several issues regarding MXenes still remain unresolved, including low ambient stability; facile restacking and agglomeration; and poor compatibility and processability. To address the aforementioned challenges, we proposed a facile, green, and cost-efficient approach for coating a stable layer of plant-derived polyphenol tannic acid (TA) on the surface of MXene (Ti3C2Tx) nanosheets. Then, high-performance reverse osmosis polyamide thin film nanocomposite (RO-PA-TFN) membranes were fabricated by the incorporation of modified MXene (Ti3C2Tx-TA) nanosheets in the polyamide selective layer through interfacial polymerization. The strong negative charge and hydrophilic multifunctional properties of TA not only boosted the chemical compatibility between Ti3C2Tx MXene nanosheets and the polyamide matrix to overcome the formation of nonselective voids but also generated a tight network with selective interfacial pathways for efficient monovalent salt rejection and water permeation. In comparison to the neat thin film composite membrane, the optimum TFN (Ti3C2Tx-TA) membrane with a loading of 0.008 wt % nanofiller revealed a 1.4-fold enhancement in water permeability, a well-maintained high NaCl rejection rate of 96% in a dead-end process, and enhanced anti-fouling tendency. This research offers a facile way for the development of modified MXene nanosheets to be successfully integrated into the polyamide-selective layer to improve the performance and fouling resistance of TFN membranes.
Collapse
Affiliation(s)
- Kiyoumars Zarshenas
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada
| | - Haozhen Dou
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada
| | - Saeed Habibpour
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada
| | - Aiping Yu
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada
| | - Zhongwei Chen
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
28
|
Kuzminova A, Dmitrenko M, Zolotarev A, Korniak A, Poloneeva D, Selyutin A, Emeline A, Yushkin A, Foster A, Budd P, Ermakov S. Novel Mixed Matrix Membranes Based on Polymer of Intrinsic Microporosity PIM-1 Modified with Metal-Organic Frameworks for Removal of Heavy Metal Ions and Food Dyes by Nanofiltration. MEMBRANES 2021; 12:membranes12010014. [PMID: 35054540 PMCID: PMC8782022 DOI: 10.3390/membranes12010014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022]
Abstract
Nowadays, nanofiltration is widely used for water treatment due to its advantages, such as energy-saving, sustainability, high efficiency, and compact equipment. In the present work, novel nanofiltration membranes based on the polymer of intrinsic microporosity PIM-1 modified by metal-organic frameworks (MOFs)-MIL-140A and MIL-125-were developed to increase nanofiltration efficiency for the removal of heavy metal ions and dyes. The structural and physicochemical properties of the developed PIM-1 and PIM-1/MOFs membranes were studied by the spectroscopic technique (FTIR), microscopic methods (SEM and AFM), and contact angle measurement. Transport properties of the developed PIM-1 and PIM-1/MOFs membranes were evaluated in the nanofiltration of the model and real mixtures containing food dyes and heavy metal ions. It was found that the introduction of MOFs (MIL-140A and MIL-125) led to an increase in membrane permeability. It was demonstrated that the membranes could be used to remove and concentrate the food dyes and heavy metal ions from model and real mixtures.
Collapse
Affiliation(s)
- Anna Kuzminova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (A.K.); (D.P.); (A.S.); (A.E.); (S.E.)
- Correspondence: ; Tel.: +7-(812)363-60-00
| | - Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (A.K.); (D.P.); (A.S.); (A.E.); (S.E.)
| | - Andrey Zolotarev
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (A.K.); (D.P.); (A.S.); (A.E.); (S.E.)
| | - Aleksandra Korniak
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (A.K.); (D.P.); (A.S.); (A.E.); (S.E.)
| | - Daria Poloneeva
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (A.K.); (D.P.); (A.S.); (A.E.); (S.E.)
| | - Artem Selyutin
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (A.K.); (D.P.); (A.S.); (A.E.); (S.E.)
| | - Alexei Emeline
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (A.K.); (D.P.); (A.S.); (A.E.); (S.E.)
| | - Alexey Yushkin
- A. V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Prospekt, 119991 Moscow, Russia;
| | - Andrew Foster
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (A.F.); (P.B.)
| | - Peter Budd
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (A.F.); (P.B.)
| | - Sergey Ermakov
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (A.K.); (D.P.); (A.S.); (A.E.); (S.E.)
| |
Collapse
|
29
|
Tailored thin film nanocomposite membrane incorporated with Noria for simultaneously overcoming the permeability-selectivity trade-off and the membrane fouling in nanofiltration process. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119863] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Fang X, Gan L, Wang L, Gong H, Xu L, Wu Y, Lu H, Han S, Cui J, Xia C. Enhanced degradation of bisphenol A by mixed ZIF derived CoZn oxide encapsulated N-doped carbon via peroxymonosulfate activation: The importance of N doping amount. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126363. [PMID: 34174625 DOI: 10.1016/j.jhazmat.2021.126363] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/21/2021] [Accepted: 06/07/2021] [Indexed: 05/28/2023]
Abstract
In this study, mixed metal cobalt zinc oxide embedded nitrogen enriched porous carbon composites (CoZnO-PC) were prepared via pyrolyzing polyvinylpyrrolidone (PVP) encapsulated Co, Zn-bimetal centered zeolitic imidazolate frameworks (ZIF). The prepared composites were then used to activate peroxymonosulfate (PMS) for bisphenol A (BPA) removal in water. When mole ratio of Co/Zn was 2/1, the resulted Co2Zn1O-PC possessed spinel structure with prominent degradation capability, in which the introduction of Zn accelerated the PMS activation performance of Co through establishing bimetal synergistic interactions. Both radical and non-radical activation pathways were existed in the Co2Zn1O-PC/PMS system, in which Co2Zn1O dominated the radical pathway whereas PC dominated the non-radical way. Since PVP contained abundant nitrogen atoms and could form strong coordination interactions with the ZIF precursor, the introduction of PVP in the ZIF precursor prevented pore collapsing during pyrolysis process, as well as enhancing the nitrogen content in the pyrolzed composites, which significantly promoted the generation of singlet oxygen. With combined pathways, the Co2Zn1O-PC/PMS system showed a wide pH application range with promising mineralization rate. Meanwhile, the spinel-structured Co2Zn1O-PC was magnetically separable with desirable recyclability. This study presents a novel composite with remarkable performance for the removal of refractory organic pollutants in municipal wastewater.
Collapse
Affiliation(s)
- Xingyu Fang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu, People's Republic of China
| | - Lu Gan
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu, People's Republic of China.
| | - Linjie Wang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu, People's Republic of China
| | - Han Gong
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642 Guangdong, People's Republic of China
| | - Lijie Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu, People's Republic of China
| | - Ying Wu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu, People's Republic of China
| | - Haiqin Lu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu, People's Republic of China
| | - Shuguang Han
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu, People's Republic of China
| | - Juqing Cui
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu, People's Republic of China
| | - Changlei Xia
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu, People's Republic of China
| |
Collapse
|
31
|
|
32
|
Zhang T, Li P, Ding S, Wang X. High permeability composite nanofiltration membrane assisted by introducing TpPa covalent organic frameworks interlayer with nanorods for desalination and NaCl/dye separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118802] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Structurally ordered nanofiltration membranes prepared by spatially anchoring interfacial polymerization for highly efficient separation properties. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0837-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
El-Naggar ME, Aldalbahi A, Khattab TA, Hossain M. Facile production of smart superhydrophobic nanocomposite for wood coating towards long-lasting glow-in-the-dark photoluminescence. LUMINESCENCE 2021; 36:2004-2013. [PMID: 34453772 DOI: 10.1002/bio.4137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 01/23/2023]
Abstract
A smart photoluminescent nanocomposite surface coating was prepared for simple industrial production of long-persisting phosphorescence and superhydrophobic wood. The photoluminescent nanocomposite coatings were capable of continuing to emit light in the dark for prolonged time periods that could reach 1.5 h. Lanthanide-doped aluminium strontium oxide (LASO) nanoparticles at different ratios were immobilized in polystyrene (PS) and developed as a nanocomposite coating for wood substrates. To produce transparency in the prepared nanocomposite coating, LASO was efficiently dispersed in the form of nanoscaled particles to ensure homogeneous dispersion without agglomeration in the PS matrix. The coated wood showed an absorption band at 374 nm and two emission bands at 434 nm and 518 nm. The luminescence spectra showed both long-persisting phosphorescence as well as photochromic fluorescence relying on the LASO ratio. The improved superhydrophobicity and resistance to scratching of the coated wood could be attributed to the LASO NPs incorporated in the polystyrene matrix. Compared with the uncoated wood substrate, the coated LASO-PS nanocomposite film also displayed photostability and high durability. The current study demonstrated the potential high-scale manufacturing of smart wood for some applications such as safety directional signs in buildings, household products, and smart windows.
Collapse
Affiliation(s)
- Mehrez E El-Naggar
- Textile Research Division, National Research Center (Affiliation ID: 60014618), Dokki, Cairo, Egypt
| | - Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tawfik A Khattab
- Textile Research Division, National Research Center (Affiliation ID: 60014618), Dokki, Cairo, Egypt
| | - Mokarram Hossain
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, UK
| |
Collapse
|
35
|
Zhang R, Zhu Y, Zhang L, Lu Y, Yang Z, Zhang Y, Jin J. Polyamide Nanofiltration Membranes from Surfactant‐Assembly Regulated Interfacial Polymerization: The Effect of Alkyl Chain. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Ruolin Zhang
- i‐Lab Chinese Academy of Sciences Suzhou Institute of Nano‐Tech and Nano‐Bionics Suzhou 215123 China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Yuzhang Zhu
- i‐Lab Chinese Academy of Sciences Suzhou Institute of Nano‐Tech and Nano‐Bionics Suzhou 215123 China
| | - Liufu Zhang
- i‐Lab Chinese Academy of Sciences Suzhou Institute of Nano‐Tech and Nano‐Bionics Suzhou 215123 China
| | - Yang Lu
- i‐Lab Chinese Academy of Sciences Suzhou Institute of Nano‐Tech and Nano‐Bionics Suzhou 215123 China
| | - Zhao Yang
- i‐Lab Chinese Academy of Sciences Suzhou Institute of Nano‐Tech and Nano‐Bionics Suzhou 215123 China
| | - Yatao Zhang
- School of Chemical Engineering and Energy Zhengzhou University Zhengzhou 450001 China
| | - Jian Jin
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
- College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| |
Collapse
|
36
|
Zhang J, Li S, Ren D, Li H, Lv X, Han L, Su B. Fabrication of ultra-smooth thin-film composite nanofiltration membrane with enhanced selectivity and permeability on interlayer of hybrid polyvinyl alcohol and graphene oxide. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118649] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
37
|
Wu X, Yang L, Meng F, Shao W, Liu X, Li M. ZIF-8-incorporated thin-film nanocomposite (TFN) nanofiltration membranes: Importance of particle deposition methods on structure and performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119356] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Chew YT, Yong WF. Recent advances of thin film nanocomposite membranes: Effects of shape/structure of nanomaterials and interfacial polymerization methods. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Liao Z, Zhu J, Li X, Van der Bruggen B. Regulating composition and structure of nanofillers in thin film nanocomposite (TFN) membranes for enhanced separation performance: A critical review. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118567] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
40
|
Shukla AK, Alam J, Alhoshan MS, Ali FAA, Mishra U, Hamid AA. Thin-Film Nanocomposite Membrane Incorporated with Porous Zn-Based Metal-Organic Frameworks: Toward Enhancement of Desalination Performance and Chlorine Resistance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28818-28831. [PMID: 34105354 DOI: 10.1021/acsami.1c05469] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal-organic framework (MOF) materials have received extensive attention for the design of advanced thin-film nanocomposite (TFN) membranes with excellent permselectivity. However, the relationship between the unique physicochemical properties and performance of engineered MOF-based membranes has yet to be extensively investigated. In this work, we investigate the incorporation of porous zinc-based MOFs (Zn-MOFs) into a polyamide active layer for the fabrication of TFN membranes on porous poly(phenylsulfone) (PPSU) support layers through an interfacial polymerization approach. The actual effects of varying the amount of Zn-MOF added as a nanofiller on the physicochemical properties and desalination performance of TFN membranes are studied. The presence and layout of Zn-MOFs on the top layer of the membranes were confirmed by X-ray photoelectron spectroscopy, scanning electron microscopy, and ζ potential analysis. The characterization results revealed that Zn-MOFs strongly bind with polyamide and significantly change the membrane chemistry and morphology. The results indicate that all four studied TFN membranes with incorporated Zn-MOFs enhanced the water permeability while retaining high salt rejection compared to a thin-film composite membrane. Moreover, the highest-performing membrane (50 mg/L Zn-MOF added nanofiller) not only exhibited a water permeability of 2.46 ± 0.12 LMH/bar but also maintained selectivity to reject NaCl (>90%) and Na2SO4 (>95%), similar to benchmark values. Furthermore, the membranes showed outstanding water stability throughout 72 h filtration and chlorine resistance after a 264 h chlorine-soaking test because of the better compatibility between the polyamide and Zn-MOF nanofiller. Therefore, the developed TFN membrane has potential to solve trade-off difficulties between permeability and selectivity. Our findings indicate that porous Zn-MOFs play a significant role in the development of a TFN membrane with high desalination performance and chlorine resistance.
Collapse
Affiliation(s)
- Arun Kumar Shukla
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Javed Alam
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mansour Saleh Alhoshan
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- K.A. CARE Energy Research and Innovation Center at Riyadh, P.O. Box 2022, Riyadh 11451, Saudi Arabia
| | - Fekri Abdulraqeb Ahmed Ali
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Umesh Mishra
- Department of Civil Engineering, National Institute of Technology, Jirania, Agartala 799046, Tripura (W), India
| | - Ali Awadh Hamid
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
41
|
Xiao Z, Fan Z, Niu Y, Kou X. Construction of hollow proanthocyanidin cages as a novel delivery system using zeolitic imidazolate framework-8 sacrificial templates. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
42
|
Li P, Li YX, Wu YZ, Xu ZL, Zhang HZ, Gao P, Xu SJ. Thin-film nanocomposite NF membrane with GO on macroporous hollow fiber ceramic substrate for efficient heavy metals removal. ENVIRONMENTAL RESEARCH 2021; 197:111040. [PMID: 33771510 DOI: 10.1016/j.envres.2021.111040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/06/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
The ceramic membrane has been widely used in the wastewater treatment based on the chemical resistance and superior separation performance. A robust and defect-free thin-film nanocomposite (TFN) nanofiltration (NF) membrane on the macroporous hollow fiber ceramic (HFC) substrate was novelly developed for heavy metals removal. Before interfacial polymerization (IP), the aqueous solution of graphene oxide (GO) grafted with ethylenediamine (EDA) was deposited on the HFC substrate by vacuum filtration. Then, a thin polyamide (PA) film was fabricated by EDA and 1,3,5-trimesoyl chloride (TMC), followed by heat treatment. The effects of GO content and EDA concentration on the performance of the NF membrane have been systematically investigated. The results showed that when the GO content was 0.015 mg·mL-1 and the EDA concentration was 0.75 wt.%, the as-prepared eGO3/PA-HFC membrane had a rejection rate of 94.12% for MgCl2 and a pure water flux of 18.03 L·m-2·h-1. Additionally, the removal ability of eGO3/PA-HFC membranes for heavy metal ions was satisfactory (93.33%, 92.73%, 90.45% and 88.35% for Zn2+, Cu2+, Ni2+ and Pb2+, respectively). The study explored further that it was efficient and stable for heavy metal ions removal during 30 h in the simulated tap water and mining wastewater, which indicated that the eGO/PA-HFC membrane has great application potential in wastewater treatment.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yu-Xuan Li
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yu-Zhe Wu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Hai-Zhen Zhang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Peng Gao
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Sun-Jie Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
43
|
Shah AA, Park A, Yoo Y, Nam SE, Park YI, Cho YH, Park H. Preparation of highly permeable nanofiltration membranes with interfacially polymerized biomonomers. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
44
|
Novel Pervaporation Membranes Based on Biopolymer Sodium Alginate Modified by FeBTC for Isopropanol Dehydration. SUSTAINABILITY 2021. [DOI: 10.3390/su13116092] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Modern society strives for the development of sustainable processes that are aimed at meeting human needs while preserving the environment. Membrane technologies satisfy all the principles of sustainability due to their advantages, such as cost-effectiveness, environmental friendliness, absence of additional reagents and ease of use compared to traditional separation methods. In the present work, novel green membranes based on sodium alginate (SA) modified by a FeBTC metal–organic framework were developed for isopropanol dehydration using a membrane process, pervaporation. Two kinds of SA-FeBTC membranes were developed: (1) untreated membranes and (2) cross-linked membranes with citric acid or phosphoric acid. The structural and physicochemical properties of the developed SA-FeBTC membranes were studied by spectroscopic techniques (FTIR and NMR), microscopic methods (SEM and AFM), thermogravimetric analysis and swelling experiments. The transport properties of developed SA-FeBTC membranes were studied in the pervaporation of water–isopropanol mixtures. Based on membrane transport properties, 15 wt % FeBTC was demonstrated to be the optimal content of the modifier in the SA matrix for the membrane performance. A membrane based on SA modified by 15 wt % FeBTC and cross-linked with citric acid possessed optimal transport properties for the pervaporation of the water–isopropanol mixture (12–100 wt % water): 174–1584 g/(m2 h) permeation flux and 99.99 wt % water content in the permeate.
Collapse
|
45
|
Ou C, Li S, Wang Z, Qin J, Wang Q, Liao Z, Li J. Organic Nanobowls Modified Thin Film Composite Membrane for Enhanced Purification Performance toward Different Water Resources. MEMBRANES 2021; 11:membranes11050350. [PMID: 34068612 PMCID: PMC8151631 DOI: 10.3390/membranes11050350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
The structure and composition of nanofillers have a significant influence on polyamide nanofiltration (NF) membranes. In this work, an asymmetric organic nanobowl containing a concave cavity was synthesized and incorporated into a polyamide layer to prepare thin film nanocomposite (TFN) membranes via an interfacial polymerization process. Benefiting from the hydrophilicity, hollow cavity and charge property of the compatible organic nanobowls, the separation performance of the developed TFN membrane was significantly improved. The corresponding water fluxes increased to 119.44 ± 5.56, 141.82 ± 3.24 and 130.27 ± 2.05 L/(m2·h) toward Na2SO4, MgCl2 and NaCl solutions, respectively, with higher rejections, compared with the control thin film composite (TFC) and commercial (CM) membranes. Besides this, the modified TFN membrane presented a satisfying purification performance toward tap water, municipal effluent and heavy metal wastewater. More importantly, a better antifouling property of the TFN membrane than TFC and CM membranes was achieved with the assistance of organic nanobowls. These results indicate that the separation performance of the TFN membrane can be elevated by the incorporation of organic nanobowls.
Collapse
Affiliation(s)
- Changjin Ou
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 222100, China; (C.O.); (S.L.); (Z.W.); (J.Q.)
| | - Sisi Li
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 222100, China; (C.O.); (S.L.); (Z.W.); (J.Q.)
| | - Zhongyi Wang
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 222100, China; (C.O.); (S.L.); (Z.W.); (J.Q.)
| | - Juan Qin
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 222100, China; (C.O.); (S.L.); (Z.W.); (J.Q.)
| | - Qian Wang
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China;
| | - Zhipeng Liao
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 222100, China; (C.O.); (S.L.); (Z.W.); (J.Q.)
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Correspondence: (Z.L.); (J.L.)
| | - Jiansheng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Correspondence: (Z.L.); (J.L.)
| |
Collapse
|
46
|
Zhao B, Guo Z, Wang H, Wang L, Qian Y, Long X, Ma C, Zhang Z, Li J, Zhang H. Enhanced water permeance of a polyamide thin-film composite nanofiltration membrane with a metal-organic framework interlayer. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119154] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Xu C, Chen Y. Understanding water and solute transport in thin film nanocomposite membranes by resistance-in-series theory combined with Monte Carlo simulation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Sustainable composite pervaporation membranes based on sodium alginate modified by metal organic frameworks for dehydration of isopropanol. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119194] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
49
|
Le T, Chen X, Dong H, Tarpeh W, Perea-Cachero A, Coronas J, Martin SM, Mohammad M, Razmjou A, Esfahani AR, Koutahzadeh N, Cheng P, Kidambi PR, Esfahani MR. An Evolving Insight into Metal Organic Framework-Functionalized Membranes for Water and Wastewater Treatment and Resource Recovery. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00543] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Tin Le
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Xi Chen
- Department of Chemical Engineering, Stanford University, Stanford, California 94305-6104, United States
| | - Hang Dong
- Department of Chemical Engineering, Stanford University, Stanford, California 94305-6104, United States
| | - William Tarpeh
- Department of Chemical Engineering, Stanford University, Stanford, California 94305-6104, United States
| | - Adelaida Perea-Cachero
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50018, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza, 50018, Spain
| | - Joaquín Coronas
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50018, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza, 50018, Spain
| | - Stephen M. Martin
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Munirah Mohammad
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Amir Razmjou
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Amirsalar R. Esfahani
- Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0002, United States
| | - Negin Koutahzadeh
- Environmental Health & Safety, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Peifu Cheng
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Piran R. Kidambi
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Milad Rabbani Esfahani
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
50
|
Qiu T, Gao S, Liang Z, Wang D, Tabassum H, Zhong R, Zou R. Pristine Hollow Metal–Organic Frameworks: Design, Synthesis and Application. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012699] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tianjie Qiu
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Song Gao
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials School of Materials Science and Engineering Peking University Beijing 100871 China
- Institute of Clean Energy Peking University Beijing 100871 P. R. China
| | - Zibin Liang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials School of Materials Science and Engineering Peking University Beijing 100871 China
| | - De‐Gao Wang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Hassina Tabassum
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Ruiqin Zhong
- Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing 102249 China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials School of Materials Science and Engineering Peking University Beijing 100871 China
- Institute of Clean Energy Peking University Beijing 100871 P. R. China
| |
Collapse
|