1
|
Wang H, Makowski N, Ma Y, Fan X, Maclean SA, Lipton J, Meng J, Röhr JA, Li M, Taylor AD. Metallic Glass Nanoparticles Synthesized via Flash Joule Heating. ACS NANO 2025. [PMID: 40372135 DOI: 10.1021/acsnano.5c02173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Metallic glass (MG) nanoparticles have attracted intensive research interest for their promising mechanical and catalytic applications. However, current production methods lack the ability to precisely control phase, composition, and morphology, making it challenging to explicitly study their structure-property relationship. Here, we report a direct one-step synthesis of MG nanoparticles using flash Joule heating (FJH) that allows us to produce nanoparticles with desired phase, composition, and morphology. With the fast and controllable cooling attainable through FJH, we can produce fully amorphous Pd-P, Pd-Ni-P, and Pd-Cu-P nanoparticles with precise control in alloy composition and particle size (2.33 nm ± 0.83 nm). As a demonstration of potential application, we show the improved oxygen evolution activity (∼300 mV lower onset potential) of the MG nanoparticles over their crystalline counterparts and long-term stability in 60-h testing.
Collapse
Affiliation(s)
- Hang Wang
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, New York, New York 11201, United States
| | - Nathan Makowski
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, New York, New York 11201, United States
| | - Yuanyuan Ma
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, New York, New York 11201, United States
| | - Xue Fan
- College of Materials, Shanghai Dianji University, Shanghai 201306, China
| | - Stephen A Maclean
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, New York, New York 11201, United States
| | - Jason Lipton
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, New York, New York 11201, United States
| | - Juan Meng
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, New York, New York 11201, United States
| | - Jason A Röhr
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, New York, New York 11201, United States
| | - Mo Li
- School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - André D Taylor
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, New York, New York 11201, United States
| |
Collapse
|
2
|
Guo R, Wang S, Sheng M, Zou X, Zhang M, Li G, Cao Y, Fan Z, Chen J, Zhu W, Liao F, Ling T, Ren H, Lv F, Kang Z. Creating Bridged-H* Bond Structure for Boosting Electrocatalytic Hydrogen Evolution via Phosphorus-Doped Iridium Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412338. [PMID: 39935107 DOI: 10.1002/smll.202412338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/18/2025] [Indexed: 02/13/2025]
Abstract
Iridium (Ir) is recognized to have extremely high catalytic activity in the hydrogen evolution reaction (HER). However, there are still technical challenges in maximizing the utilization of Ir atoms in the catalytic reaction process through dimensional regulation strategies. Herein, an innovative strategy is utilized to fabricate porous phosphorus-doped iridium (P-Ir) with a 2D structure, specifically the reduction of 1T phase-IrO2 (1T-IrO2) nanosheets using phosphine gas. The optimized P-Ir achieves an overpotential of 17.2 mV (vs RHE without iR-correction) in 0.5 m H2SO4 during the HER process, outperforming benchmark Pt/C (27.0 mV) and most reported Ir-based electrocatalysts. During the long-term stability tests, P-Ir maintains stable operation for more than 100 h at both -10 and -100 mA cm-2, respectively. Moreover, the HER activity and transient potential scanning results of Ir-based phosphides prove that doping P atoms in the Ir lattice promotes the reaction kinetic rate and charge transport capacity during hydrogen evolution. Theoretical calculations reveal that P atoms doping weakens the adsorption energy of H intermediates (H*) by regulating the d-band center of the Ir sites. Simultaneously, the desorption process of H* is also facilitated by forming a special bridged-H* bond structure, eventually accelerating the HER kinetics.
Collapse
Affiliation(s)
- Ruiqi Guo
- School of Iron and Steel, Soochow University, Suzhou, Jiangsu, 215137, China
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Shujuan Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Minqi Sheng
- School of Iron and Steel, Soochow University, Suzhou, Jiangsu, 215137, China
| | - Xingli Zou
- State Key Laboratory of Advanced Special Steel & School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Mingzhi Zhang
- School of Iron and Steel, Soochow University, Suzhou, Jiangsu, 215137, China
| | - Guangcheng Li
- School of Iron and Steel, Soochow University, Suzhou, Jiangsu, 215137, China
| | - Yi Cao
- School of Iron and Steel, Soochow University, Suzhou, Jiangsu, 215137, China
| | - Zhenglong Fan
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jinxin Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wenxiang Zhu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Fan Liao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Tianjiao Ling
- School of Iron and Steel, Soochow University, Suzhou, Jiangsu, 215137, China
| | - Hao Ren
- School of Iron and Steel, Soochow University, Suzhou, Jiangsu, 215137, China
| | - Fan Lv
- School of Iron and Steel, Soochow University, Suzhou, Jiangsu, 215137, China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macao, 999078, China
| |
Collapse
|
3
|
Mondal S, Dutta S, Hazra V, Pati SK, Bhattacharyya S. Decoding the Hume-Rothery Rule in a Bifunctional Tetra-metallic Alloy for Alkaline Water Electrolysis. NANO LETTERS 2025; 25:1296-1304. [PMID: 39818956 DOI: 10.1021/acs.nanolett.4c04412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The 90-year-old Hume-Rothery rule was adapted to design an outstanding bifunctional tetra-metallic alloy electrocatalyst for water electrolysis. Following the radius mismatch principles, Fe (131 pm) and Ni (124 pm) are selectively incorporated at the Pd (139 pm) site of Mo0.30Pd0.70 nanosheets. Analogously, Cu (132 pm) alloys with only Pd, while Ag (145 pm) alloys with both Pd and Mo (154 pm). The face-centered cubic Mo0.30Pd0.35Ni0.23Fe0.12 nanosheets with 10-12 atomic layers, featuring in-plane compressive strain along the {111} basal plane, show 1/3 (422) reflection from local hexagonal symmetry. The more electronegative Pd attracts electron density from Ni/Fe in Mo0.30Pd0.35Ni0.23Fe0.12, synergistically boosting the mass activities for hydrogen and oxygen evolution reactions to 89 ± 5 and 38.6 ± 3.1 A g-1 at ±400 mV versus RHE, respectively. Full water electrolysis continues for ≥550 h, requiring cell voltages of 1.51 and 1.63 V at 10 and 100 mA cm-2, delivering 45 mL h-1 green H2.
Collapse
Affiliation(s)
- Surajit Mondal
- Department of Chemical Sciences, and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Supriti Dutta
- Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India
| | - Vishwadeepa Hazra
- Department of Chemical Sciences, and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Swapan K Pati
- Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences, and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| |
Collapse
|
4
|
Guo B, Wen X, Xu L, Ren X, Niu S, YangCheng R, Ma G, Zhang J, Guo Y, Xu P, Li S. Noble Metal Phosphides: Robust Electrocatalysts toward Hydrogen Evolution Reaction. SMALL METHODS 2024; 8:e2301469. [PMID: 38161258 DOI: 10.1002/smtd.202301469] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Facing with serious carbon emission issues, the production of green H2 from electrocatalytic hydrogen evolution reaction (HER) has received extensive research interest. Almost all kinds of noble metal phosphides (NMPs) consisting of Pt-group elements (i.e., Ru, Rh, Pd, Os, Ir and Pt) are all highly active and pH-universal electrocatalysts toward HER. In this review, the recent progress of NMP-based HER electrocatalysts is summarized. It is further take typical examples for discussing important impact factors on the HER performance of NMPs, including crystalline phase, morphology, noble metal element and doping. Moreover, the synthesis and HER application of hybrid catalysts consisting of NMPs and other materials such as transition metal phosphides, oxides, sulfides and phosphates, carbon materials and noble metals is also reviewed. Reducing the use of noble metal is the key idea for NMP-based hybrid electrocatalysts, while the expanded functionality and structure-performance relationship are also noticed in this part. At last, the potential opportunities and challenges for this kind of highly active catalyst is discussed.
Collapse
Affiliation(s)
- Bingrong Guo
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xinxin Wen
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Li Xu
- Novel Energy Materials & Catalysis Research Center, Shanwei Innovation Industrial Design & Research Institute, Shanwei, 516600, P. R. China
| | - Xiaoqian Ren
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Siqi Niu
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Ruixue YangCheng
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Guoxin Ma
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Junchao Zhang
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ying Guo
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Siwei Li
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
5
|
Qiu D, Wang H, Ma T, Huang J, Meng Z, Fan D, Bowen CR, Lu H, Liu Y, Chandrasekaran S. Promoting Electrocatalytic Oxygen Reactions Using Advanced Heterostructures for Rechargeable Zinc-Air Battery Applications. ACS NANO 2024; 18:21651-21684. [PMID: 39129497 PMCID: PMC11342935 DOI: 10.1021/acsnano.4c02289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
In order to facilitate electrochemical oxygen reactions in electrically rechargeable zinc-air batteries (ZABs), there is a need to develop innovative approaches for efficient oxygen electrocatalysts. Due to their reliability, high energy density, material abundance, and ecofriendliness, rechargeable ZABs hold promise as next-generation energy storage and conversion devices. However, the large-scale application of ZABs is currently hindered by the slow kinetics of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). However, the development of heterostructure-based electrocatalysts has the potential to surpass the limitations imposed by the intrinsic properties of a single material. This Account begins with an explanation of the configurations of ZABs and the fundamentals of the oxygen electrochemistry of the air electrode. Then, we summarize recent progress with respect to the variety of heterostructures that exploit bifunctional electrocatalytic reactions and overview their impact on ZAB performance. The range of heterointerfacial engineering strategies for improving the ORR/OER and ZAB performance includes tailoring the surface chemistry, dimensionality of catalysts, interfacial charge transfer, mass and charge transport, and morphology. We highlight the multicomponent design approaches that take these features into account to create advanced highly active bifunctional catalysts. Finally, we discuss the challenges and future perspectives on this important topic that aim to enhance the bifunctional activity and performance of zinc-air batteries.
Collapse
Affiliation(s)
- Dingrong Qiu
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Huihui Wang
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Tingting Ma
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Jiangdu Huang
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Zhen Meng
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Dayong Fan
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Chris R. Bowen
- Department
of Mechanical Engineering, University of
Bath, BA2 7AY Bath, U.K.
| | - Huidan Lu
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Yongping Liu
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Sundaram Chandrasekaran
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| |
Collapse
|
6
|
Li Y, Wu Z, Zhang X, Song F, Cao L, Sheng H, Gao X, Li C, Li H, Li W, Dong B. Interfacial Engineering of Polycrystalline Pt 5 P 2 Nanocrystals and Amorphous Nickel Phosphate Nanorods for Electrocatalytic Alkaline Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206859. [PMID: 36564350 DOI: 10.1002/smll.202206859] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Electrocatalytic hydrogen evolution reaction (HER) in alkaline media is important for hydrogen economy but suffers from sluggish reaction kinetics due to a large water dissociation energy barrier. Herein, Pt5 P2 nanocrystals anchoring on amorphous nickel phosphate nanorods as a high-performance interfacial electrocatalyst system (Pt5 P2 NCs/a-NiPi) for the alkaline HER are demonstrated. At the unique polycrystalline/amorphous interface with abundant defects, strong electronic interaction, and optimized intermediate adsorption strength, water dissociation is accelerated over abundant oxophilic Ni sites of amorphous NiPi, while hydride coupling is promoted on the adjacent electron-rich Pt sites of Pt5 P2 . Meanwhile, the ultra-small-sized Pt5 P2 nanocrystals and amorphous NiPi nanorods maximize the density of interfacial active sites for the Volmer-Tafel reaction. Pt5 P2 NCs/a-NiPi exhibits small overpotentials of merely 9 and 41 mV at -10 and -100 mA cm-2 in 1 M KOH, respectively. Notably, Pt5 P2 NCs/a-NiPi exhibits an unprecedentedly high mass activity (MA) of 14.9 mA µgPt -1 at an overpotential of 70 mV, which is 80 times higher than that of Pt/C and represents the highest MA of reported Pt-based electrocatalysts for the alkaline HER. This work demonstrates a phosphorization and interfacing strategy for promoting Pt utilization and in-depth mechanistic insights for the alkaline HER.
Collapse
Affiliation(s)
- Yanxin Li
- School of Materials Science and Engineering, Ocean University of China, 238 Songling Road, Qingdao, 266100, P. R. China
| | - Zhijing Wu
- School of Materials Science and Engineering, Ocean University of China, 238 Songling Road, Qingdao, 266100, P. R. China
| | - Xiaoyan Zhang
- School of Materials Science and Engineering, Ocean University of China, 238 Songling Road, Qingdao, 266100, P. R. China
| | - Fuzhan Song
- Department of Chemistry & Biochemistry, Utah State University, Logan, UT, 84322, USA
| | - Lixin Cao
- School of Materials Science and Engineering, Ocean University of China, 238 Songling Road, Qingdao, 266100, P. R. China
| | - Hongbin Sheng
- School of Materials Science and Engineering, Ocean University of China, 238 Songling Road, Qingdao, 266100, P. R. China
| | - Xuefei Gao
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Can Li
- Institute of Optoelectronic Materials and Devices, College of Optical and Electronic Technology, China Jiliang University, 256 Xueyuan Street, Hangzhou, 310018, P. R. China
| | - Haiyan Li
- School of Materials Science and Engineering, Ocean University of China, 238 Songling Road, Qingdao, 266100, P. R. China
| | - Wei Li
- Department of Mechanical and Aerospace Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV, 26506, USA
| | - Bohua Dong
- School of Materials Science and Engineering, Ocean University of China, 238 Songling Road, Qingdao, 266100, P. R. China
| |
Collapse
|
7
|
A critical review on transition metal phosphide based catalyst for electrochemical hydrogen evolution reaction: Gibbs free energy, composition, stability, and true identity of active site. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Luo L, Fu C, Guo Y, Kang Q, Wu A, Cai X, Zhao L, Tan Z, Yin J, Xia G, Shen S, Zhang J. Electronic and Potential Synergistic Effects of Surface-Doped P-O Species on Uniform Pd Nanospheres: Breaking the Linear Scaling Relationship toward Electrochemical Oxygen Reduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14146-14156. [PMID: 35289588 DOI: 10.1021/acsami.1c22935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing efficient oxygen reduction reaction (ORR) electrocatalysts is critical to fuel cells and metal-oxygen batteries, but also greatly hindered by the limited Pt resources and the long-standing linear scaling relationship (LSR). In this study, ∼6 nm and highly uniform Pd nanospheres (NSs) having surface-doped (SD) P-O species are synthesized and evenly anchored onto carbon blacks, which are further simply heat-treated (HT). Under alkaline conditions, Pd/SDP-O NSs/C-HT exhibits respective 8.7 (4.3)- and 5.0 (5.5)-fold enhancements in noble-metal-mass- and area-specific activity (NM-MSA and ASA) compared with the commercial Pd/C (Pt/C). It also possesses an improved electrochemical stability. Besides, its acidic ASA and NM-MSA are 2.9 and 5.1 times those of the commercial Pd/C, respectively, and reach 65.4 and 51.5% of those of the commercial Pt/C. Moreover, it also shows nearly ideal 4-electron ORR pathways under both alkaline and acidic conditions. The detailed experimental and theoretical analyses reveal the following: (1) The electronic effect induced by the P-O species can downshift the surface d-band center to weaken the intermediate adsorptions, thus preserving more surface active sites. (2) More importantly, the potential hydrogen bond between the O atom in the P-O species and the H atom in the hydrogen-containing intermediates can in turn stabilize their adsorptions, thus breaking the ORR LSR toward more efficient ORRs and 4-electron pathways. This study develops a low-cost and high-performance ORR electrocatalyst and proposes a promising strategy for breaking the ORR LSR, which may be further applied in other electrocatalysis.
Collapse
Affiliation(s)
- Liuxuan Luo
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cehuang Fu
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yangge Guo
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Kang
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Aiming Wu
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiyang Cai
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lutian Zhao
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zehao Tan
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiewei Yin
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guofeng Xia
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuiyun Shen
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junliang Zhang
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Zhai Z, Yan W, Zhang J. Layered FeCoNi double hydroxides with tailored surface electronic configurations induced by oxygen and unsaturated metal vacancies for boosting the overall water splitting process. NANOSCALE 2022; 14:4156-4169. [PMID: 35229091 DOI: 10.1039/d2nr00143h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) layered double hydroxides (LDH) with excellent hydrophilic ability and rapid hydroxyl insertion are regarded as one of the most promising electrocatalysts for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) for overall water splitting to produce hydrogen. However, the electrocatalytic HER/OER activities can be restricted by the inert basal plane due to the poor conductivity, deficient active sites and inferior durability despite there being efficient active sites in the material edge. Thus, capturing many more exposed reactive sites to facilitate the rapid reaction kinetics is a crucial strategy. In this paper, both oxygen and unsaturated metal vacancies with FeCoNi LDH materials are generated through a surface activation approach by pre-covering of fluoride and a post-boronizing process. Such a material is grown on Ni foam to form an F-FeCoNi-Ov LDH/NF electrocatalyst. The activated surface of the electrocatalyst with oxygen vacancies and unsaturated metal sites shows enhanced electroconductivity for regulating the surface electronic structure and optimizing the surface adsorption energy for intermediates during HER/OER processes. As a result, this electrocatalyst exhibits excellent electrocatalytic performance for both the HER and OER with low overpotentials, small Tafel slopes and long durability. The enhancement mechanism is also studied deeply for fundamental understanding. For performance validation, an F-FeCoNi-Ov LDH/NF∥F-FeCoNi-Ov LDH/NF water splitting cell is fabricated and needs only 1.54 V and 1.81 V to reach current densities of 10 and 100 mA cm-2, respectively. This work provides a practicable strategy to develop 2D LDH nanomaterials with boosted electrocatalytic activity for sustainable and clean energy storage systems.
Collapse
Affiliation(s)
- Zibo Zhai
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, China 200444
| | - Wei Yan
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, China 200444
| | - Jiujun Zhang
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, China 200444
| |
Collapse
|
10
|
Huang S, Li J, Chen Y, Yan L, Zhang P, Zhang X, Zhao C. Boosting the anti-poisoning ability of palladium towards electrocatalytic formic acid oxidation via polyphosphide chemistry. J Colloid Interface Sci 2022; 615:366-374. [PMID: 35149350 DOI: 10.1016/j.jcis.2022.01.193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/20/2022] [Accepted: 01/30/2022] [Indexed: 10/19/2022]
Abstract
In this work, we reported a novel polyphosphide strategy for the synthesis of phosphorus doped Pd (P-Pd) using red phosphorus as the starting material at quasi-ambient conditions. Polyphophide anions, as the key reaction intermediates, served as the reducing agent and phosphorus source to modulate the surface electronic structure of Pd. The P-Pd obtained exhibited topmost CO tolerance and electrocatalytic activity to formic acid oxidation among the state-of-arts reports. The mass activity and turnover frequency of P-Pd reached 4413 mA mg-1Pd and 16.04 s-1 at 0.8 V, which were 23.7 and 6.4 times that of commercial Pd/C respectively. After 1000 repeated cycles, 82% initial activity was reserved. Combined with the electrochemical analysis and the density functional theory calculation, the boosted electrochemical performances can be attributed to the size and electronic effects induced by the P doping, which increase the surface actives sites, inhibit the adsorption of CO and change the reaction pathway to favorable CO2 route. A full cell was also assembled to demonstrate the practical potential of the P-Pd, which showed a maximum power density of 21.56 mW cm-2. This polyphophide-based reaction route provides a new strategy for the preparation of efficient and durable phosphorus doped alloys for electrocatalysis.
Collapse
Affiliation(s)
- Shuke Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Jun Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Yilan Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Liwei Yan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Peixin Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Xueyan Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Chenyang Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China.
| |
Collapse
|
11
|
Sai Manohar GV, Das D, Nanda KK. Robust Visible-Blind Wearable Infrared Sensor Based on IrP 2 Nanoparticle-Embedded Few-Layer Graphene and the Effect of Photogating. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54258-54265. [PMID: 34747587 DOI: 10.1021/acsami.1c15037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is challenging to realize a visible-blind infrared photodetector as the materials that absorb infrared light also absorb visible light. Here, we report the synthesis of IrP2 nanoparticle-embedded few-layer graphene by one-step solid-state pyrolysis and its application in visible-blind infrared sensing. A linear photodetector device was fabricated by drop casting IrP2 nanoparticle-embedded few-layer graphene onto a flexible PET substrate with two gold electrodes separated by ∼16 μm. The photoconductive gain was found to be as high as ∼145% with response and decay times of ∼0.4 and ∼2.8 s, respectively, under 1550 nm irradiation of 800 mW cm-2. The room-temperature responsivity was ∼1.81 A W-1 at 80 mW cm-2 and ∼0.54 A W-1 at a high incident power of ∼2200 mW cm-2 under a bias of 1 V. Interestingly, the device showed response even in the long-wavelength infrared region, but no response was found under visible light. The embedded IrP2 nanoparticles act as trap centers inducing photogating in the device, and the average trap state energy was estimated to be ∼16.5 ± 1.5 meV from the temperature-dependent photocurrent studies. The device was found to be immune to air exposure and bending, suggestive of use a a wearable sensor.
Collapse
Affiliation(s)
| | - Debanjan Das
- Material Research Center, Indian Institute of Science, Bangalore 560012, India
| | - Karuna Kar Nanda
- Material Research Center, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
12
|
Gao J, Gao Y, Li K, Tang H, Wang Y, Wu Z. Searching for highly efficient multifunctional electrocatalysts based on the single metal doped graphitic carbon nitride. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1973606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jinghan Gao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People’s Republic of China
- University of Science and Technology of China, Hefei, People’s Republic of China
| | - Yan Gao
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Kai Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People’s Republic of China
| | - Hao Tang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People’s Republic of China
| | - Zhijian Wu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People’s Republic of China
- University of Science and Technology of China, Hefei, People’s Republic of China
| |
Collapse
|
13
|
Chen D, Zhu J, Pu Z, Mu S. Anion Modulation of Pt-Group Metals and Electrocatalysis Applications. Chemistry 2021; 27:12257-12271. [PMID: 34129268 DOI: 10.1002/chem.202101645] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 12/14/2022]
Abstract
Pt-group metal (PGM) electrocatalysts with unique electronic structures and irreplaceable comprehensive properties play crucial roles in electrocatalysis. Anion engineering can create a series of PGM compounds (such as RuP2 , IrP2 , PtP2 , RuB2 , Ru2 B3 , RuS2 , etc.) that provide a promising prospect for improving the electrocatalytic performance and use of Pt-group noble metals. This review seeks the electrochemical activity origin of anion-modulated PGM compounds, and systematically analyzes and summarizes their synthetic strategies and energy-relevant applications in electrocatalysis. Orientation towards the sustainable development of nonfossil resources has stimulated a blossoming interest in the design of advanced electrocatalysts for clean energy conversion. The anion-modulated strategy for Pt-group metals (PGMs) by means of anion engineering possesses high flexibility to regulate the electronic structure, providing a promising prospect for constructing electrocatalysts with superior activity and stability to satisfy a future green electrochemical energy conversion system. Based on the previous work of our group and others, this review summarizes the up-to-date progress on anion-modulated PGM compounds (such as RuP2 , IrP2 , PtP2 , RuB2 , Ru2 B3 , RuS2 , etc.) in energy-related electrocatalysis from the origin of their activity and synthetic strategies to electrochemical applications including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), hydrogen oxidation reaction (HOR), N2 reduction reaction (NRR), and CO2 reduction reaction (CO2 RR). At the end, the key problems, countermeasures and future development orientations of anion-modulated PGM compounds toward electrocatalytic applications are proposed.
Collapse
Affiliation(s)
- Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.,Foshan Xianhu Laboratory of Advanced Energy Science and Technology, Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, P. R. China
| | - Jiawei Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Zonghua Pu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.,Foshan Xianhu Laboratory of Advanced Energy Science and Technology, Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, P. R. China
| |
Collapse
|
14
|
Electrodeposition, formation mechanism, and electrocatalytic performance of Co-Ni-P ternary catalysts coated on carbon fiber paper. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04929-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Highly efficient photocatalytic Suzuki coupling reaction by Pd3P/CdS catalyst under visible-light irradiation. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.06.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Wei T, Jiang X, Qin Q, Liu X. An Fe xNi 4−xP y/N, P co-doped carbon nanotube composite as a bifunctional electrocatalyst for oxygen and hydrogen electrode reactions. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01473g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The FexNi4−xPy/N, P-CNT complex exhibits excellent bifunctional catalytic performance towards HER and OER due to the synergy of high electrical conductivity, multicomponent active sites, and anchoring effect of carbon nanotubes.
Collapse
Affiliation(s)
- Tao Wei
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
| | - Xiaoli Jiang
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
| | - Qing Qin
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
| | - Xien Liu
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
| |
Collapse
|
17
|
Pu Z, Cheng R, Zhao J, Hu Z, Li C, Li W, Wang P, Amiinu IS, Wang Z, Min Wang, Chen D, Mu S. Anion-Modulated Platinum for High-Performance Multifunctional Electrocatalysis toward HER, HOR, and ORR. iScience 2020; 23:101793. [PMID: 33294800 PMCID: PMC7689544 DOI: 10.1016/j.isci.2020.101793] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/21/2020] [Accepted: 11/06/2020] [Indexed: 11/29/2022] Open
Abstract
Efficient electrocatalyst toward hydrogen evolution/oxidation reactions (HER/HOR) and oxygen reduction reaction (ORR) is desirable for water splitting, fuel cells, etc. Herein, we report an advanced platinum phosphide (PtP2) material with only 3.5 wt % Pt loading embedded in phosphorus and nitrogen dual-doped carbon (PNC) layer (PtP2@PNC). The obtained catalyst exhibits robust HER, HOR, and ORR performance. For the HER, a much low overpotential of 8 mV is required to achieve the current density of 10 mA cm-2 compared with Pt/C (22 mV). For the HOR, its mass activity (MA) at an overpotential of 40 mV is 2.3-fold over that of the Pt/C catalyst. Interestingly, PtP2@PNC also shows exceptional ORR MA which is 2.6 times higher than that of Pt/C and has robust stability in alkaline solutions. Undoubtedly, this work reveals that PtP2@PNC can be employed as nanocatalysts with an impressive catalytic activity and stability for broad applications in electrocatalysis.
Collapse
Affiliation(s)
- Zonghua Pu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China
| | - Ruilin Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Jiahuan Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Zhiyi Hu
- Nanostructure Research Centre, Wuhan University of Technology, Wuhan 430070, China
| | - Chaofan Li
- Nanostructure Research Centre, Wuhan University of Technology, Wuhan 430070, China
| | - Wenqiang Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Pengyan Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Ibrahim Saana Amiinu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Zhe Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Min Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China
| |
Collapse
|
18
|
Zhang Y, Liu J, Fang Z, Lin X, Zhang W, Yu D. Polyaniline/Pure Carbon Assemblies as Efficient Self-standing Metal-free Oxygen Electrodes in Alkaline Media for Zn-Air Batteries. Chem Asian J 2020; 15:1544-1548. [PMID: 32103578 DOI: 10.1002/asia.202000179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Indexed: 11/09/2022]
Abstract
A facile design and fabrication of self-standing metal-free polyaniline (PANI)@carbon nanotubes (CNTs) composite membrane was initially proposed by straightforward noncovalent wrapping the polymer around pure CNTs. Without introduction of extra heteroatoms into CNTs, the optimized PANI@CNTs composite exhibits a much better electrocatalytic performance for oxygen evolution reaction (OER) than pure CNTs via favorable interfacial modification with PANI to largely expose the active sites of on the surface of pure CNTs. Besides, it displays good oxygen reduction reaction (ORR) performance. When directly utilized as bifunctional air electrode without extra additive agents, the composite membrane-enabled rechargeable Zn-air batteries not only deliver a high peak power density (201.9 W g-1 ) and a large energy density (850.3 Wh kgZn -1 ), but also present robust cycling performance for 216 cycles with a high energy efficiency of 57.8%.
Collapse
Affiliation(s)
- You Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Key Laboratory of High Performance Polymer-based Composites of Guangdong Province School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.,School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, P. R. China
| | - Jie Liu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Key Laboratory of High Performance Polymer-based Composites of Guangdong Province School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zhengsong Fang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Key Laboratory of High Performance Polymer-based Composites of Guangdong Province School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xiaofeng Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Guangzhou, 510640, P. R. China
| | - Wenchao Zhang
- Institute for Superconducting and Electronic Materials (ISEM) School of Mechanical, Materials, Mechatronics & Biomedical Engineering Faculty of Engineering and Information Sciences, University of Wollongong, NSW, 2500, Australia
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Key Laboratory of High Performance Polymer-based Composites of Guangdong Province School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
19
|
Pu Z, Liu T, Zhao W, Shi X, Liu Y, Zhang G, Hu W, Sun S, Liao S. Versatile Route To Fabricate Precious-Metal Phosphide Electrocatalyst for Acid-Stable Hydrogen Oxidation and Evolution Reactions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11737-11744. [PMID: 32057234 DOI: 10.1021/acsami.9b23426] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Highly active catalyst for the hydrogen oxidation/evolution reactions (HOR and HER) plays an essential role for the water-to-hydrogen reversible conversion. Currently, increasing attention has been concentrated on developing low-cost, high-activity, and long-life catalytic materials, especially for acid media due to the promise of proton exchange membrane (PEM)-based electrolyzers and polymer electrolyte fuel cells. Although non-precious-metal phosphide (NPMP) catalysts have been widely researched, their electrocatalytic activity toward HER is still not satisfactory compared to that of Pt catalysts. Herein, a series of precious-metal phosphides (PMPs) supported on graphene (rGO), including IrP2-rGO, Rh2P-rGO, RuP-rGO, and Pd3P-rGO, are prepared by a simple, facile, eco-friendly, and scalable approach. As an example, the resultant IrP2-rGO displays better HER electrocatalytic performance and longer durability than the benchmark materials of commercial Pt/C under acidic, neutral, and basic electrolytes. To attain a current density of 10 mA cm-2, IrP2-rGO shows overpotentials of 8, 51, and 13 mV in 0.5 M dilute sulfuric acid, 1.0 M phosphate-buffered saline (PBS), and 1.0 M potassium hydroxide solutions, respectively. Additionally, IrP2-rGO also exhibits exceptional HOR performance in the 0.1 M HClO4 medium. Therefore, this work offers a vital addition to the development of a number of PMPs with excellent activity toward HOR and HER.
Collapse
Affiliation(s)
- Zonghua Pu
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Tingting Liu
- Institute for Clean Energy and Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, China
| | - Weiyue Zhao
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiudong Shi
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yanchen Liu
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Gaixia Zhang
- Institut National de la Recherche Scientifique (INRS)-Énergie Matériaux et Télécommunications (EMT), Varennes, Quebec J3X 1S2, Canada
| | - Weihua Hu
- Institute for Clean Energy and Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, China
| | - Shuhui Sun
- Institut National de la Recherche Scientifique (INRS)-Énergie Matériaux et Télécommunications (EMT), Varennes, Quebec J3X 1S2, Canada
| | - Shijun Liao
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
20
|
Chen L, Jang H, Kim MG, Qin Q, Liu X, Cho J. FexNiy/CeO2 loaded on N-doped nanocarbon as an advanced bifunctional electrocatalyst for the overall water splitting. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01251f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synergy of each component in the FexNiy/CeO2/NC renders outstanding electrocatalytic activities and stability toward the HER and OER.
Collapse
Affiliation(s)
- Lulu Chen
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao
| | - Haeseong Jang
- Department of Energy Engineering and School of Energy and Chemical Engineering
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 689-798
- South Korea
| | - Min Gyu Kim
- Beamline Research Division
- Pohang Accelerator Laboratory (PAL)
- Pohang 790-784
- Korea
| | - Qing Qin
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao
| | - Xien Liu
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao
| | - Jaephil Cho
- Department of Energy Engineering and School of Energy and Chemical Engineering
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 689-798
- South Korea
| |
Collapse
|