1
|
Khan MA, Attique S, Ali N, Shehzad K, Gong N, Zhou N, Chen X, Li Z, Gao Y, Yan M, Qiu J, Ma Z, Xu B. Development of a Highly Sensitive and Stretchable Charge-Transfer Fiber Strain Sensor for Wearable Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54520-54528. [PMID: 39340431 DOI: 10.1021/acsami.4c07698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Wearable electronics have significantly advanced the development of highly stretchable strain sensors, which are essential for applications such as health monitoring, human-machine interfaces, and energy harvesting. Fiber-based sensors and polymeric materials are promising due to their flexibility and tunable properties, although balancing sensitivity and stretchability remains a challenge. This study introduces a novel composite strain sensor that combines poly(3-hexylthiophene) and tetrafluoro-tetracyanoquinodimethane to form a charge-transfer complex (CTC) with carbon nanotubes (CNTs) on a styrene-butadiene-styrene substrate. The CTC improves conductivity through effective charge transfer, while CNTs provide mechanical reinforcement and maintain conductive paths, preventing cracks under large strains. Purposefully introduced wrinkles in the structure enhance the detection of small strains. The sensor demonstrated a broad strain-sensing range from 0.01 to 200%, exhibiting high sensitivity to both minor and major deformations. Mechanical tests confirmed strong stress-strain performance, and electrical tests indicated significant conductivity improvements with CNT integration. These results highlight the potential of the sensor for applications in health monitoring, human-machine interfaces, and energy harvesting, effectively mimicking the tactile sensing abilities of human skin.
Collapse
Affiliation(s)
- Muhammad Anees Khan
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang Province, P.R. China
| | - Sanam Attique
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang Province, P.R. China
| | - Nasir Ali
- Research Center for Frontier and Fundamental Studies, Zhejiang Laboratory, Yuhang District, Hangzhou 311121, Zhejiang Province, P.R. China
| | - Khurram Shehzad
- Institute of Physics, Silesian University of Technology, Konarskiego 22B,44-100 Gliwice, Poland
| | - Nan Gong
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang Province, P.R. China
| | - Ningjing Zhou
- Research Center for Frontier and Fundamental Studies, Zhejiang Laboratory, Yuhang District, Hangzhou 311121, Zhejiang Province, P.R. China
| | - Xiangxiang Chen
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang Province, P.R. China
| | - Zicheng Li
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang Province, P.R. China
| | - Yang Gao
- Center for X-Mechanics, School of Aeronautics and Astronautics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, Zhejiang Province, P.R. China
| | - Mi Yan
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Key Laboratory of Novel Materials for Information Technology of Zhejiang Province, Zhejiang University, Hangzhou 310027, Zhejiang Province, P.R. China
| | - Jianrong Qiu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang Province, P.R. China
| | - Zhijun Ma
- Research Center for Frontier and Fundamental Studies, Zhejiang Laboratory, Yuhang District, Hangzhou 311121, Zhejiang Province, P.R. China
| | - Beibei Xu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang Province, P.R. China
| |
Collapse
|
2
|
Zou J, Chen X, Song B, Cui Y. Bionic Spider Web Flexible Strain Sensor Based on CF-L and Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38683945 DOI: 10.1021/acsami.4c02623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
At present, the preparation of laser-induced graphene (LIG) has become an important technology in sensor manufacturing. In the conventional preparation process, the CO2 laser is widely used; however, its experimental period is long and its efficiency needs to be improved. We propose an innovative strategy to improve the experimental efficiency. We use the machine learning method to accurately predict the preparation parameters of LIG, so as to optimize the experimental process. Different structures can lead to different sensor performances. The structure constructed by the CO2 laser is rough and has a large size, which can affect the performance of the sensor. Therefore, we propose for the first time an innovative method for intramembrane structure construction that combines the advantages of the CO2 laser and fiber laser (CF-L). With this CF-L method, we have successfully prepared a biomimetic, flexible strain sensor. This sensor not only maintains a high degree of sensitivity, but also has a more refined and optimized structure. The manufacturing process of the whole sensor is simple, economical, and durable and can be prepared in large quantities and can be used to detect the extension and bending of human joints.
Collapse
Affiliation(s)
- Jixu Zou
- School of Chemistry and Materials Science, Ludong University, No.186, Middle Hongqi Road, Zhifu District, Yantai, Shandong 264025, China
| | | | - Bao Song
- College of Transportation, Ludong University, No.186, Middle Hongqi Road, Zhifu District, Yantai, Shandong 264025, China
| | - Yuming Cui
- School of Chemistry and Materials Science, Ludong University, No.186, Middle Hongqi Road, Zhifu District, Yantai, Shandong 264025, China
| |
Collapse
|
3
|
Li X, Gao X, Yao D, Chen J, Lu C, Pang X. Flexible Sensors with a Multilayer Interlaced Tunnel Architecture for Distinguishing Different Strains. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38044869 DOI: 10.1021/acsami.3c14210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The diversity of body joints and the complexity of joint motions cause flexible strain sensors to undergo complex strains such as stretching, compression, bending, and extrusion, which results in sensors that do not recognize different strains, facing great challenges in detecting the true motion characteristics of joints. Here, the monitoring of body joints' real motion characteristics has been realized by the sensor that can output response signals with different resistance trends for different strains. The sensor prepared by the sacrificial template method is characterized by a multilayered interlaced tunnel architecture and carbon black embedded in the inner wall of the tunnel. Stretching, compressive, and bending strains result in increasing, decreasing, and increasing resistance, followed by a decrease in resistance of the sensor, respectively. The sensor can still output distinguishable response signals, even in the presence of complex strains induced by squeezing. Low strain detection limits (0.03%) and wide detection ranges (>600%) are achieved due to the localized strain enhancement caused by the unique structure. The sensor can detect the motion characteristics of different joints in flexion-extension, abduction-adduction, and internal-external rotation, which, in turn, can be used for real-time monitoring of complex joint motions involved in limb rehabilitation. In addition, the sensor recognizes the 26 letters of the alphabet represented by sign language gestures. The above studies demonstrate the potential application of our prepared sensors in flexible, wearable devices.
Collapse
Affiliation(s)
- Xueyuan Li
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Xiping Gao
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Dahu Yao
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Jing Chen
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Chang Lu
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Xinchang Pang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| |
Collapse
|
4
|
Wei C, Lin W, Wang L, Cao Z, Huang Z, Liao Q, Guo Z, Su Y, Zheng Y, Liao X, Chen Z. Conformal Human-Machine Integration Using Highly Bending-Insensitive, Unpixelated, and Waterproof Epidermal Electronics Toward Metaverse. NANO-MICRO LETTERS 2023; 15:199. [PMID: 37582974 PMCID: PMC10427580 DOI: 10.1007/s40820-023-01176-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023]
Abstract
Efficient and flexible interactions require precisely converting human intentions into computer-recognizable signals, which is critical to the breakthrough development of metaverse. Interactive electronics face common dilemmas, which realize high-precision and stable touch detection but are rigid, bulky, and thick or achieve high flexibility to wear but lose precision. Here, we construct highly bending-insensitive, unpixelated, and waterproof epidermal interfaces (BUW epidermal interfaces) and demonstrate their interactive applications of conformal human-machine integration. The BUW epidermal interface based on the addressable electrical contact structure exhibits high-precision and stable touch detection, high flexibility, rapid response time, excellent stability, and versatile "cut-and-paste" character. Regardless of whether being flat or bent, the BUW epidermal interface can be conformally attached to the human skin for real-time, comfortable, and unrestrained interactions. This research provides promising insight into the functional composite and structural design strategies for developing epidermal electronics, which offers a new technology route and may further broaden human-machine interactions toward metaverse.
Collapse
Affiliation(s)
- Chao Wei
- Department of Electronic Science, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Wansheng Lin
- Department of Electronic Science, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Liang Wang
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Zhicheng Cao
- Department of Electronic Science, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Zijian Huang
- Department of Electronic Science, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Qingliang Liao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Ziquan Guo
- Department of Electronic Science, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yuhan Su
- Department of Electronic Science, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yuanjin Zheng
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xinqin Liao
- Department of Electronic Science, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Zhong Chen
- Department of Electronic Science, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
5
|
Yan Z, Liu Y, Xiong J, Wang B, Dai L, Gao M, Pan T, Yang W, Lin Y. Hierarchical Serpentine-Helix Combination for 3D Stretchable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210238. [PMID: 36896499 DOI: 10.1002/adma.202210238] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/21/2023] [Indexed: 06/09/2023]
Abstract
3D stretchable electronics attract growing interest due to their new and more complex functionalities compared to 1D or 2D counterparts. Among all 3D configuration designs, a 3D helical structure is commonly used as it can be designed to achieve outstanding stretching ratios as well as highly robust mechanical performance. However, the stretching ratio that mainly focuses on the axis direction hinders its applications. Inspired by hierarchies in a tendon, a novel structural design of hierarchical 3D serpentine-helix combination is proposed. The structural design constructed by a sequence with repeating small units winding in a helical manner around the axis can enable large mechanical forces transferred down to a smaller scale with the dissipation of potentially damaging stresses by microscale buckling, thereby endowing the electronic components made from high-performance but hard-to-stretch materials with large stretchability (≥200%) in x-, y-, or z-axis direction, high structural stability, and extraordinary electromechanical performance. Two applications including a wireless charging patch and an epidermal electronic system are demonstrated. The epidermal electronic system made of several hierarchical 3D serpentine-helix combinations allows for high-fidelity monitoring of electrophysiological signals, galvanic skin response, and finger-movement-induced electrical signals, which can achieve good tactile pattern recognition when combined with an artificial neural network.
Collapse
Affiliation(s)
- Zhuocheng Yan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Yuting Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Jian Xiong
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Bin Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Lingliang Dai
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Min Gao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Taisong Pan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yuan Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
6
|
Yang G, Luo H, Ding Y, Yang J, Li Y, Ma C, Yan J, Zhuang X. Hierarchically Structured Carbon Nanofiber-Enabled Skin-Like Strain Sensors with Full-Range Human Motion Monitoring and Autonomous Self-Healing Capability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7380-7391. [PMID: 36700659 DOI: 10.1021/acsami.2c20104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Flexible strain sensors that mimic the properties of human skin have recently attracted tremendous attention. However, integrating multiple functions of skin into one strain sensor, e.g., stretchability, full-range motion response, and self-healing capability, is still an enormous challenge. Herein, a skin-like strain sensor was presented by the construction of hierarchically structured carbon nanofibers (CNFs), followed by encapsulation of elastic self-healing polyurethane (PU). The hierarchical sensing structure was composed of diversified CNFs with orientations from highly aligned to randomly oriented, and their different fracture mechanisms enabled the resultant strain sensor to successfully integrate key sensing properties including high sensitivity (gauge factor of 90), wide sensing range (∼80% strain), and fast response (52 ms). These properties, combined with high stretchability (870%) and excellent stability (>2000 cycles), allowed the sensor to precisely detect full-range human motions from large joint motions to subtle physiological signals. Moreover, the strain sensor had spontaneous self-healing capability at room temperature with high healing efficiencies of 97.7%, while the healing process could substantially be accelerated by the natural sunlight (24 h → 0.5 h). The healed sensor possessed comparable stretchability, sensing performance, and accurate monitoring ability of subtle body signals with the original sensor. The biomimetic self-healing functionality along with skin-like sensing properties makes it attractive for next-generation wearable electronics.
Collapse
Affiliation(s)
- Guang Yang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin300387, China
| | - Haojun Luo
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin300387, China
| | - Yunpeng Ding
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin300387, China
| | - Jingwen Yang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin300387, China
| | - Yafang Li
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin300387, China
| | - Chongqi Ma
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin300387, China
| | - Jing Yan
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin300387, China
| | - Xupin Zhuang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin300387, China
| |
Collapse
|
7
|
Kim D, Chhetry A, Zahed MA, Sharma S, Jeong S, Song H, Park JY. Highly Sensitive and Reliable Piezoresistive Strain Sensor Based on Cobalt Nanoporous Carbon-Incorporated Laser-Induced Graphene for Smart Healthcare Wearables. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1475-1485. [PMID: 36571793 DOI: 10.1021/acsami.2c15500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of highly sensitive, reliable, and cost-effective strain sensors is a big challenge for wearable smart electronics and healthcare applications, such as soft robotics, point-of-care systems, and electronic skins. In this study, we newly fabricated a highly sensitive and reliable piezoresistive strain sensor based on polyhedral cobalt nanoporous carbon (Co-NPC)-incorporated laser-induced graphene (LIG) for wearable smart healthcare applications. The synergistic integration of Co-NPC and LIG enables the performance improvement of the strain sensor by providing an additional conductive pathway and robust mechanical properties with a high surface area of Co-NPC nanoparticles. The proposed porous graphene nanosheets exploited with Co-NPC nanoparticles demonstrated an outstanding sensitivity of 1,177 up to a strain of 18%, which increased to 39,548 beyond 18%. Additionally, the fabricated sensor exhibited an ultralow limit of detection (0.02%) and excellent stability over 20,000 cycles even under high strain conditions (10%). Finally, we successfully demonstrated and evaluated the sensor performance for practical use in healthcare wearables by monitoring wrist pulse, neck pulse, and joint flexion movement. Owing to the outstanding performance of the sensor, the fabricated sensor has great potential in electronic skins, human-machine interactions, and soft robotics applications.
Collapse
Affiliation(s)
- Dongkyun Kim
- Department of Electronic Engineering, Kwangwoon University, Seoul01897, Republic of Korea
| | - Ashok Chhetry
- Department of Electronic Engineering, Kwangwoon University, Seoul01897, Republic of Korea
| | - Md Abu Zahed
- Department of Electronic Engineering, Kwangwoon University, Seoul01897, Republic of Korea
| | - Sudeep Sharma
- Department of Electronic Engineering, Kwangwoon University, Seoul01897, Republic of Korea
| | - Seonghoon Jeong
- Department of Electronic Engineering, Kwangwoon University, Seoul01897, Republic of Korea
| | - Hyesu Song
- Department of Electronic Engineering, Kwangwoon University, Seoul01897, Republic of Korea
| | - Jae Yeong Park
- Department of Electronic Engineering, Kwangwoon University, Seoul01897, Republic of Korea
| |
Collapse
|
8
|
Guo X, Hong W, Zhao Y, Zhu T, Liu L, Li H, Wang Z, Wang D, Mai Z, Zhang T, Yang J, Zhang F, Xia Y, Hong Q, Xu Y, Yan F, Wang M, Xing G. Bioinspired Dual-Mode Stretchable Strain Sensor Based on Magnetic Nanocomposites for Strain/Magnetic Discrimination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205316. [PMID: 36394201 DOI: 10.1002/smll.202205316] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Recently, flexible stretchable sensors have been gaining attention for their excellent adaptability for electronic skin applications. However, the preparation of stretchable strain sensors that achieve dual-mode sensing while still retaining ultra-low detection limit of strain, high sensitivity, and low cost is a pressing task. Herein, a high-performance dual-mode stretchable strain sensor (DMSSS) based on biomimetic scorpion foot slit microstructures and multi-walled carbon nanotubes (MWCNTs)/graphene (GR)/silicone rubber (SR)/Fe3 O4 nanocomposites is proposed, which can accurately sense strain and magnetic stimuli. The DMSSS exhibits a large strain detection range (≈160%), sensitivity up to 100.56 (130-160%), an ultra-low detection limit of strain (0.16% strain), and superior durability (9000 cycles of stretch/release). The sensor can accurately recognize sign language movement, as well as realize object proximity information perception and whole process information monitoring. Furthermore, human joint movements and micro-expressions can be monitored in real-time. Therefore, the DMSSS of this work opens up promising prospects for applications in sign language pose recognition, non-contact sensing, human-computer interaction, and electronic skin.
Collapse
Affiliation(s)
- Xiaohui Guo
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, China
- Anhui Province Key Laboratory of Target Recognition and Feature Extraction, Lu'an, 237010, China
| | - Weiqiang Hong
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, China
| | - Yunong Zhao
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, China
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tong Zhu
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, China
| | - Long Liu
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100029, China
| | - Hongjin Li
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, China
| | - Ziwei Wang
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100029, China
| | - Dandan Wang
- Hubei JiuFengShan Laboratory, Future Science and Technology City, Wuhan, Hubei, 420000, China
| | - Zhihong Mai
- Hubei JiuFengShan Laboratory, Future Science and Technology City, Wuhan, Hubei, 420000, China
| | - Tianxu Zhang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, China
| | - Jinyang Yang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, China
| | - Fengzhe Zhang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, China
| | - Yun Xia
- Bengbu Zhengyuan Electronics Technology Co., Ltd, Bengbu, 233000, China
| | - Qi Hong
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, China
| | - Yaohua Xu
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, China
| | - Feng Yan
- Department of Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Ming Wang
- Frontier Institute of Chip and System, Fudan University, Shanghai, 200433, China
| | - Guozhong Xing
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100029, China
| |
Collapse
|
9
|
Reconfigurable, Stretchable Strain Sensor with the Localized Controlling of Substrate Modulus by Two-Phase Liquid Metal Cells. NANOMATERIALS 2022; 12:nano12050882. [PMID: 35269370 PMCID: PMC8912465 DOI: 10.3390/nano12050882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/25/2022]
Abstract
Strain modulation based on the heterogeneous design of soft substrates is an effective method to improve the sensitivity of stretchable resistive strain sensors. In this study, a novel design for reconfigurable strain modulation in the soft substrate with two-phase liquid cells is proposed. The modulatory strain distribution induced by the reversible phase transition of the liquid metal provides reconfigurable strain sensing capabilities with multiple combinations of operating range and sensitivity. The effectiveness of our strategy is validated by theoretical simulations and experiments on a hybrid carbonous film-based resistive strain sensor. The strain sensor can be gradually switched between a highly sensitive one and a wide-range one by selectively controlling the phases of liquid metal in the cell array with a external heating source. The relative change of sensitivity and operating range reaches a maximum of 59% and 44%, respectively. This reversible heterogeneous design shows great potential to facilitate the fabrication of strain sensors and might play a promising role in the future applications of stretchable strain sensors.
Collapse
|
10
|
Liu Z, Zhu T, Wang J, Zheng Z, Li Y, Li J, Lai Y. Functionalized Fiber-Based Strain Sensors: Pathway to Next-Generation Wearable Electronics. NANO-MICRO LETTERS 2022; 14:61. [PMID: 35165824 PMCID: PMC8844338 DOI: 10.1007/s40820-022-00806-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/07/2022] [Indexed: 05/09/2023]
Abstract
Wearable strain sensors are arousing increasing research interests in recent years on account of their potentials in motion detection, personal and public healthcare, future entertainment, man-machine interaction, artificial intelligence, and so forth. Much research has focused on fiber-based sensors due to the appealing performance of fibers, including processing flexibility, wearing comfortability, outstanding lifetime and serviceability, low-cost and large-scale capacity. Herein, we review the latest advances in functionalization and device fabrication of fiber materials toward applications in fiber-based wearable strain sensors. We describe the approaches for preparing conductive fibers such as spinning, surface modification, and structural transformation. We also introduce the fabrication and sensing mechanisms of state-of-the-art sensors and analyze their merits and demerits. The applications toward motion detection, healthcare, man-machine interaction, future entertainment, and multifunctional sensing are summarized with typical examples. We finally critically analyze tough challenges and future remarks of fiber-based strain sensors, aiming to implement them in real applications.
Collapse
Affiliation(s)
- Zekun Liu
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Tianxue Zhu
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Junru Wang
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Zijian Zheng
- Institute of Textiles and Clothing, Research Institute for Intelligent Wearable Systems, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR, China
| | - Yi Li
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Jiashen Li
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China.
| |
Collapse
|
11
|
Han F, Li M, Ye H, Zhang G. Materials, Electrical Performance, Mechanisms, Applications, and Manufacturing Approaches for Flexible Strain Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1220. [PMID: 34063165 PMCID: PMC8148098 DOI: 10.3390/nano11051220] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 12/13/2022]
Abstract
With the recent great progress made in flexible and wearable electronic materials, the upcoming next generation of skin-mountable and implantable smart devices holds extensive potential applications for the lifestyle modifying, including personalized health monitoring, human-machine interfaces, soft robots, and implantable biomedical devices. As a core member within the wearable electronics family, flexible strain sensors play an essential role in the structure design and functional optimization. To further enhance the stretchability, flexibility, sensitivity, and electricity performances of the flexible strain sensors, enormous efforts have been done covering the materials design, manufacturing approaches and various applications. Thus, this review summarizes the latest advances in flexible strain sensors over recent years from the material, application, and manufacturing strategies. Firstly, the critical parameters measuring the performances of flexible strain sensors and materials development contains different flexible substrates, new nano- and hybrid- materials are introduced. Then, the developed working mechanisms, theoretical analysis, and computational simulation are presented. Next, based on different material design, diverse applications including human motion detection and health monitoring, soft robotics and human-machine interface, implantable devices, and biomedical applications are highlighted. Finally, synthesis consideration of the massive production industry of flexible strain sensors in the future; different fabrication approaches that are fully expected are classified and discussed.
Collapse
Affiliation(s)
- Fei Han
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China; (F.H.); (M.L.)
- Shenzhen Institute of Wide-Bandgap Semiconductors, Shenzhen 518055, China
| | - Min Li
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China; (F.H.); (M.L.)
| | - Huaiyu Ye
- Shenzhen Institute of Wide-Bandgap Semiconductors, Shenzhen 518055, China
| | - Guoqi Zhang
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China; (F.H.); (M.L.)
- Shenzhen Institute of Wide-Bandgap Semiconductors, Shenzhen 518055, China
| |
Collapse
|
12
|
Intelligent Polymers, Fibers and Applications. Polymers (Basel) 2021; 13:polym13091427. [PMID: 33925249 PMCID: PMC8125737 DOI: 10.3390/polym13091427] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 12/21/2022] Open
Abstract
Intelligent materials, also known as smart materials, are capable of reacting to various external stimuli or environmental changes by rearranging their structure at a molecular level and adapting functionality accordingly. The initial concept of the intelligence of a material originated from the natural biological system, following the sensing–reacting–learning mechanism. The dynamic and adaptive nature, along with the immediate responsiveness, of the polymer- and fiber-based smart materials have increased their global demand in both academia and industry. In this manuscript, the most recent progress in smart materials with various features is reviewed with a focus on their applications in diverse fields. Moreover, their performance and working mechanisms, based on different physical, chemical and biological stimuli, such as temperature, electric and magnetic field, deformation, pH and enzymes, are summarized. Finally, the study is concluded by highlighting the existing challenges and future opportunities in the field of intelligent materials.
Collapse
|
13
|
Wearable strain sensor for real-time sweat volume monitoring. iScience 2020; 24:102028. [PMID: 33490926 PMCID: PMC7809499 DOI: 10.1016/j.isci.2020.102028] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/13/2020] [Accepted: 12/29/2020] [Indexed: 01/05/2023] Open
Abstract
Reliably monitoring sweat volume has attracted much attention due to its important role in the assessment of physiological health conditions and the prevention of dehydration. Here, we present the first example of wearable strain sensor for real-time sweat volume monitoring. Such sweat volume monitoring sensor is simply fabricated via embedding strain sensing fabric in super-absorbent hydrogels, the hydrogels can wick sweat up off the skin surface to swell and then trigger the strain sensing fabrics response. This sensor can realize real-time detection of sweat volume (0.15-700 μL), shows excellent repeatability and stability against movement or light interference, reliability in the non-pathological range (pH: 4-9 and salinity: 0-100 mM NaCl) in addition. Such sensor combing swellable hydrogels with strain sensing fabrics provides a novel measurement method of wearable devices for sweat volume monitoring.
Collapse
|
14
|
Zhao S, Ran W, Wang D, Yin R, Yan Y, Jiang K, Lou Z, Shen G. 3D Dielectric Layer Enabled Highly Sensitive Capacitive Pressure Sensors for Wearable Electronics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32023-32030. [PMID: 32564591 DOI: 10.1021/acsami.0c09893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Flexible capacitance sensors play a key role in wearable devices, soft robots, and the Internet of things (IoT). To realize these feasible applications, subtle pressure detection under various conditions is required, and it is often limited by low sensitivity. Herein, we demonstrate a capacitive touch sensor with excellent sensing capabilities enabled by a three-dimensional (3D) network dielectric layer, combining a natural viscoelastic property material of thermoplastic polyurethane (TPU) nanofibers wrapped with electrically conductive materials of Ag nanowires (AgNWs). Taking advantage of the large deformation and the increase of effective permittivity under the action of compression force, the device has the characteristics of high sensitivity, fast response time, and low detection limit. The enhanced sensing mechanism of the 3D structures and the conductive filler have been discussed in detail. These superior functions enable us to monitor a variety of subtle pressure changes (pulse, airflow, and Morse code). By detecting the pressure of fingers, a smart piano glove integrated with 10 circuits of finger joints is made, which realizes the real-time performance of the piano and provides the possibility for the application of intelligent wearable electronic products such as virtual reality and human-machine interface in the future.
Collapse
Affiliation(s)
- Shufang Zhao
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100083, China
| | - Wenhao Ran
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100083, China
| | - Depeng Wang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100083, China
| | - Ruiyang Yin
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100083, China
| | - Yongxu Yan
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100083, China
| | - Kai Jiang
- Institute & Hospital of Hepatobiliary Surgery, Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLA, Chinese PLA Medical School, Chinese PLA General Hospital, Beijing 100853, China
| | - Zheng Lou
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100083, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100864, China
| | - Guozhen Shen
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100083, China
| |
Collapse
|
15
|
Chander H, Burch RF, Talegaonkar P, Saucier D, Luczak T, Ball JE, Turner A, Kodithuwakku Arachchige SNK, Carroll W, Smith BK, Knight A, Prabhu RK. Wearable Stretch Sensors for Human Movement Monitoring and Fall Detection in Ergonomics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17103554. [PMID: 32438649 PMCID: PMC7277680 DOI: 10.3390/ijerph17103554] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 11/16/2022]
Abstract
Wearable sensors are beneficial for continuous health monitoring, movement analysis, rehabilitation, evaluation of human performance, and for fall detection. Wearable stretch sensors are increasingly being used for human movement monitoring. Additionally, falls are one of the leading causes of both fatal and nonfatal injuries in the workplace. The use of wearable technology in the workplace could be a successful solution for human movement monitoring and fall detection, especially for high fall-risk occupations. This paper provides an in-depth review of different wearable stretch sensors and summarizes the need for wearable technology in the field of ergonomics and the current wearable devices used for fall detection. Additionally, the paper proposes the use of soft-robotic-stretch (SRS) sensors for human movement monitoring and fall detection. This paper also recapitulates the findings of a series of five published manuscripts from ongoing research that are published as Parts I to V of “Closing the Wearable Gap” journal articles that discuss the design and development of a foot and ankle wearable device using SRS sensors that can be used for fall detection. The use of SRS sensors in fall detection, its current limitations, and challenges for adoption in human factors and ergonomics are also discussed.
Collapse
Affiliation(s)
- Harish Chander
- Neuromechanics Laboratory, Department of Kinesiology, Mississippi State University, Mississippi State, MS 39762, USA; (A.T.); (S.N.K.K.A.); (A.K.)
- Correspondence:
| | - Reuben F. Burch
- Department of Human Factors & Athlete Engineering, Center for Advanced Vehicular Systems (CAVS), Mississippi State University, Mississippi State, MS 39762, USA;
| | - Purva Talegaonkar
- Department of Industrial & Systems Engineering, Mississippi State University, Mississippi State, MS 39762, USA; (P.T.); (B.K.S.)
| | - David Saucier
- Department of Electrical & Computer Engineering, Mississippi State University, Mississippi State, MS 39762, USA; (D.S.); (J.E.B.); (W.C.)
| | - Tony Luczak
- National Strategic Planning and Analysis Research Center (NSPARC), Mississippi State University, Mississippi State, MS 39762, USA;
| | - John E. Ball
- Department of Electrical & Computer Engineering, Mississippi State University, Mississippi State, MS 39762, USA; (D.S.); (J.E.B.); (W.C.)
| | - Alana Turner
- Neuromechanics Laboratory, Department of Kinesiology, Mississippi State University, Mississippi State, MS 39762, USA; (A.T.); (S.N.K.K.A.); (A.K.)
| | | | - Will Carroll
- Department of Electrical & Computer Engineering, Mississippi State University, Mississippi State, MS 39762, USA; (D.S.); (J.E.B.); (W.C.)
| | - Brian K. Smith
- Department of Industrial & Systems Engineering, Mississippi State University, Mississippi State, MS 39762, USA; (P.T.); (B.K.S.)
| | - Adam Knight
- Neuromechanics Laboratory, Department of Kinesiology, Mississippi State University, Mississippi State, MS 39762, USA; (A.T.); (S.N.K.K.A.); (A.K.)
| | - Raj K. Prabhu
- Department of Agricultural and Biomedical Engineering, Mississippi State University, Mississippi State, MS 39762, USA;
| |
Collapse
|
16
|
Xu L, Liu Z, Zhai H, Chen X, Sun R, Lyu S, Fan Y, Yi Y, Chen Z, Jin L, Zhang J, Li Y, Ye TT. Moisture-Resilient Graphene-Dyed Wool Fabric for Strain Sensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13265-13274. [PMID: 32105063 DOI: 10.1021/acsami.9b20964] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
E-textile consisting of natural fabrics has become a promising material to construct wearable sensors due to its comfortability and breathability on the human body. However, the reported fabric-based e-textile materials, such as graphene-treated cotton, silk, and flax, generally suffer from the electrical and mechanical instability in long-term wearing. In particular, fabrics on the human body have to endure heat variation, moisture evaporation from metabolic activities, and even the immersion with body sweat. To face the above challenges, here we report a wool-knitted fabric sensor treated with graphene oxide (GO) dyeing followed by l-ascorbic acid (l-AA) reduction (rGO). This rGO-based strain sensor is highly stretchable, washable, and durable with rapid sensing response. It exhibits excellent linearity with more than 20% elongation and, most importantly, withstand moisture from 30 to 90% (or even immersed with water) and still maintains good electrical and mechanical properties. We further demonstrate that, by integrating this proposed material with the near-field communication (NFC) system, a batteryless, wireless wearable body movement sensor can be constructed. This material can find wide use in smart garment applications.
Collapse
Affiliation(s)
- Lulu Xu
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Zekun Liu
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Heng Zhai
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Xiao Chen
- Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield S1 4DE, U.K
| | - Rujie Sun
- Bristol Composites Institute (ACCIS), University of Bristol, Bristol BS8 1TR, U.K
| | - Shida Lyu
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Yangyang Fan
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Yangpeiqi Yi
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Zhongda Chen
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Lu Jin
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Jianbao Zhang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yi Li
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Terry T Ye
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
| |
Collapse
|
17
|
Wearable strain sensor for human motion detection based on ligand-exchanged gold nanoparticles. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Li J, Wang L, Wang X, Yang Y, Hu Z, Liu L, Huang Y. Highly Conductive PVA/Ag Coating by Aqueous in Situ Reduction and Its Stretchable Structure for Strain Sensor. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1427-1435. [PMID: 31847519 DOI: 10.1021/acsami.9b15546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Highly stretchable fiber-based strain sensor is essential to develop various applications in intelligent textiles, biomedical electronics, and integrated circuits. Although several fiber-based strain sensors have been reported, attaining the balance between excellent stretchability, high conductivity, and controllable sensitivity remains challenging. Herein, we present a facile approach for fabricating highly conductive, stretchable, and sensitive fiber strain sensors by synthesizing poly(vinyl alcohol)/Ag nanoparticle composite coating through aqueous in situ reduction on a stretchable fiber with a braided structure. The conductive coating with a flexible structure shows an ultrahigh conductivity of 120 903 S/cm. The unique braided structure and dense conductive Ag network enable the strain sensor to simultaneously exhibit 150% of strain sensing, controllable gauge factor from 1.85 to 8.14 within 65% strain, and a rapid response time of 75 ms. Meanwhile, long-term durability and low hysteresis are other initial features of the fiber-based strain sensor. Most importantly, the fiber-based strain sensor is capable of detecting human motions, including vocal cord vibration, finger movements, walking, and running, exhibiting significant potential in real-time monitoring and intelligent textiles.
Collapse
|
19
|
Li Y, Miao X, Niu L, Jiang G, Ma P. Human Motion Recognition of Knitted Flexible Sensor in Walking Cycle. SENSORS 2019; 20:s20010035. [PMID: 31861614 PMCID: PMC6982815 DOI: 10.3390/s20010035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/01/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022]
Abstract
Knitted fabric sensors have been widely used as strain sensors in the sports health field and its large strain performance and structure are suitable for human body movements. When a knitted structure is worn, different human body movements are reflected through the large strain deformation of fabric structure and consequently change the electrical signal. Here, the mechanical and electrical properties of highly elastic knitted sweatpants were tested under large strain. This sensor has good sensitivity and stability during movement. Compared with traditional motion monitoring, this technique divides the walking cycle into two stages, namely, stance and swing phases, which can be further subdivided into six stages. The corresponding resistance characteristic values can accurately distinguish the gait cycle. Analysis on hysteresis and repeatability revealed that the sensor exhibits a constant electrical performance. Four kinds of motion postures were predicted and judged by comparing the resistance characteristic range value, peak value calculation function and time axis. The measured sensor outputs were transferred to a computer via 4.0 Bluetooth. Matlab language was used to detect the status through a rule-based algorithm and the sensor outputs.
Collapse
|
20
|
Application-Based Production and Testing of a Core-Sheath Fiber Strain Sensor for Wearable Electronics: Feasibility Study of Using the Sensors in Measuring Tri-Axial Trunk Motion Angles. SENSORS 2019; 19:s19194288. [PMID: 31623321 PMCID: PMC6806223 DOI: 10.3390/s19194288] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 01/20/2023]
Abstract
Wearable electronics are recognized as a vital tool for gathering in situ kinematic information of human body movements. In this paper, we describe the production of a core–sheath fiber strain sensor from readily available materials in a one-step dip-coating process, and demonstrate the development of a smart sleeveless shirt for measuring the kinematic angles of the trunk relative to the pelvis in complicated three-dimensional movements. The sensor’s piezoresistive properties and characteristics were studied with respect to the type of core material used. Sensor performance was optimized by straining above the intended working region to increase the consistency and accuracy of the piezoresistive sensor. The accuracy of the sensor when tracking random movements was tested using a rigorous 4-h random wave pattern to mimic what would be required for satisfactory use in prototype devices. By processing the raw signal with a machine learning algorithm, we were able to track a strain of random wave patterns to a normalized root mean square error of 1.6%, highlighting the consistency and reproducible behavior of the relatively simple sensor. Then, we evaluated the performance of these sensors in a prototype motion capture shirt, in a study with 12 participants performing a set of eight different types of uniaxial and multiaxial movements. A machine learning random forest regressor model estimated the trunk flexion, lateral bending, and rotation angles with errors of 4.26°, 3.53°, and 3.44° respectively. These results demonstrate the feasibility of using smart textiles for capturing complicated movements and a solution for the real-time monitoring of daily activities.
Collapse
|
21
|
Yao S, Yang J, Poblete FR, Hu X, Zhu Y. Multifunctional Electronic Textiles Using Silver Nanowire Composites. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31028-31037. [PMID: 31373192 DOI: 10.1021/acsami.9b07520] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Textiles represent an appealing platform for continuous wearable applications due to the exceptional combination of compliance, water vapor permeability, and comfortableness for long-term wear. We present mechanically and electrically robust integration of nanocomposites with textiles by laser scribing and heat press lamination. The simple and scalable integration technique enables multifunctional E-textiles without compromising the stretchability, wearability, and washability of textiles. The textile-integrated patterns exhibit small line width (135 μm), low sheet resistance (0.2 Ω/sq), low Young's modulus, good washability, and good electromechanical performance up to 50% strain, which is desirable for wearable and user-friendly electronic textiles. To demonstrate the potential utility, we developed an integrated textile patch comprising four dry electrophysiological electrodes, a capacitive strain sensor, and a wireless heater for electrophysiological monitoring, motion tracking, and thermotherapy, respectively. Beyond the applications demonstrated in this paper, the materials and methods presented here pave the way for various other wearable applications in health care, activity tracking, rehabilitation, sports medicine, and human-machine interactions.
Collapse
Affiliation(s)
- Shanshan Yao
- Department of Mechanical and Aerospace Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Ji Yang
- MOE Key Laboratory for Intelligent Networks and Network Security , Xi'an Jiaotong University , Xi'an , Shaanxi 710049 , China
| | - Felipe R Poblete
- Department of Mechanical and Aerospace Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Xiaogang Hu
- Joint Department of Biomedical Engineering , University of North Carolina-Chapel Hill and NC State University , Chapel Hill , North Carolina 27599 , United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
- Joint Department of Biomedical Engineering , University of North Carolina-Chapel Hill and NC State University , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|