1
|
Wang Z, Zhang W, Wang W, Wang P, Ni L, Wang S, Ma J, Cheng W. Amine-Modified ZIF Composite Membranes: Regulated Nanochannel Interactions for Enhanced Cation Transport and Precise Separation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4199-4209. [PMID: 39976453 DOI: 10.1021/acs.est.5c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Electromembrane water treatment technologies are attracting attention for their energy efficiency and precise separation of counterions. However, ion-exchange membranes exhibit low ionic conductance and selectivity for ions with similar charges. In this study, we developed a novel ZIF-8 composite membrane with amine-modified nanochannels through an in situ PEI-assisted seeding and secondary growth method. An integral and uniform selective layer was formed, and the amine-modified nanochannels induced differential transport of Li+, Na+, K+, and Mg2+ via the dehydration-hydration process. The composite membrane possessed a lower energy barrier for Na+ transport (Ea = 13 kJ mol-1) compared to Mg2+ (Ea = 17 kJ mol-1), showing a Na+ flux of 3.7 × 10-8 mol·cm-2·s-1 and a Na+/Mg2+ permselectivity of 52 (∼60 times higher than the commercial membrane). The physicochemical and electrochemical properties of the composite membranes were systematically characterized, revealing the significant role of the Mg2+ layer in increasing Mg2+ repulsion and facilitating Na+ diffusion. Besides, DFT simulation and interaction energy calculation elucidated that a moderate binding energy and compensation effect between ions and nanochannels, which can be precisely regulated by PEI incorporation, are crucial for the favorable passage of Na+ while maintaining high Mg2+ rejection. The membrane also demonstrated performance stability during a 5-day test and maintained high selectivity across varying salinity and pH conditions. This work advances the development of efficient cation separation membranes for sustainable desalination and resource recovery.
Collapse
Affiliation(s)
- Zhe Wang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, P.R. China
| | - Wenjuan Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, P.R. China
| | - Weifu Wang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, P.R. China
| | - Peizhi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P.R. China
| | - Lei Ni
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, P.R. China
| | - Shaopo Wang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, P.R. China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P.R. China
| | - Wei Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P.R. China
| |
Collapse
|
2
|
Deng J, Xue G, Li C, Zhao S, Zheng Y, He Y, Yuan R, Wang K, Mo T, Xiang Y, Chen Y, Geng Y, Wang L, Feng G, Hou X, Li M. Accelerating Ion Desolvation via Bioinspired Ion Channel Design in Nonconcentrated Aqueous Electrolytes. J Am Chem Soc 2025; 147:5943-5954. [PMID: 39907055 DOI: 10.1021/jacs.4c15443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
In aqueous-based electrochemical energy storage devices, uncontrolled hydrolysis of water at the electrochemical interfaces limits the application of such aqueous batteries or supercapacitors in business. The "water-in-salt" design is a valid strategy to broaden the electrochemical stability window in aqueous electrolytes, but drawbacks such as high manufacturing cost, high electrolyte viscosity, etc., also hinder its development. Here, inspired by biological ion channels in cell membranes, we propose an effective approach to engineer the electrode surface, inducing the desolvation of hydrated ions at the electrochemical interface and inhibiting water decomposition in nonconcentrated electrolytes. The biological engineering strategy enables the induction of controlled desolvation and accelerates the transportation of hydrated ions, e.g., potassium. The subnanometer design (0.8 nm) forces the hydrated potassium ions to shed their solvation shell with a hydration number of only 0.3, while the electrostatic interactions between the pore groups and the potassium ions facilitate their transport. The Zn||Zn cells demonstrate a stable cycling lifespan of over 1000 h at 1 mA cm-2/10 mAh cm-2. This work sheds new light on regulating the electrochemical interfaces in low-concentration aqueous electrolytes for designing aqueous-based energy storage devices.
Collapse
Affiliation(s)
- Jiangbin Deng
- National Innovation Center for Industry-Education Integration of Energy Storage Technology, MOE Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Guanfeng Xue
- National Innovation Center for Industry-Education Integration of Energy Storage Technology, MOE Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Chen Li
- National Innovation Center for Industry-Education Integration of Energy Storage Technology, MOE Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Shuang Zhao
- National Innovation Center for Industry-Education Integration of Energy Storage Technology, MOE Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Yujie Zheng
- National Innovation Center for Industry-Education Integration of Energy Storage Technology, MOE Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Yuting He
- National Innovation Center for Industry-Education Integration of Energy Storage Technology, MOE Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Ruduan Yuan
- National Innovation Center for Industry-Education Integration of Energy Storage Technology, MOE Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Kaixin Wang
- National Innovation Center for Industry-Education Integration of Energy Storage Technology, MOE Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Tangming Mo
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Mechanical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Yuxuan Xiang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Yu Chen
- School of Optoelectronic Science and Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
| | - Yang Geng
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Luda Wang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Guang Feng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Xu Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Meng Li
- National Innovation Center for Industry-Education Integration of Energy Storage Technology, MOE Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
3
|
Zhao D, Ding M, Lin T, Duan Z, Wei R, Feng P, Yu J, Liu C, Li C. Gradient Graphene Spiral Sponges for Efficient Solar Evaporation and Zero Liquid Discharge Desalination with Directional Salt Crystallization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400310. [PMID: 38489751 PMCID: PMC11165548 DOI: 10.1002/advs.202400310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Indexed: 03/17/2024]
Abstract
Solar desalination is a promising strategy to utilize solar energy to purify saline water. However, the accumulation of salt on the solar evaporator surface severely reduces light absorption and evaporation performance. Herein, a simple and eco-friendly method to fabricate a 3D gradient graphene spiral sponge (GGS sponge) is presented that enables high-rate solar evaporation and zero liquid discharge (ZLD) desalination of high-salinity brine. The spiral structure of the GGS sponge enhances energy recovery, while the gradient network structures facilitate radial brine transport and directional salt crystallization, which cooperate to endow the sponge with superior solar evaporation (6.5 kg m-2 h-1 for 20 wt.% brine), efficient salt collection (1.5 kg m-2 h-1 for 20 wt.% brine), ZLD desalination, and long-term durability (continuous 144 h in 20 wt.% brine). Moreover, the GGS sponge shows an ultrahigh freshwater production rate of 3.1 kg m-2 h-1 during the outdoor desalination tests. A continuous desalination-irrigation system based on the GGS sponge for crop growth, which has the potential for self-sustainable agriculture in remote areas is demonstrated. This work introduces a novel evaporator design and also provides insight into the structural principles for designing next-generation solar desalination devices that are salt-tolerant and highly efficient.
Collapse
Affiliation(s)
- Demin Zhao
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
- Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
| | - Meichun Ding
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
- Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
| | - Tianhao Lin
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
| | - Zhenying Duan
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
- Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
| | - Rui Wei
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
- Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
| | - Panpan Feng
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
- Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
| | - Jiahui Yu
- Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
| | - Chen‐Yang Liu
- CAS Key Laboratory of Engineering PlasticsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of Chemistrythe Chinese Academy of SciencesBeijing100190China
| | - Chenwei Li
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
- Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
| |
Collapse
|
4
|
Qian H, Xu G, Yang S, Ang EH, Chen Q, Lin C, Liao J, Shen J. Advancing Lithium-Magnesium Separation: Pioneering Swelling-Embedded Cation Exchange Membranes Based on Sulfonated Poly(ether ether ketone). ACS APPLIED MATERIALS & INTERFACES 2024; 16:18019-18029. [PMID: 38546167 DOI: 10.1021/acsami.4c00991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
With the continuous advancement of electrodialysis (ED) technology, there arises a demand for improved monovalent cation exchange membranes (CEMs). However, limitations in membrane materials and structures have resulted in the low selectivity of monovalent CEMs, posing challenges in the separation of Li+ and Mg2+. In this investigation, a designed CEM with a swelling-embedded structure was created by integrating a polyelectrolyte containing N-oxide Zwitterion into a sulfonated poly(ether ether ketone) (SPEEK) membrane, leveraging the notable solubility characteristic of SPEEK. The membranes were prepared by using N-oxide zwitterionic polyethylenimine (ZPEI) and 1,3,5-benzenetrlcarbonyl trichloride (TMC). The as-prepared membranes underwent systematic characterization and testing, evaluating their structural, physicochemical, electrochemical, and selective ED properties. During ED, the modified membranes demonstrated notable permeability selectivity for Li+ ions in binary (Li+/Mg2+) systems. Notably, at a constant current density of 2.5 mA cm-2, the modified membrane PEI-TMC/SPEEK exhibited significant permeability selectivity ( P Mg 2 + Li + = 5.63 ) in the Li+/Mg2+ system, while ZPEI-TMC/SPEEK outperformed, displaying remarkable permeability selectivity ( P Mg 2 + Li + = 12.43 ) in the Li+/Mg2+ system, surpassing commercial monovalent cation-selective membrane commercial monovalent cation-selective membrane (CIMS). Furthermore, in the Li+/Mg2+ binary system, Li+ flux reached 9.78 × 10-9 mol cm-2 s-1 for ZPEI-TMC/SPEEK, while its Mg2+ flux only reached 2.7 × 10-9 mol cm-2 s-1, showing potential for lithium-magnesium separation. In addition, ZPEI-TMC/SPEEK was tested for performance and stability at high current densities. This work offers a straightforward preparation process and an innovative structural approach, presenting methodological insights for the advancement of lithium and magnesium separation techniques.
Collapse
Affiliation(s)
- Hao Qian
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Geting Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shanshan Yang
- Shijiazhuang Key Laboratory of Low Carbon Energy Materials, College of Chemical Engineering, Shijiazhuang University, Shijiazhuang 050035, China
| | - Edison Huixiang Ang
- Nature Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| | - Quan Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chenfei Lin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junbin Liao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
5
|
Hou J, Zhao C, Zhang H. Bio-Inspired Subnanofluidics: Advanced Fabrication and Functionalization. SMALL METHODS 2024; 8:e2300278. [PMID: 37203269 DOI: 10.1002/smtd.202300278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/02/2023] [Indexed: 05/20/2023]
Abstract
Biological ion channels can realize high-speed and high-selective ion transport through the protein filter with the sub-1-nanometer channel. Inspired by biological ion channels, various kinds of artificial subnanopores, subnanochannels, and subnanoslits with improved ion selectivity and permeability are recently developed for efficient separation, energy conversion, and biosensing. This review article discusses the advanced fabrication and functionalization methods for constructing subnanofluidic pores, channels, tubes, and slits, which have shown great potential for various applications. Novel fabrication methods for producing subnanofluidics, including top-down techniques such as electron beam etching, ion irradiation, and electrochemical etching, as well as bottom-up approaches starting from advanced microporous frameworks, microporous polymers, lipid bilayer embedded subnanochannels, and stacked 2D materials are well summarized. Meanwhile, the functionalization methods of subnanochannels are discussed based on the introduction of functional groups, which are classified into direct synthesis, covalent bond modifications, and functional molecule fillings. These methods have enabled the construction of subnanochannels with precise control of structure, size, and functionality. The current progress, challenges, and future directions in the field of subnanofluidic are also discussed.
Collapse
Affiliation(s)
- Jue Hou
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Chen Zhao
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
6
|
Han B, Sun X, Fan Z, Jiang H, Wang Z, Zhang W, He M, Ma J. Enhanced Mono/Divalent Ion Separation via Charged Interlayer Channels in Montmorillonite-Based Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4415-4427. [PMID: 38373279 DOI: 10.1021/acs.est.3c08853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Efficient mono- and divalent ion separation is pivotal for environmental conservation and energy utilization. Two-dimensional (2D) materials featuring interlayer nanochannels exhibit unique water and ion transport properties, rendering them highly suitable for water treatment membranes. In this work, we incorporated polydopamine/polyethylenimine (PDA/PEI) copolymers into 2D montmorillonite (MMT) nanosheet interlayer channels through electrostatic interactions and bioinspired bonding. A modified laminar structure was formed on the substrate surface via a straightforward vacuum filtration. The electrodialysis experiments reveal that these membranes could achieve monovalent permselectivity of 11.06 and Na+ flux of 2.09 × 10-8 mol cm-2 s-1. The enhanced permselectivity results from the synergistic effect of electrostatic and steric hindrance effect. In addition, the interaction between the PDA/PEI copolymer and the MMT nanosheet ensures the long-term operational stability of the membranes. Theoretical simulations reveal that Na+ has a lower migration energy barrier and higher migration rate for the modified MMT-based membrane compared to Mg2+. This work presents a novel approach for the development of monovalent permselective membranes.
Collapse
Affiliation(s)
- Bo Han
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, People's Republic of China
| | - Xuejin Sun
- North China Municipal Engineering Design & Research Institute Company, Limited, Tianjin 300110, People's Republic of China
| | - Zuoming Fan
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, People's Republic of China
| | - Haicheng Jiang
- School of Environmental and Material Engineering, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Ziyue Wang
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, People's Republic of China
| | - Wenjuan Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, People's Republic of China
| | - Mingrui He
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, People's Republic of China
| | - Jun Ma
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, People's Republic of China
| |
Collapse
|
7
|
Liu H, Chen B, Chen Y, Zhou M, Tian F, Li Y, Jiang J, Zhai W. Bioinspired Self-Standing, Self-Floating 3D Solar Evaporators Breaking the Trade-Off between Salt Cycle and Heat Localization for Continuous Seawater Desalination. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301596. [PMID: 37037047 DOI: 10.1002/adma.202301596] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/07/2023] [Indexed: 06/16/2023]
Abstract
Facing the global water shortage challenge, solar-driven desalination is considered a sustainable technology to obtain freshwater from seawater. However, the trade-off between the salt cycle and heat localization of existing solar evaporators (SE) hinders its further practical applications. Here, inspired by water hyacinth, a self-standing and self-floating 3D SE with adiabatic foam particles and aligned water channels is built through a continuous directional freeze-casting technique. With the help of the heat insulation effect of foam particles and the efficient water transport of aligned water channels, this new SE can cut off the heat transfer from the top photothermal area to the bulk water without affecting the water supply, breaking the long-standing trade-off between salt cycle and heat localization of traditional SEs. Additionally, its self-standing and self-floating features can reduce human maintenance. Its large exposure height can increase evaporation area and collect environmental energy, breaking the long-standing limitation of solar-to-vapor efficiency of conventional SEs. With the novel structure employed, an evaporation flux of 2.25 kg m-2 h-1 , and apparent solar-to-vapor efficiency of 136.7% are achieved under 1 sun illumination. This work demonstrates a new evaporator structure, and also provides a key insight into the structural design of next-generation salt-tolerant and high-efficiency SEs.
Collapse
Affiliation(s)
- Huawen Liu
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bichi Chen
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yilin Chen
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Mengnan Zhou
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Fangwei Tian
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yaozong Li
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Junjie Jiang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Nanchang Research Institute, Sun Yat-sen University, Nanchang, 330224, China
| | - Wentao Zhai
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
- Nanchang Research Institute, Sun Yat-sen University, Nanchang, 330224, China
| |
Collapse
|
8
|
Tekinalp Ö, Zimmermann P, Holdcroft S, Burheim OS, Deng L. Cation Exchange Membranes and Process Optimizations in Electrodialysis for Selective Metal Separation: A Review. MEMBRANES 2023; 13:566. [PMID: 37367770 DOI: 10.3390/membranes13060566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
The selective separation of metal species from various sources is highly desirable in applications such as hydrometallurgy, water treatment, and energy production but also challenging. Monovalent cation exchange membranes (CEMs) show a great potential to selectively separate one metal ion over others of the same or different valences from various effluents in electrodialysis. Selectivity among metal cations is influenced by both the inherent properties of membranes and the design and operating conditions of the electrodialysis process. The research progress and recent advances in membrane development and the implication of the electrodialysis systems on counter-ion selectivity are extensively reviewed in this work, focusing on both structure-property relationships of CEM materials and influences of process conditions and mass transport characteristics of target ions. Key membrane properties, such as charge density, water uptake, and polymer morphology, and strategies for enhancing ion selectivity are discussed. The implications of the boundary layer at the membrane surface are elucidated, where differences in the mass transport of ions at interfaces can be exploited to manipulate the transport ratio of competing counter-ions. Based on the progress, possible future R&D directions are also proposed.
Collapse
Affiliation(s)
- Önder Tekinalp
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Pauline Zimmermann
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Steven Holdcroft
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Odne Stokke Burheim
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Liyuan Deng
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| |
Collapse
|
9
|
Influence of surface chemistry and channel shapes on the lithium-ion separation in metal-organic-framework-nanochannel membranes. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
10
|
DuChanois RM, Mazurowski L, Fan H, Verduzco R, Nir O, Elimelech M. Precise Cation Separations with Composite Cation-Exchange Membranes: Role of Base Layer Properties. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6331-6341. [PMID: 37023347 DOI: 10.1021/acs.est.3c00445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Separation of specific ions from water could enable recovery and reuse of essential metals and nutrients, but established membrane technologies lack the high-precision selectivity needed to facilitate a circular resource economy. In this work, we investigate whether the cation/cation selectivity of a composite cation-exchange membrane (CEM), or a thin polymer selective layer on top of a CEM, may be limited by the mass transfer resistance of the underlying CEM. In our analysis, we utilize a layer-by-layer technique to modify CEMs with a thin polymer selective layer (∼50 nm) that has previously shown high selectivity toward copper over similarly sized metals. While these composite membranes have a CuCl2/MgCl2 selectivity up to 33 times larger than unmodified CEMs in diffusion dialysis, our estimates suggest that eliminating resistance from the underlying CEM could further increase selectivity twofold. In contrast, the CEM base layer has a smaller effect on the selectivity of these composite membranes in electrodialysis, although these effects could become more pronounced for ultrathin or highly conductive selective layers. Our results highlight that base layer resistance prevents selectivity factors from being comparable across diffusion dialysis and electrodialysis, and CEMs with low resistance are necessary for providing highly precise separations with composite CEMs.
Collapse
Affiliation(s)
- Ryan M DuChanois
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, Texas 77005, United States
| | - Lauren Mazurowski
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, Texas 77005, United States
| | - Hanqing Fan
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Rafael Verduzco
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Oded Nir
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben Gurion 8499000, Israel
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, Texas 77005, United States
| |
Collapse
|
11
|
Hercigonja M, Milovanović B, Etinski M, Petković M. Decorated crown ethers as selective ion traps: Solvent’s role in crown’s preference towards a specific ion. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
12
|
Xu M, Zhu X, Zhu J, Wei S, Cong X, Wang Z, Yan Q, Weng L, Wang L. The recent advance of precisely designed membranes for sieving. NANOTECHNOLOGY 2023; 34:232003. [PMID: 36848663 DOI: 10.1088/1361-6528/acbf56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Developing new membranes with both high selectivity and permeability is critical in membrane science since conventional membranes are often limited by the trade-off between selectivity and permeability. In recent years, the emergence of advanced materials with accurate structures at atomic or molecular scale, such as metal organic framework, covalent organic framework, graphene, has accelerated the development of membranes, which benefits the precision of membrane structures. In this review, current state-of-the-art membranes are first reviewed and classified into three different types according to the structures of their building blocks, including laminar structured membranes, framework structured membranes and channel structured membranes, followed by the performance and applications for representative separations (liquid separation and gas separation) of these precisely designed membranes. Last, the challenges and opportunities of these advanced membranes are also discussed.
Collapse
Affiliation(s)
- Miaomiao Xu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
| | - Xianhu Zhu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
| | - Jihong Zhu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
| | - Siyuan Wei
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
| | - Xuelong Cong
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
| | - Zhangyu Wang
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
| | - Qiang Yan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, People's Republic of China
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
| |
Collapse
|
13
|
Chinello D, Myrstad A, de Smet L, Miedema H. Modelling the required membrane selectivity for NO3⁻ recovery from effluent also containing Cl⁻, while saving water. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
14
|
Wang P, Zhou M, Wei Z, Liu L, Cheng T, Tian X, Pan J. Preparation of bowl-shaped polydopamine surface imprinted polymer composite adsorbent for specific separation of 2′-deoxyadenosine. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
15
|
Zhao M, Liu Y, Zhang J, Jiang H, Chen R. Janus ceramic membranes with asymmetric wettability for high-efficient microbubble aeration. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
16
|
Designing monovalent selective anion exchange membranes for the simultaneous separation of chloride and fluoride from sulfate in an equimolar ternary mixture. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Transport mechanisms in electrodialysis: The effect on selective ion transport in multi-ionic solutions. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Yu S, Qian H, Liao J, Dong J, Yu L, Liu C, Shen J. Proton blockage PVDF-co-HFP-based anion exchange membrane for sulfuric acid recovery in electrodialysis. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Optimizing functional layer of cation exchange membrane by three-dimensional cross-linking quaternization for enhancing monovalent selectivity. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Imparting antibacterial adhesion property to anion exchange membrane by constructing negatively charged functional layer. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Host-guest interaction induced ion channels for accelerated OH− transport in anion exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Chen Q, Yao Y, Liao J, Li J, Xu J, Wang T, Tang Y, Xu Y, Ruan H, Shen J. Subnanometer Ion Channel Anion Exchange Membranes Having a Rigid Benzimidazole Structure for Selective Anion Separation. ACS NANO 2022; 16:4629-4641. [PMID: 35226457 DOI: 10.1021/acsnano.1c11264] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ion-conductive polymers having a well-defined phase-separated structure show the potential application of separating mono- and bivalent ion separation. In this work, three side-chain-type poly(arylene ether sulfone)-based anion exchange membranes (AEMs) have been fabricated to investigate the effect of the stiffness of the polymer backbone within AEMs on the Cl-/NO3- and Cl-/SO42- separation performance. Our investigations via small-angle X-ray scattering (SAXS), positron annihilation, and differential scanning calorimetry (DSC) demonstrate that the as-prepared AEM with a rigid benzimidazole structure in the backbone bears subnanometer ion channels resulting from the arrangement of the rigid polymer backbone. In particular, SAXS results demonstrate that the rigid benzimidazole-containing AEM in the wet state has an ion cluster size of 0.548 nm, which is smaller than that of an AEM with alkyl segments in the backbone (0.760 nm). Thus, in the electrodialysis (ED) process, the former exhibits a superior capacity of separating Cl-/SO42- ions relative to latter. Nevertheless, the benzimidazole-containing AEM shows an inability to separate the Cl-/NO3- ions, which is possibly due to the similar ion size of the two. The higher rotational energy barrier (4.3 × 10-3 Hartree) of benzimidazole units and the smaller polymer matrix free-volume (0.636%) in the AEM significantly contribute to the construction of smaller ion channels. As a result, it is believed that the rigid benzimidazole structure of this kind is a benefit to the construction of stable subnanometer ion channels in the AEM that can selectively separate ions with different sizes.
Collapse
Affiliation(s)
- Quan Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuyang Yao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junbin Liao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junhua Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingwen Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tongtong Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanyuan Tang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yanqing Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huimin Ruan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
23
|
Ying J, Lin Y, Zhang Y, Jin Y, Li X, She Q, Matsuyama H, Yu J. Mechanistic insights into the degradation of monovalent selective ion exchange membrane towards long-term application of real salt lake brines. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Improvement of wettability of coal seams in water injection via co-deposition of polydopamine and polyacrylamide. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
25
|
Jashni E, Hosseini SM, Shabanian M, Sadrzadeh M. Silane functionalized graphene oxide-bound polyelectrolyte layers for producing monovalent cation permselective membranes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Wu H, Li Z, Wang Y, Zhu W. Surface Decoration of Cetyltrimethyl Ammonium Bromide on SiC Particles and Its Effects on the Co-Deposition Process. J Phys Chem B 2021; 125:4874-4882. [PMID: 33929854 DOI: 10.1021/acs.jpcb.0c09901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cetyltrimethyl ammonium bromide (CTAB) is used to decorate the SiC particle surface. The mechanism of the decoration process has been studied by simulation and experimental approaches. Molecular dynamics (MD) simulation finds a bilayer adsorbed structure of CTAB on the SiC particles, which is then verified by Fourier-transform infrared and thermal gravimetric analysis measurements. The MD simulation also finds that the decorative effects of CTAB on the SiC particle surface are related to the surface charge condition of the SiC particles and the concentration of CTAB. The measured zeta potential of the SiC particles shows dependence on the pH condition and the concentration of CTAB. The decorated SiC particles are used to produce composition by the co-deposition technology. With the help of CTAB, SiC particles are successfully incorporated in the deposited layer, where the content of SiC particles is dependent on the concentration of CTAB and the pH of the bath.
Collapse
Affiliation(s)
- Houya Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,State Key Laboratory of High Performance Complex Manufacturing, School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Zhiyi Li
- State Key Laboratory of High Performance Complex Manufacturing, School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Yan Wang
- State Key Laboratory of High Performance Complex Manufacturing, School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Wenhui Zhu
- State Key Laboratory of High Performance Complex Manufacturing, School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
27
|
Yang S, Yu S, Yu L, Liu Y, Liao J, Shen J, Gao C. Cation Exchange Membranes Coated with Polyethyleneimine and Crown Ether to Improve Monovalent Cation Electrodialytic Selectivity. MEMBRANES 2021; 11:membranes11050351. [PMID: 34068766 PMCID: PMC8151526 DOI: 10.3390/membranes11050351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/03/2022]
Abstract
Developing monovalent cation permselective membranes (MCPMs) with high-efficient permselectivity is the core concern in specific industrial applications. In this work, we have fabricated a series of novel cation exchange membranes (CEMs) based on sulfonated polysulfone (SPSF) surface modification by polyethyleneimine (PEI) and 4′-aminobenzo-12-crown-4 (12C4) codeposited with dopamine (DA) successively, which was followed by the cross-linking of glutaraldehyde (GA). The as-prepared membranes before and after modification were systematically characterized with regard to their structures as well as their physicochemical and electrochemical properties. Particularly, the codeposition sequence of modified ingredients was investigated on galvanostatic permselectivity to cations. The modified membrane (M-12C4-0.50-PEI) exhibits significantly prominent selectivity to Li+ ions (PMg2+Li+ = 5.23) and K+ ions (PMg2+K+ = 13.56) in Li+/Mg2+ and K+/Mg2+ systems in electrodialysis (ED), which is far superior to the pristine membrane (M-0, PMg2+Li+ = 0.46, PMg2+K+ = 1.23) at a constant current density of 5.0 mA·cm−2. It possibly arises from the synergistic effects of electrostatic repulsion (positively charged PEI), pore-size sieving (distribution of modified ingredients), and specific interaction effect (12C4 ~Li+). This facile strategy may provide new insights into developing selective CEMs in the separation of specific cations by ED.
Collapse
Affiliation(s)
- Shanshan Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (S.Y.); (S.Y.); (L.Y.); (J.L.)
| | - Shuaijun Yu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (S.Y.); (S.Y.); (L.Y.); (J.L.)
| | - Lu Yu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (S.Y.); (S.Y.); (L.Y.); (J.L.)
| | - Yuanwei Liu
- Department of Chemical Engineering and Safety, Binzhou University, Binzhou 256600, China;
| | - Junbin Liao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (S.Y.); (S.Y.); (L.Y.); (J.L.)
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (S.Y.); (S.Y.); (L.Y.); (J.L.)
- Correspondence:
| | - Congjie Gao
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China;
| |
Collapse
|
28
|
Lejarazu-Larrañaga A, Ortiz JM, Molina S, Zhao Y, García-Calvo E. Nitrate-Selective Anion Exchange Membranes Prepared using Discarded Reverse Osmosis Membranes as Support. MEMBRANES 2020; 10:membranes10120377. [PMID: 33261117 PMCID: PMC7760365 DOI: 10.3390/membranes10120377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 11/30/2022]
Abstract
The present work shows a methodology for the preparation of membranes with a high affinity for nitrates. For this purpose, a polymeric mixture containing an anion exchange resin was extended on a recycled pressure filtration membrane used as mechanical support. Different ion exchange resins were tested. The influence in ion fractionation of (i) the type of ion exchange resin, (ii) the use of a recycled membrane as support and (iii) the operating current density during the separation process were studied. Results revealed that the employed anion exchange resin could tune up the transport numbers of the anions in the membrane and enhance the transport of nitrates over sulfates. The use of the recycled filtration membrane as support further increased the transport of nitrates in detriment of sulfates in nitrate-selective membranes. Moreover, it considerably improved the mechanical stability of the membranes. Lowering the operational current density also boosted ion fractionation. In addition, the use of recycled membranes as support in membrane preparation is presented as an alternative management route of discarded reverse osmosis membranes, coupling with the challenging management of waste generated by the desalination industry. These membranes could be used for nitrate recovery from wastewater or for nitrate separation from groundwater.
Collapse
Affiliation(s)
- Amaia Lejarazu-Larrañaga
- IMDEA Water Institute, Avenida Punto Com, 2, 28805 Alcalá de Henares, Madrid, Spain; (J.M.O.); (S.M.); (E.G.-C.)
- Chemical Engineering Department, University of Alcalá, Ctra. Madrid-Barcelona Km 33.600, 28871 Alcalá de Henares, Madrid, Spain
- Correspondence: ; Tel.: +34-918-30-59-62
| | - Juan Manuel Ortiz
- IMDEA Water Institute, Avenida Punto Com, 2, 28805 Alcalá de Henares, Madrid, Spain; (J.M.O.); (S.M.); (E.G.-C.)
| | - Serena Molina
- IMDEA Water Institute, Avenida Punto Com, 2, 28805 Alcalá de Henares, Madrid, Spain; (J.M.O.); (S.M.); (E.G.-C.)
| | - Yan Zhao
- Department of Chemical Engineering, Katholieke Universiteit of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium;
| | - Eloy García-Calvo
- IMDEA Water Institute, Avenida Punto Com, 2, 28805 Alcalá de Henares, Madrid, Spain; (J.M.O.); (S.M.); (E.G.-C.)
- Chemical Engineering Department, University of Alcalá, Ctra. Madrid-Barcelona Km 33.600, 28871 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
29
|
Gong K, Fang T, Wan T, Yan Y, Li W, Zhang J. Voltage-gated multilayer graphene nanochannel for K+/Na+ separation: A molecular dynamics study. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Xu Z, Tang H, Li N. Enhanced proton/iron permselectivity of sulfonated poly (ether ether ketone) membrane functionalized with basic pendant groups during electrodialysis. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Liao J, Chen Q, Pan N, Yu X, Gao X, Shen J, Gao C. Amphoteric blend ion-exchange membranes for separating monovalent and bivalent anions in electrodialysis. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116793] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Liao J, Yu X, Chen Q, Gao X, Ruan H, Shen J, Gao C. Monovalent anion selective anion-exchange membranes with imidazolium salt-terminated side-chains: Investigating the effect of hydrophobic alkyl spacer length. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117818] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
33
|
Pang X, Tao Y, Xu Y, Pan J, Shen J, Gao C. Enhanced monovalent selectivity of cation exchange membranes via adjustable charge density on functional layers. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117544] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Yaroshchuk A, Bondarenko M, Tang C, Bruening ML. A Limiting Case of Constant Counterion Electrochemical Potentials in the Membrane for Examining Ion Transfer at Ion-Exchange Membranes and Patches. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13243-13256. [PMID: 31509705 DOI: 10.1021/acs.langmuir.9b02456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ion passage through ion-exchange membranes is vital in electrodialysis desalination, batteries and fuel cells, and water splitting. Simplified models of ion transport through such membranes frequently assume complete exclusion of co-ions (ions with the same sign of charge as the fixed charge in the membrane) from the membrane. However, a second assumption of constant counterion electrochemical potentials across the membrane leads to simple analytical expressions for ion fluxes and transmembrane potentials. Moreover, linear corrections to account for a small membrane electrical resistance yield analytical expressions with a wider applicability. For bi-ionic potential measurements and current-induced concentration polarization at low salt concentrations, these analytical solutions match the fluxes and potentials obtained numerically without the limiting assumptions. This gives confidence in both the limiting assumptions (under appropriate conditions) and the numerical solutions. At low ion concentrations, the analytical solutions may enable rapid characterization of membrane coatings or boundary layers in solution, and such boundary layers are important in many applications of ion-exchange membranes. In fact, the assumption of complete co-ion exclusion is sometimes more limiting than the constraint of constant electrochemical potentials of counterions across the membrane. Remarkably, this limiting case readily yields the ion accumulation and depletion regions above "ion-exchange patches" that reside beneath a solution with an applied electric field. Such regions are important for sample preconcentration in microfluidic devices.
Collapse
Affiliation(s)
- Andriy Yaroshchuk
- ICREA , pg·L.Companys 23 , 08010 Barcelona , Spain
- Department of Chemical Engineering , Polytechnic University of Catalonia , av. Diagonal 647,08028 Barcelona , Spain
| | - Mykola Bondarenko
- Institute of Bio-Colloid Chemistry , National Academy of Sciences of Ukraine , Vernadskiy ave.42 , 03142 , Kyiv , Ukraine
| | - Chao Tang
- Department of Chemical and Biomolecular Engineering , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Merlin L Bruening
- Department of Chemical and Biomolecular Engineering , University of Notre Dame , Notre Dame , Indiana 46556 , United States
- Department of Chemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| |
Collapse
|