1
|
Lin H, Xing S, Jiang A, Li M, Chen Q, Wang Z, Jiang L, Li H, Wang J, Zhou C. Controlled Synthesis of Large-Area Oriented ZnO Nanoarrays. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1028. [PMID: 38921904 PMCID: PMC11206485 DOI: 10.3390/nano14121028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Large-area oriented ZnO nanoarrays (including nanowire, nanorod, and nanotube) on ITO glass substrates are synthesized via the simple hydrothermal, electrodeposition, and electrochemical etching approach. The morphology of ZnO nanoarrays is controlled by adjusting the reaction temperature, reaction time, and current density. The scanning and transmission electron microscopy (SEM and TEM) results indicate the successful preparation of large-area oriented ZnO nanoarrays with different types, and the energy-dispersive X-microanalysis spectrum (EDS) and X-ray diffraction (XRD) results confirm that the composition of the obtained nanoarrays is ZnO. More importantly, the as-prepared ZnO nanotube arrays are observed with about a 40% increase in ultraviolet absorption intensity compared to the ZnO nanowire/nanorod arrays, due to having larger specific surface areas. The as-prepared different types of ZnO nanoarrays have great potential for applications in low-cost and high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Haowei Lin
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (S.X.); (A.J.); (M.L.); (Q.C.); (Z.W.); (L.J.); (H.L.); (J.W.); (C.Z.)
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, Henan University of Technology, Zhengzhou 450001, China
| | - Shibo Xing
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (S.X.); (A.J.); (M.L.); (Q.C.); (Z.W.); (L.J.); (H.L.); (J.W.); (C.Z.)
| | - Ao Jiang
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (S.X.); (A.J.); (M.L.); (Q.C.); (Z.W.); (L.J.); (H.L.); (J.W.); (C.Z.)
| | - Mingxuan Li
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (S.X.); (A.J.); (M.L.); (Q.C.); (Z.W.); (L.J.); (H.L.); (J.W.); (C.Z.)
| | - Qing Chen
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (S.X.); (A.J.); (M.L.); (Q.C.); (Z.W.); (L.J.); (H.L.); (J.W.); (C.Z.)
| | - Zhenling Wang
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (S.X.); (A.J.); (M.L.); (Q.C.); (Z.W.); (L.J.); (H.L.); (J.W.); (C.Z.)
| | - Lei Jiang
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (S.X.); (A.J.); (M.L.); (Q.C.); (Z.W.); (L.J.); (H.L.); (J.W.); (C.Z.)
| | - Huiying Li
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (S.X.); (A.J.); (M.L.); (Q.C.); (Z.W.); (L.J.); (H.L.); (J.W.); (C.Z.)
| | - Jie Wang
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (S.X.); (A.J.); (M.L.); (Q.C.); (Z.W.); (L.J.); (H.L.); (J.W.); (C.Z.)
| | - Chenchen Zhou
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (S.X.); (A.J.); (M.L.); (Q.C.); (Z.W.); (L.J.); (H.L.); (J.W.); (C.Z.)
| |
Collapse
|
2
|
Fu Z, Wang F, Liu J, Sun W, Zhang H, Song X, Yao J. High responsivity photodetector based on MEH-PPV/CsPbBr 3heterojunction. NANOTECHNOLOGY 2024; 35:325201. [PMID: 38697049 DOI: 10.1088/1361-6528/ad4654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/02/2024] [Indexed: 05/04/2024]
Abstract
Perovskite quantum dots (QDs) and organic materials have great research potential in the field of optoelectronic devices. In this paper, MEH-PPV/CsPbBr3heterojunction photodetectors (PDs) are prepared by spin coating method based on the good photoelectric properties of CsPbBr3perovskite QDs and MEH-PPV. The MEH-PPV/CsPbBr3heterojunction improves the energy level arrangement, and CsPbBr3QDs can passivate the surface defects of MEH-PPV films to achieve effective charge separation and transfer, thus inhibiting the dark current and improving the photoelectric performance of the device. Under 532 nm laser irradiation, the responsivity (R) of MEH-PPV/CsPbBr3heterojunction PD is 11.98 A W-1, the specific detectivity (D*) is 6.98 × 1011Jones, and the response time is 15/16 ms. This work provides experience for the study of perovskite QDs and organic materials heterojunction optoelectronic devices.
Collapse
Affiliation(s)
- Zhendong Fu
- Center of Intelligent Opto-electric Sensors, Tianjin Jinhang Technical Physics Institute, Tianjin, 300308, People's Republic of China
| | - Fuguo Wang
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
- Institute of Micro-nano Optoelectronics and Terahertz Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Jiangnan Liu
- Center of Intelligent Opto-electric Sensors, Tianjin Jinhang Technical Physics Institute, Tianjin, 300308, People's Republic of China
| | - Wenbao Sun
- Center of Intelligent Opto-electric Sensors, Tianjin Jinhang Technical Physics Institute, Tianjin, 300308, People's Republic of China
| | - Haiting Zhang
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
- Institute of Micro-nano Optoelectronics and Terahertz Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Xiaoxian Song
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
- Institute of Micro-nano Optoelectronics and Terahertz Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
- School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jianquan Yao
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
- Institute of Micro-nano Optoelectronics and Terahertz Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
- School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
3
|
Lin H, Jiang A, Xing S, Li L, Cheng W, Li J, Miao W, Zhou X, Tian L. Advances in Self-Powered Ultraviolet Photodetectors Based on P-N Heterojunction Low-Dimensional Nanostructures. NANOMATERIALS 2022; 12:nano12060910. [PMID: 35335723 PMCID: PMC8953703 DOI: 10.3390/nano12060910] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023]
Abstract
Self-powered ultraviolet (UV) photodetectors have attracted considerable attention in recent years because of their vast applications in the military and civil fields. Among them, self-powered UV photodetectors based on p-n heterojunction low-dimensional nanostructures are a very attractive research field due to combining the advantages of low-dimensional semiconductor nanostructures (such as large specific surface area, excellent carrier transmission channel, and larger photoconductive gain) with the feature of working independently without an external power source. In this review, a selection of recent developments focused on improving the performance of self-powered UV photodetectors based on p-n heterojunction low-dimensional nanostructures from different aspects are summarized. It is expected that more novel, dexterous, and intelligent photodetectors will be developed as soon as possible on the basis of these works.
Collapse
Affiliation(s)
- Haowei Lin
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, Henan University of Technology, Zhengzhou 450001, China
- Correspondence:
| | - Ao Jiang
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Shibo Xing
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Lun Li
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Wenxi Cheng
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Jinling Li
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Wei Miao
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Xuefei Zhou
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Li Tian
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| |
Collapse
|
4
|
Song S, Li N, Bai L, Gai P, Li F. Photo-Assisted Robust Anti-Interference Self-Powered Biosensing of MicroRNA Based on Pt-S Bonds and the Inorganic-Organic Hybridization Strategy. Anal Chem 2022; 94:1654-1660. [PMID: 35025211 DOI: 10.1021/acs.analchem.1c04135] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photo-assisted biofuel cell-based self-powered biosensors (PBFC-SPBs) possess the advantages of no need for external power supply, ease of sensing design, and simple instruments. In this work, a robust anti-interference PBFC-SPB for microRNA detection was constructed based on the Pt-S bond and the inorganic-organic hybridization strategy. The organic semiconductor [6,6]-phenyl-C61-butyric acid methylester@anthraquinone (PCBM@anthraquinone) served as an efficient light-harvesting material, and gold nanoparticle@Pt (AuNP@Pt) nanomaterials were immobilized on the surface via electrostatic adsorption for the binding of DNA. Notably, compared to Au-S bonds for DNA immobilization, the Pt-S bond exhibited better anti-interference ability. Ingeniously, cadmium sulfide quantum dots (CdS QDs) were close to the PCBM@anthraquinone substrate electrode to form sensitization structures, which was beneficial to enhance the photocurrent signal. Combining with the laccase-mimicking activity Cu2+/carbon nanotubes (Cu2+/CNTs) cathode, the PBFC-SPB for microRNA detection was achieved. Once the target existed, the identical sequence complementary microRNA would make DNA2/CdS dissociate and break away from the electrode, leading to a low signal. The linear detection range was 10 fM-100 pM, with the limit of determination of 2.4 fM (3S/N). The as-proposed strategy not only paves a new way for the design of photoelectrochemical biosensing but also opens a door for the construction of robust anti-interference bioassay for microRNA detection.
Collapse
Affiliation(s)
- Shichao Song
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Na Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Lipeng Bai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Panpan Gai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| |
Collapse
|
5
|
Li C, Huang W, Gao L, Wang H, Hu L, Chen T, Zhang H. Recent advances in solution-processed photodetectors based on inorganic and hybrid photo-active materials. NANOSCALE 2020; 12:2201-2227. [PMID: 31942887 DOI: 10.1039/c9nr07799e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Due to their excellent and tailorable optoelectronic performance, low cost, facile fabrication, and compatibility with flexible substrates, solution-processed inorganic and hybrid photo-active materials have attracted extensive interest for next-generation photodetector applications. This review gives a comprehensive compilation of solution-processed photodetectors. The basic structures of the device and important parameters of photodetectors will be firstly summarized. Then the development of various solution processing technologies containing solution synthesis and liquid phase film-forming processes for the preparation of semiconductor films is described. From the materials science point of view, we give a comprehensive overview about the current status of solution processed semiconductor materials including inorganic and hybrid photo-active materials for the application of photodetectors. Moreover, challenges and future trends in the field of solution-processed photodetectors are proposed.
Collapse
Affiliation(s)
- Chao Li
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Weichun Huang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, P. R. China
| | - Lingfeng Gao
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Huide Wang
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Lanping Hu
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, P. R. China
| | - Tingting Chen
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, P. R. China
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| |
Collapse
|