1
|
Huang LA, Xu Y, Song Y, Xie H, Zhong W. Local electronic structure engineering of vanadium-doped nickel phosphide nanosheet arrays for efficient hydrogen evolution. J Colloid Interface Sci 2024; 658:383-391. [PMID: 38113547 DOI: 10.1016/j.jcis.2023.12.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Local electronic structure engineering is an effective approach for optimizing the catalytic performance of electrocatalysts. Herein, a dual-phase vanadium-doped nickel phosphide (NiVxP) catalyst supported on nickel foam (NF) was synthesized via a successive hydrothermal and phosphorization process with interconnected nanosheet structures and homogeneous distributions. The catalyst's stable phase and strong adhesion to the substrate ensure good electrochemical stability. The incorporation of V effectively promotes initial H2O adsorption and H* formation, leading to a lower overpotential. As a result, the fabricated NiVxP@NF demonstrates favorable hydrogen evolution reaction (HER) activity and stability, with only 85 mV overpotential needed to reach 10 mA·cm-2 and showing no significant increase in the overpotential during the long-term 78-hour stability test.
Collapse
Affiliation(s)
- Liang-Ai Huang
- School of Materials Science and Engineering, Taizhou University, Taizhou 318000, PR China
| | - Yue Xu
- School of Materials Science and Engineering, Taizhou University, Taizhou 318000, PR China
| | - Yilin Song
- School of Materials Science and Engineering, Taizhou University, Taizhou 318000, PR China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou City, Zhejiang Province 310003, PR China
| | - Wenwu Zhong
- School of Materials Science and Engineering, Taizhou University, Taizhou 318000, PR China.
| |
Collapse
|
2
|
Keshipour S, Eyvari‐Ashnak F. Nitrogen‐Doped Electrocatalysts, and Photocatalyst in Water Splitting: Effects, and Doping Protocols. ChemElectroChem 2023. [DOI: 10.1002/celc.202201153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Sajjad Keshipour
- Department of Nanotechnology, Faculty of Chemistry Urmia University Urmia 5756151818 Iran
| | - Faezeh Eyvari‐Ashnak
- Department of Nanotechnology, Faculty of Chemistry Urmia University Urmia 5756151818 Iran
| |
Collapse
|
3
|
Interfacial Electronic Engineering of NiSe–Anchored Ni–N–C Composite Electrocatalyst for Efficient Hydrogen Evolution. Catalysts 2022. [DOI: 10.3390/catal12121525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Rational design and construction of cost–effective electrocatalysts for efficient hydrogen production has attracted extensive research attention worldwide. Herein, we report the construction of a transition metal selenide/carbon composite catalyst featuring uniform NiSe nanoparticles anchored to single Ni atom doped porous carbon structure (NiSe/Ni–N–C) via a facile one–pot pyrolysis of low–cost solid mixtures. NiSe/Ni–N–C exhibits remarkable catalytic performance towards hydrogen evolution reaction (HER) in 1.0 M KOH, requiring a low overpotential of 146 mV to reach a current density of 10 mA cm−2. The unique carbon layer encapsulation derived from the enwrapping of fluid catalytic cracking slurry further renders NiSe/Ni–N–C excellent for long–term durability in electrolyte corrosion and nanostructure aggregation. This work paves the way for the design and synthesis of highly efficient composite HER electrocatalysts.
Collapse
|
4
|
Li X, Liang H, Liu X, Zhang Y, Liu Z, Fan H. Zeolite Imidazolate Frameworks (ZIFs) Derived Nanomaterials and their Hybrids for Advanced Secondary Batteries and Electrocatalysis. CHEM REC 2022; 22:e202200105. [PMID: 35959942 DOI: 10.1002/tcr.202200105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 11/07/2022]
Abstract
Zeolite imidazolate frameworks (ZIFs), as a typical class of metal-organic frameworks (MOFs), have attracted a great deal of attention in the field of energy storage and conversation due to their chemical structure stability, facile synthesis and environmental friendliness. Among of ZIFs family, the zinc-based imidazolate framework (ZIF-8) and cobalt-based imidazolate framework (ZIF-67) have considered as promising ZIFs materials, which attributed to their tunable porosity, stable structure, and desirable electrical conductivity. To date, various ZIF-8 and ZIF67 derived materials, including carbon materials, metal oxides, sulfides, selenides, carbides and phosphides, have been successfully synthesized using ZIFs as templates and evaluated as promising electrode materials for secondary batteries and electrocatalysis. This review provides an effective guide for the comprehension of the performance optimization and application prospects of ZIFs derivatives, specifically focusing on the optimization of structure and their application in secondary batteries and electrocatalysis. In detail, we present recent advances in the improvement of electrochemical performance of ZIF-8, ZIF-67 and ZIF-8@ZIF-67 derived nanomaterials and their hybrids, including carbon materials, metal oxides, carbides, oxides, sulfides, selenides, and phosphides for high-performance secondary batteries and electrocatalysis.
Collapse
Affiliation(s)
- Xiaotong Li
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang, 550025, China.,School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Huajian Liang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xinlong Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yufei Zhang
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang, 550025, China
| | - Zili Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Haosen Fan
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
5
|
An S, Shang N, Zhang J, Nsabimana A, Su M, Zhang S, Zhang Y. Fabrication of electrocatalytically active, cobalt-embedded nitrogen-doped ordered macroporous carbon for sensitive detection of nitrobenzene. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
In Situ Growth of NiSe2-MoSe2 Heterostructures on Graphene Nanosheets as High-Performance Electrocatalyst for Hydrogen Evolution Reaction. Catalysts 2022. [DOI: 10.3390/catal12070701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Developing highly efficient and stable electrocatalysts for hydrogen evolution reaction (HER) is regarded as a crucial way to reduce energy loss in water splitting. Herein, NiSe2/MoSe2 heterostructures grown on graphene nanosheets (NiSe2-MoSe2 HTs/G) have been in situ synthesized by a simple hydrothermal reaction. As an electrocatalyst for HER, NiSe2-MoSe2 HTs/G delivers superior performance with a low Tafel slope of 65 mV dec−1, a small overpotential of 144 mV at 10 mA cm−2, and long-term stability up to 24 h. The superior performance for HER can be mainly ascribed to the synergistic effects of NiSe2-MoSe2 heterostructures, which can facilitate the rapid electron transfer from the electrode to the exposed MoSe2 edges to take part in the HER reaction, thus boosting the HER kinetics. Moreover, the graphene matrix with high conductivity can not only improve the overall conductivity of the composite but also greatly increase the exposed active sites, therefore further promoting the HER performance. This study provides a simple route for fabricating bimetallic selenides-based heterostructures on graphene as an efficient and stable electrocatalyst for HER.
Collapse
|
7
|
Yu H, Xie Y, Deng L, Huang H, Song J, Yu D, Li L, Peng S. In situ construction of FeNi2Se4-FeNi LDH heterointerfaces with electron redistribution for enhanced overall water splitting. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01185e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The abundant heterogeneous interfaces between the FeNi2Se4 and FeNi LDH can provide enriched active sites and accelerate reaction kinetics, which improves the overall water splitting performance.
Collapse
Affiliation(s)
- Hanzhi Yu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yaoyi Xie
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Liming Deng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Hongjiao Huang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Junnan Song
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Deshuang Yu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
8
|
Pan Y, Huang X, Huang Y, Sheng C, Wang X. Robust NiCoP@FeP derived from Prussian blue analog for efficient overall water splitting. CrystEngComm 2022. [DOI: 10.1039/d2ce00723a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design of efficient, stable, and non-noble metal based bifunctional electrocatalysts remains a great challenge. The synergistic effect can adjust the local electronic structure to improve the catalytic performance. In...
Collapse
|
9
|
Tripathy RK, Samantara AK, Mane P, Chakraborty B, Behera JN. Cobalt metal organic framework (Co-MOF) derived CoSe 2/C hybrid nanostructures for the electrochemical hydrogen evolution reaction supported by DFT studies. NEW J CHEM 2022. [DOI: 10.1039/d1nj05528c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Through a single step and facile approach, CoSe2/C is synthesized from a HER inactive pristine MOF without adding any external carbon source, which efficiently catalyses HER in acidic medium which was also supported by DFT studies.
Collapse
Affiliation(s)
- Rajat K. Tripathy
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), P. O. Jatni, Khurda 752050, Odisha, India
- Homi Bhabha National Institute (HBNI), Mumbai-400094, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Odisha, 752050, India
| | - Aneeya K. Samantara
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), P. O. Jatni, Khurda 752050, Odisha, India
- Homi Bhabha National Institute (HBNI), Mumbai-400094, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Odisha, 752050, India
| | - Pratap Mane
- Seismology Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
| | - Brahmananda Chakraborty
- Homi Bhabha National Institute (HBNI), Mumbai-400094, India
- High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
| | - J. N. Behera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), P. O. Jatni, Khurda 752050, Odisha, India
- Homi Bhabha National Institute (HBNI), Mumbai-400094, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Odisha, 752050, India
| |
Collapse
|
10
|
W-induced morphological modification of NiFe layered double hydroxides as efficient electrocatalysts for overall water splitting. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139199] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Huang S, Wu Y, Fu J, Xin P, Zhang Q, Jin Z, Zhang J, Hu Z, Chen Z. Hierarchical CoFe LDH/MOF nanorods array with strong coupling effect grown on carbon cloth enables efficient oxidation of water and urea. NANOTECHNOLOGY 2021; 32:385405. [PMID: 34130269 DOI: 10.1088/1361-6528/ac0b65] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/15/2021] [Indexed: 06/12/2023]
Abstract
Oxygen evolution reaction (OER) and urea oxidation reaction (UOR) play important roles in the fields of hydrogen energy production and pollution treatment. Herein, a facile one-step chemical etching strategy is provided for fabricating one-dimensional hierarchical nanorods array composed of CoFe layered double hydroxide (LDH)/metal-organic frameworks (MOFs) supported on carbon cloth as efficient and stable OER and UOR catalysts. By precisely controlling the etching rate, the ligands from Co-MOFs are partially removed, the corresponding metal centers then coordinate with hydroxyl ions to generate ultrathin amorphous CoFe LDH nanosheets. The resultant CoFe LDH/MOFs catalyst possesses large active surface area, enhanced conductivity and extended electron/mass transfer channels, which are beneficial for catalytic reactions. Additionally, the intimate contact between CoFe LDH and MOFs modulates the local electronic structure of the catalytic active site, leading to enhanced adsorption of oxygen-containing intermediates to facilitate fast electrocatalytic reaction. As a result, the optimized CoFe LDH/MOF-0.06 exhibits superior OER activity with a low overpotential of 276 at a current density of 10 mA cm-2with long-term durability. Additionally, it merely requires a voltage of 1.45 V to obtain 10 mA cm-2in 1 M KOH solution with 0.33 urea and is 56 mV lower than the one in pure KOH. The work presented here may hew out a brand-new route to construct multi-functional electrocatalysts for water splitting, CO2reduction, nitrogen reduction reactions and so on.
Collapse
Affiliation(s)
- Shoushuang Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Ye Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Jie Fu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Peijun Xin
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Qian Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Zhiqiang Jin
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Jie Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Zhangjun Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
- Division of Molecular Surface Physics & Nanoscience, Department of Physics, Chemistry and Biology, Linköping University, Linköping, SE 58183, Sweden
| | - Zhiwen Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
12
|
Zhang B, Zheng Y, Ma T, Yang C, Peng Y, Zhou Z, Zhou M, Li S, Wang Y, Cheng C. Designing MOF Nanoarchitectures for Electrochemical Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006042. [PMID: 33749910 PMCID: PMC11468660 DOI: 10.1002/adma.202006042] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/18/2020] [Indexed: 02/05/2023]
Abstract
Electrochemical water splitting has attracted significant attention as a key pathway for the development of renewable energy systems. Fabricating efficient electrocatalysts for these processes is intensely desired to reduce their overpotentials and facilitate practical applications. Recently, metal-organic framework (MOF) nanoarchitectures featuring ultrahigh surface areas, tunable nanostructures, and excellent porosities have emerged as promising materials for the development of highly active catalysts for electrochemical water splitting. Herein, the most pivotal advances in recent research on engineering MOF nanoarchitectures for efficient electrochemical water splitting are presented. First, the design of catalytic centers for MOF-based/derived electrocatalysts is summarized and compared from the aspects of chemical composition optimization and structural functionalization at the atomic and molecular levels. Subsequently, the fast-growing breakthroughs in catalytic activities, identification of highly active sites, and fundamental mechanisms are thoroughly discussed. Finally, a comprehensive commentary on the current primary challenges and future perspectives in water splitting and its commercialization for hydrogen production is provided. Hereby, new insights into the synthetic principles and electrocatalysis for designing MOF nanoarchitectures for the practical utilization of water splitting are offered, thus further promoting their future prosperity for a wide range of applications.
Collapse
Affiliation(s)
- Ben Zhang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Yijuan Zheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Tian Ma
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
- West China School of Medicine/West China HospitalSichuan UniversityChengdu610041China
| | - Chengdong Yang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Yifei Peng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Zhihao Zhou
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Mi Zhou
- College of Biomass Science and EngineeringSichuan UniversityChengdu610065China
| | - Shuang Li
- Functional MaterialsDepartment of ChemistryTechnische Universität BerlinHardenbergstraße 4010623BerlinGermany
| | - Yinghan Wang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
- Department of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| |
Collapse
|
13
|
Han W, Li M, Ma Y, Yang J. Cobalt-Based Metal-Organic Frameworks and Their Derivatives for Hydrogen Evolution Reaction. Front Chem 2020; 8:592915. [PMID: 33330381 PMCID: PMC7715014 DOI: 10.3389/fchem.2020.592915] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/07/2020] [Indexed: 11/19/2022] Open
Abstract
Hydrogen has been considered as a promising alternative energy to replace fossil fuels. Electrochemical water splitting, as a green and renewable method for hydrogen production, has been drawing more and more attention. In order to improve hydrogen production efficiency and lower energy consumption, efficient catalysts are required to drive the hydrogen evolution reaction (HER). Cobalt (Co)-based metal-organic frameworks (MOFs) are porous materials with tunable structure, adjustable pores and large specific surface areas, which has attracted great attention in the field of electrocatalysis. In this review, we focus on the recent progress of Co-based metal-organic frameworks and their derivatives, including their compositions, morphologies, architectures and electrochemical performances. The challenges and development prospects related to Co-based metal-organic frameworks as HER electrocatalysts are also discussed, which might provide some insight in electrochemical water splitting for future development.
Collapse
Affiliation(s)
| | | | - Yuanyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| |
Collapse
|
14
|
He B, Wang XC, Xia LX, Guo YQ, Tang YW, Zhao Y, Hao QL, Yu T, Liu HK, Su Z. Metal-Organic Framework-Derived Fe-Doped Co 1.11 Te 2 Embedded in Nitrogen-Doped Carbon Nanotube for Water Splitting. CHEMSUSCHEM 2020; 13:5239-5247. [PMID: 32667734 DOI: 10.1002/cssc.202001434] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 06/11/2023]
Abstract
A rational design is reported of Fe-doped cobalt telluride nanoparticles encapsulated in nitrogen-doped carbon nanotube frameworks (Fe-Co1.11 Te2 @NCNTF) by tellurization of Fe-etched ZIF-67 under a mixed H2 /Ar atmosphere. Fe-doping was able to effectively modulate the electronic structure of Co1.11 Te2 , increase the reaction activity, and further improve the electrochemical performance. The optimized electrocatalyst exhibited superior hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performances in an alkaline electrolyte with low overpotentials of 107 and 297 mV with a current density of 10 mA cm-2 , in contrast to the undoped Co1.11 Te2 @NCNTF (165 and 360 mV, respectively). The overall water splitting performance only required a voltage of 1.61 V to drive a current density of 10 mA cm-2 . Density function theory (DFT) calculations indicated that the Fe-doping not only afforded abundant exposed active sites but also decreased the hydrogen binding free energy. This work provided a feasible way to study non-precious-metal catalysts for an efficient overall water splitting.
Collapse
Affiliation(s)
- Bin He
- Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, P. R. China
- Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, P. R. China
| | - Xin-Chao Wang
- Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Li-Xue Xia
- Department of Chemistry, University of North Dakota, 151 Cornell St., Grand Forks, North Dakota, 58202, USA
- State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yue-Qi Guo
- Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Ya-Wen Tang
- Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Yan Zhao
- State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Qing-Li Hao
- Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, P. R. China
| | - Tao Yu
- Department of Chemistry, University of North Dakota, 151 Cornell St., Grand Forks, North Dakota, 58202, USA
| | - Hong-Ke Liu
- Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Zhi Su
- Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| |
Collapse
|
15
|
Maiti A. Cobalt-based heterogeneous catalysts in an electrolyzer system for sustainable energy storage. Dalton Trans 2020; 49:11430-11450. [PMID: 32662489 DOI: 10.1039/d0dt01469a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nowadays, the production of hydrogen and oxygen focuses on renewable energy techniques and sustainable energy storage. A substantial challenge is to extend low-cost electrocatalysts consisting of earth-abundant resources, prepared by straightforward approaches that display high intrinsic activity compared to noble metals. The expansion of bifunctional catalysts in alkaline electrolytes for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) has become very crucial in recent times. Herein, the recent progress in cobalt-based HER-OER electrocatalysts has been are brushed up and numerous bifunctional cobalt-based catalysts such as cobalt-oxides, phosphides, sulfides, selenides, nitrides, borides, carbides, perovskites, and MOF-based cobalt analogs have been investigated in detail. Specifically, much more attention has been paid to their structural variation, bifunctional activity, overpotential of the overall system, and stability. Cobalt-based catalysts with lower cell voltage, remarkable durability, and unique electronic structures, offer a new perspective in energy-related fields. In recent years, cobalt-based analogs with diagnostic facilities have been introduced due to their electronic structures, tunable d band structures, and tailorable active sites. This perspective also elucidates the present issues, promising ideas, and future forecasts for cobalt-based catalysts. The critical aspects of cobalt-based catalysts and the numerous opportunities, as discussed at the end, can possibly enrich the sustainable energy field.
Collapse
Affiliation(s)
- Anurupa Maiti
- Department of Chemistry, Indian Institute of Technology, Kharagpur-721302, India.
| |
Collapse
|
16
|
Zeolitic imidazolate framework derived cobalt oxide anchored bacterial cellulose: A good template with improved H2O adsorption ability and its enhanced hydrogen evolution performance. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
17
|
Zhao A, Xu G, Li Y, Jiang J, Wang C, Zhang X, Zhang S, Zhang L. MOF-Derived Hierarchical CoSe2 with Sheetlike Nanoarchitectures as an Efficient Bifunctional Electrocatalyst. Inorg Chem 2020; 59:12778-12787. [DOI: 10.1021/acs.inorgchem.0c01828] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Aihua Zhao
- Key Laboratory of Energy Materials Chemistry, Ministry of Education; Key Laboratory of Advanced Functional Materials, Autonomous Region; and Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Shengli Road No. 666, Urumqi 830046, China
| | - Guancheng Xu
- Key Laboratory of Energy Materials Chemistry, Ministry of Education; Key Laboratory of Advanced Functional Materials, Autonomous Region; and Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Shengli Road No. 666, Urumqi 830046, China
| | - Yang Li
- Key Laboratory of Energy Materials Chemistry, Ministry of Education; Key Laboratory of Advanced Functional Materials, Autonomous Region; and Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Shengli Road No. 666, Urumqi 830046, China
| | - Jiahui Jiang
- Key Laboratory of Energy Materials Chemistry, Ministry of Education; Key Laboratory of Advanced Functional Materials, Autonomous Region; and Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Shengli Road No. 666, Urumqi 830046, China
| | - Can Wang
- Key Laboratory of Energy Materials Chemistry, Ministry of Education; Key Laboratory of Advanced Functional Materials, Autonomous Region; and Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Shengli Road No. 666, Urumqi 830046, China
| | - Xiuli Zhang
- Key Laboratory of Energy Materials Chemistry, Ministry of Education; Key Laboratory of Advanced Functional Materials, Autonomous Region; and Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Shengli Road No. 666, Urumqi 830046, China
| | - Shuai Zhang
- Key Laboratory of Energy Materials Chemistry, Ministry of Education; Key Laboratory of Advanced Functional Materials, Autonomous Region; and Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Shengli Road No. 666, Urumqi 830046, China
| | - Li Zhang
- Key Laboratory of Energy Materials Chemistry, Ministry of Education; Key Laboratory of Advanced Functional Materials, Autonomous Region; and Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Shengli Road No. 666, Urumqi 830046, China
- School of Chemical Engineering, Xinjiang University, Shengli Road No. 666, Urumqi 830046, China
| |
Collapse
|
18
|
Ding H, Xu G, Zhang L, Wei B, Hei J, Chen L. A highly effective bifunctional catalyst of cobalt selenide nanoparticles embedded nitrogen-doped bamboo-like carbon nanotubes toward hydrogen and oxygen evolution reactions based on metal-organic framework. J Colloid Interface Sci 2020; 566:296-303. [PMID: 32007740 DOI: 10.1016/j.jcis.2020.01.096] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 10/25/2022]
|
19
|
Yang J, Niu Y, Huang J, Liu L, Qian X. N-doped C/CoSe2@Co–FeSe2 yolk-shell nano polyhedron as superior counter electrode catalyst for high-efficiency Pt-free dye-sensitized solar cell. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135333] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Feng W, Pang W, Xu Y, Guo A, Gao X, Qiu X, Chen W. Transition Metal Selenides for Electrocatalytic Hydrogen Evolution Reaction. ChemElectroChem 2019. [DOI: 10.1002/celc.201901623] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wenshuai Feng
- School of Physics and ElectronicsCentral South University Changsha Hunan 410083 P. R. China
| | - Wenbin Pang
- School of Physics and ElectronicsCentral South University Changsha Hunan 410083 P. R. China
| | - Yan Xu
- College of Chemistry and Chemical EngineeringCentral South University Changsha Hunan 410083 P. R. China
| | - Aimin Guo
- School of Physics and ElectronicsCentral South University Changsha Hunan 410083 P. R. China
| | - Xiaohui Gao
- School of Physics and ElectronicsCentral South University Changsha Hunan 410083 P. R. China
| | - Xiaoqing Qiu
- School of Physics and ElectronicsCentral South University Changsha Hunan 410083 P. R. China
- College of Chemistry and Chemical EngineeringCentral South University Changsha Hunan 410083 P. R. China
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied ChemistryChinese Academy Science Changchun Jilin 130022 P.R. China
| |
Collapse
|
21
|
Wang Y, Wang K, Zhang C, Zhu J, Xu J, Liu T. Solvent-Exchange Strategy toward Aqueous Dispersible MoS 2 Nanosheets and Their Nitrogen-Rich Carbon Sphere Nanocomposites for Efficient Lithium/Sodium Ion Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903816. [PMID: 31532922 DOI: 10.1002/smll.201903816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Major challenges in developing 2D transition-metal disulfides (TMDs) as anode materials for lithium/sodium ion batteries (LIBs/SIBs) lie in rational design and targeted synthesis of TMD-based nanocomposite structures with precisely controlled ion and electron transport. Herein, a general and scalable solvent-exchange strategy is presented for uniform dispersion of few-layer MoS2 (f-MoS2 ) from high-boiling-point solvents (N-methyl-2-pyrrolidone (NMP), N,N-dimethyl formaldehyde (DMF), etc.) into low-boiling-point solvents (water, ethanol, etc.). The solvent-exchange strategy dramatically simplifies high-yield production of dispersible MoS2 nanosheets as well as facilitates subsequent decoration of MoS2 for various applications. As a demonstration, MoS2 -decorated nitrogen-rich carbon spheres (MoS2 -NCS) are prepared via in situ growth of polypyrrole and subsequent pyrolysis. Benefiting from its ultrathin feature, largely exposed active surface, highly conductive framework and excellent structural integrity, the 2D core-shell architecture of MoS2 -NCS exhibits an outstanding reversible capacity and excellent cycling performance, achieving high initial discharge capacity of 1087.5 and 508.6 mA h g-1 at 0.1 A g-1 , capacity retentions of 95.6% and 94.2% after 500 and 250 charge/discharge cycles at 1 A g-1 , for lithium/sodium ion storages, respectively.
Collapse
Affiliation(s)
- Yufeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Kai Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Chao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jixin Zhu
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Jingsan Xu
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Tianxi Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
22
|
Jian X, Li S, Liu J, Zhou C, Guo S, Zhang P, Yang Y, Chen L. Three‐Dimensional Graphene‐Foam‐Supported Hierarchical Nickel Iron Phosphide Nanosheet Arrays as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting. ChemElectroChem 2019. [DOI: 10.1002/celc.201901420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xue Jian
- Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Shuo Li
- Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Jinzhe Liu
- Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Chencheng Zhou
- Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Shouzhi Guo
- Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Peilin Zhang
- Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Yun Yang
- Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Luyang Chen
- Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
23
|
Chandra Majhi K, Karfa P, Madhuri R. Bimetallic transition metal chalcogenide nanowire array: An effective catalyst for overall water splitting. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.106] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Wang Q, Astruc D. State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chem Rev 2019; 120:1438-1511. [DOI: 10.1021/acs.chemrev.9b00223] [Citation(s) in RCA: 894] [Impact Index Per Article: 149.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qi Wang
- ISM, UMR CNRS N°5255, University of Bordeaux, 351 Cours de la Libération, 33405 Talence Cedex, France
| | - Didier Astruc
- ISM, UMR CNRS N°5255, University of Bordeaux, 351 Cours de la Libération, 33405 Talence Cedex, France
| |
Collapse
|
25
|
Li W, Ma P, Chen F, Xu R, Cheng Z, Yin X, Lin Y, Wang L. CoSe2/porous carbon shell composites as high-performance catalysts toward tri-iodide reduction in dye-sensitized solar cells. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00859d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CoSe2/carbon shell composites with many active sites were developed as catalysts for I3− reduction in dye-sensitized solar cells with efficiency and stability exceeding those of Pt.
Collapse
Affiliation(s)
- Weidan Li
- State Key Laboratory of Chemical Resource Engineering
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Chemistry
- Beijing University of Chemical Technology
- Beijing 100029
| | - Pin Ma
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Photochemistry
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Fanfan Chen
- State Key Laboratory of Chemical Resource Engineering
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Chemistry
- Beijing University of Chemical Technology
- Beijing 100029
| | - Rui Xu
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices
- Department of Physics
- Renmin University of China
- Beijing 100872
- P. R. China
| | - Zhihai Cheng
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices
- Department of Physics
- Renmin University of China
- Beijing 100872
- P. R. China
| | - Xiong Yin
- State Key Laboratory of Chemical Resource Engineering
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Chemistry
- Beijing University of Chemical Technology
- Beijing 100029
| | - Yuan Lin
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Photochemistry
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Chemistry
- Beijing University of Chemical Technology
- Beijing 100029
| |
Collapse
|