1
|
Ye Y, Wang D, Zhang Y, Zhou X, Du H, Yang S, Bao Y, Hao H, Xie C. Photo/Mechanical/Acidic Multi-Stimuli Responses and Information Encryption Design of Acylhydrazone Derivative. Chemistry 2024; 30:e202401171. [PMID: 38646836 DOI: 10.1002/chem.202401171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/23/2024]
Abstract
Stimuli-responsive crystalline materials have received much attention for being potential candidates of smart materials. However, the occurrence of polymorphism-driven stimuli responses in crystalline materials remains interesting but rare. Herein, three polymorphs of an acylhydrazone derivative, N'-[(E)-(1-benzofuran-2-yl) methylidene] pyridine -4-carbohydrazide (BFMP) were prepared. Form-1 undergoes a photomechanical response via E→Z photoisomerization under UV irradiation, accompanied by a decrease in fluorescence intensity and a change from colorless to yellow. Two types of Z→E thermal isomerization mechanisms with significant differences in conversion rate were observed at different temperatures in form-1. The solid-melt-solid transition has a faster conversion rate compared to the solid-solid transition due to freedom from lattice confinement. The transition from form-2 to form-3 can be achieved under grinding, coupled with a significant decrease in fluorescence intensity. The similar molecular stacking pattern of form-2 and form-3 provides a structural basis for the grinding-induced crystalline transition behavior. In addition, the presence of the pyridine moiety imparts an acidochromic property. The combination of photochromism and acidochromism explores the possible applications of acylhydrazone derivatives in information encryption.
Collapse
Affiliation(s)
- Yang Ye
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Dechen Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yaru Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaomeng Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Haowen Du
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Sen Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ying Bao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- National Engineering Research Center of Industrial Crystallization Technology, Tianjin University, Tianjin, 300072, China
| | - Hongxun Hao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- National Engineering Research Center of Industrial Crystallization Technology, Tianjin University, Tianjin, 300072, China
| | - Chuang Xie
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- National Engineering Research Center of Industrial Crystallization Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
2
|
Fernández-Palacios S, Matamoros E, Morato Rojas I, López Navarrete JT, Ruiz Delgado MC, Vida Y, Perez-Inestrosa E. New Insights into Acylhydrazones E/ Z Isomerization: An Experimental and Theoretical Approach. Int J Mol Sci 2023; 24:14739. [PMID: 37834186 PMCID: PMC10648745 DOI: 10.3390/ijms241914739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
A family of acylhydrazones have been prepared and characterized with the aim of investigating their potential as information storage systems. Their well-established synthetic methodologies allowed for the preparation of seven chemically stable acylhydrazones in excellent yields that have been photophysically and photochemically characterized. In addition, DFT and TD-DFT calculations have been performed to gain more insights into the structural, energetic and photophysical properties of the E/Z isomers. Our results reveal that E/Z configurational isomerization upon irradiation is highly dependent on the stabilization of the E or Z isomers due to the formation of intramolecular H bonds and the electronic/steric effects intrinsically related to their structures. In addition, Raman spectroscopy is also used to confirm the molecular structural changes after the formation of hydrogen bonds in the isomers.
Collapse
Affiliation(s)
- Sara Fernández-Palacios
- Departamento de Química Física, Universidad de Málaga, Campus Teatinos s/n, 29071 Málaga, Spain; (S.F.-P.); (J.T.L.N.)
| | - Esther Matamoros
- Departamento de Química Orgánica, Universidad de Málaga, Campus Teatinos s/n, 29071 Málaga, Spain; (E.M.); (I.M.R.); (E.P.-I.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA, Plataforma Bionand, Parque Tecnológico de Andalucía, 29590 Málaga, Spain
| | - Isabel Morato Rojas
- Departamento de Química Orgánica, Universidad de Málaga, Campus Teatinos s/n, 29071 Málaga, Spain; (E.M.); (I.M.R.); (E.P.-I.)
| | - Juan T. López Navarrete
- Departamento de Química Física, Universidad de Málaga, Campus Teatinos s/n, 29071 Málaga, Spain; (S.F.-P.); (J.T.L.N.)
| | - M. Carmen Ruiz Delgado
- Departamento de Química Física, Universidad de Málaga, Campus Teatinos s/n, 29071 Málaga, Spain; (S.F.-P.); (J.T.L.N.)
| | - Yolanda Vida
- Departamento de Química Orgánica, Universidad de Málaga, Campus Teatinos s/n, 29071 Málaga, Spain; (E.M.); (I.M.R.); (E.P.-I.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA, Plataforma Bionand, Parque Tecnológico de Andalucía, 29590 Málaga, Spain
| | - Ezequiel Perez-Inestrosa
- Departamento de Química Orgánica, Universidad de Málaga, Campus Teatinos s/n, 29071 Málaga, Spain; (E.M.); (I.M.R.); (E.P.-I.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA, Plataforma Bionand, Parque Tecnológico de Andalucía, 29590 Málaga, Spain
| |
Collapse
|
3
|
Koibuchi R, Omasa K, Yoshikawa I, Houjou H. Photoinduced Crystal-to-Liquid Transition of Acylhydrazone-Based Photoswitching Molecules. J Phys Chem Lett 2023; 14:8320-8326. [PMID: 37695691 DOI: 10.1021/acs.jpclett.3c02164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
A photoinduced crystal-to-liquid transition (PCLT) behavior of new acylhydrazone derivatives (NCs) is reported. The photoswitching of the NCs was identified as a negative photochromism with a high E-to-Z conversion yield (>98%). A kinetic analysis shows a half-life of almost one month. Owing to these high photoswitching performances, we successfully isolated both E- and Z-forms, evaluated their crystal structures, and observed distinct thermal behaviors. The Z-form melts at a lower temperature than the E-form by several tens of degrees. The PCLT occurs at even lower temperatures. UV irradiation induces the E-to-Z conversion in the crystalline state, thereby inducing a eutectic melting. In addition to the PCLT, we observed a photomechanical behavior of the crystals, which suggests that the presented acylhydrazones can be new members of the photoresponsive crystalline materials.
Collapse
Affiliation(s)
- Ryo Koibuchi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153- 8505, Japan
| | - Koichiro Omasa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153- 8505, Japan
| | - Isao Yoshikawa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153- 8505, Japan
| | - Hirohiko Houjou
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153- 8505, Japan
- Environmental Science Center, The University of Tokyo, 7-3-1 Hongo, Tokyo 113- 0033, Japan
| |
Collapse
|
4
|
Zhang Z, Le GNT, Ge Y, Tang X, Chen X, Ejim L, Bordeleau E, Wright GD, Burns DC, Tran S, Axerio-Cilies P, Wang YT, Dong M, Woolley GA. Isomerization of bioactive acylhydrazones triggered by light or thiols. Nat Chem 2023; 15:1285-1295. [PMID: 37308709 DOI: 10.1038/s41557-023-01239-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/12/2023] [Indexed: 06/14/2023]
Abstract
The acylhydrazone unit is well represented in screening databases used to find ligands for biological targets, and numerous bioactive acylhydrazones have been reported. However, potential E/Z isomerization of the C=N bond in these compounds is rarely examined when bioactivity is assayed. Here we analysed two ortho-hydroxylated acylhydrazones discovered in a virtual drug screen for modulators of N-methyl-D-aspartate receptors and other bioactive hydroxylated acylhydrazones with structurally defined targets reported in the Protein Data Bank. We found that ionized forms of these compounds, which are populated under laboratory conditions, photoisomerize readily and the isomeric forms have markedly different bioactivity. Furthermore, we show that glutathione, a tripeptide involved with cellular redox balance, catalyses dynamic E⇄Z isomerization of acylhydrazones. The ratio of E to Z isomers in cells is determined by the relative stabilities of the isomers regardless of which isomer was applied. We conclude that E/Z isomerization may be a common feature of the bioactivity observed with acylhydrazones and should be routinely analysed.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Giang N T Le
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Yang Ge
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaowen Tang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China
| | - Xin Chen
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China
| | - Linda Ejim
- David Braley Centre for Antibiotics Discovery M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Emily Bordeleau
- David Braley Centre for Antibiotics Discovery M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Gerard D Wright
- David Braley Centre for Antibiotics Discovery M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Darcy C Burns
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Susannah Tran
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Peter Axerio-Cilies
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Yu Tian Wang
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Mingxin Dong
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China.
| | - G Andrew Woolley
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Sun Y, Ding H, Tang M, Wen J, Yue S, Peng Y, Zheng L, Shi Y, Cao Q. Multicolor Adjustable B-N Molecular Switches: Simple, Efficient, Portable, and Visual Identification of Butanol Isomers. Anal Chem 2023; 95:5594-5600. [PMID: 36942711 DOI: 10.1021/acs.analchem.2c05045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
As intelligent probes, dynamic and controllable molecular switches are useful tools for probing and intervening in life processes. However, the types and properties of molecular switches are still relatively single and often can only make two actions: "off" and "on". Therefore, the development of novel molecular switches with multiple colors and multiple instructions is very challenging. Herein, we propose a novel strategy based on the instability of the Lewis acid-base pair (boron (B) and nitrogen (N)), such as introducing the Schiff base (C═N) group into the aminoborane skeleton and preparing the novel molecular switches BN-HDZ and BN-HDZ-N. These two molecules were found to have good multicolor fluorescence switching capability for methanol. Surprisingly, the compound BN-HDZ-N shows unprecedented visual identification for the butanol isomers and could be made into a portable strip for simple and rapid visual identification of the four isomers of butanol, promising an alternative to conventional Lucas reagents. This provides a novel strategy for the design and fabrication of novel multicolor-tunable molecular switches with visual identification of isomers.
Collapse
Affiliation(s)
- Yitong Sun
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Huangting Ding
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Meng Tang
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Jingyi Wen
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Shiwen Yue
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Ye Peng
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Liyan Zheng
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Yonggang Shi
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Qiue Cao
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| |
Collapse
|
6
|
Betancourth JG, Castaño JA, Visbal R, Chaur MN. The versatility of the amino moiety of the hydrazone group in molecular and supramolecular systems. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Renso Visbal
- Universidad del Valle Departamento de Química COLOMBIA
| | - Manuel N. Chaur
- Universidad del Valle Chemistry Calle 13 # 100-00Departamento de QuímicaUniversidad del Valle 76000 Cali COLOMBIA
| |
Collapse
|
7
|
Gong Y, Zhang M, Jia X, Yue B, Zhu L. Rigid Polymer Network-Based Autonomous Photoswitches Working in the Solid State Encoded by Room-Temperature Phosphorescence. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14398-14406. [PMID: 34851633 DOI: 10.1021/acs.langmuir.1c02347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Autonomous molecular switches with self-recoverability are of great theoretical and experimental interest since they can avoid additional chemical or energy imposition during the working process. Due to the high energy barrier, however, the solid state is generally unfavorable for materials to exhibit the autonomous switch behavior. To promote the practical usage of the autonomous molecular switch, herein, we propose a prototype of an autonomous photoswitch that can work in the solid state based on a rigid polymer network. A hexacarboxylic sodium-modified hexathiobenzene compound was employed as a photoexcitation-driven unit, which can undergo molecular aggregation upon irradiation because of the distinct conformational difference between the ground state and the photoexcited state. Then, we selected a relatively rigid polymer named poly(dimethyldiallylammonium)chloride (PDDA) to complex with the hexacarboxylic sodium-modified hexathiobenzene through electrostatic coupling. Through optimization, the photoexcitation-controlled molecular aggregation and its self-recovery can work well in the solid matrix of PDDA under rhythmical photoirradiation. This process can be easily encoded by a self-recoverable room-temperature phosphorescence, featuring an excellent performance of the autonomous switch.
Collapse
Affiliation(s)
- Yifan Gong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xiaoyong Jia
- Henan Key Laboratory of Photovoltaic Materials, Henan University, 475004 Kaifeng, P. R. China
| | - Bingbing Yue
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
- University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
8
|
Volarić J, Szymanski W, Simeth NA, Feringa BL. Molecular photoswitches in aqueous environments. Chem Soc Rev 2021; 50:12377-12449. [PMID: 34590636 PMCID: PMC8591629 DOI: 10.1039/d0cs00547a] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 12/17/2022]
Abstract
Molecular photoswitches enable dynamic control of processes with high spatiotemporal precision, using light as external stimulus, and hence are ideal tools for different research areas spanning from chemical biology to smart materials. Photoswitches are typically organic molecules that feature extended aromatic systems to make them responsive to (visible) light. However, this renders them inherently lipophilic, while water-solubility is of crucial importance to apply photoswitchable organic molecules in biological systems, like in the rapidly emerging field of photopharmacology. Several strategies for solubilizing organic molecules in water are known, but there are not yet clear rules for applying them to photoswitchable molecules. Importantly, rendering photoswitches water-soluble has a serious impact on both their photophysical and biological properties, which must be taken into consideration when designing new systems. Altogether, these aspects pose considerable challenges for successfully applying molecular photoswitches in aqueous systems, and in particular in biologically relevant media. In this review, we focus on fully water-soluble photoswitches, such as those used in biological environments, in both in vitro and in vivo studies. We discuss the design principles and prospects for water-soluble photoswitches to inspire and enable their future applications.
Collapse
Affiliation(s)
- Jana Volarić
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nadja A Simeth
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
9
|
Tisovský P, Donovalová J, Sokolík R, Horváth M, Gáplovský A. A New Strategy for the Preparation of E Isomers of Hydrazones and Anil‐Like Compounds: Thermally Stimulated Isomerization of Z Isomers of Anions. ChemistrySelect 2021. [DOI: 10.1002/slct.202102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pavol Tisovský
- Department of Organic Chemistry Faculty of Natural Sciences Comenius University Ilkovičova 6, SK-842 15 Bratislava Slovakia
| | - Jana Donovalová
- Department of Organic Chemistry Faculty of Natural Sciences Comenius University Ilkovičova 6, SK-842 15 Bratislava Slovakia
| | - Róbert Sokolík
- Department of Organic Chemistry Faculty of Natural Sciences Comenius University Ilkovičova 6, SK-842 15 Bratislava Slovakia
| | - Miroslav Horváth
- Department of Organic Chemistry Faculty of Natural Sciences Comenius University Ilkovičova 6, SK-842 15 Bratislava Slovakia
| | - Anton Gáplovský
- Department of Organic Chemistry Faculty of Natural Sciences Comenius University Ilkovičova 6, SK-842 15 Bratislava Slovakia
| |
Collapse
|
10
|
Nakashima K, Petek A, Hori Y, Georgiev A, Hirashima SI, Matsushima Y, Yordanov D, Miura T, Antonov L. Acylhydrazone Subunits as a Proton Cargo Delivery System in 7-Hydroxyquinoline. Chemistry 2021; 27:11559-11566. [PMID: 34137094 DOI: 10.1002/chem.202101650] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 12/13/2022]
Abstract
The reimagined concept of long-range tautomeric proton transfer using crane subunits is shown by designing and synthesising two new acylhydrazones containing a 7-hydroxyquinoline (7-OHQ) platform. The acylhydrazone subunits attached to the 7-OHQ at the 8th position act as crane arms for delivering proton cargo to the quinoline nitrogen. Light-induced tautomerization to their keto forms leads to Z/E isomerization of the C=C axle bond, followed by proton delivery to the quinoline nitrogen by the formation of covalent or hydrogen bonds. The axle's being either an imine or ketimine bond is the structural difference between the studied compounds. The -CH3 group in the latter provides steric strain, resulting in different proton transport pathways. Both compounds show long thermal stability in the switched state, which creates a tuneable action of bidirectional proton cargo transport by using different wavelengths of irradiation. Upon the addition of acid, the quinoline nitrogen is protonated; this results in E/Z configuration switching of the acylhydrazone subunits. This was proven by single-crystal X-ray structure analysis and NMR spectroscopy.
Collapse
Affiliation(s)
- Kosuke Nakashima
- Department of Pharmaceutical Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Anton Petek
- Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Yutaro Hori
- Department of Pharmaceutical Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Anton Georgiev
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8 St. Kliment Ohridski blvd, 1756, Sofia, Bulgaria.,Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev avenue, bldg. 109, 1113, Sofia, Bulgaria
| | - Shin-Ichi Hirashima
- Department of Pharmaceutical Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yasuyuki Matsushima
- Department of Pharmaceutical Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Dancho Yordanov
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko chaussee blvd, 1784, Sofia, Bulgaria.,Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev avenue, bldg. 9, Sofia, 1113, Bulgaria
| | - Tsuyoshi Miura
- Department of Pharmaceutical Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Liudmil Antonov
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko chaussee blvd, 1784, Sofia, Bulgaria
| |
Collapse
|
11
|
Dommaschk M, Echavarren J, Leigh DA, Marcos V, Singleton TA. Dynamic Control of Chiral Space Through Local Symmetry Breaking in a Rotaxane Organocatalyst. Angew Chem Int Ed Engl 2019; 58:14955-14958. [PMID: 31454135 DOI: 10.1002/anie.201908330] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Indexed: 12/21/2022]
Abstract
We report on a switchable rotaxane molecular shuttle that features a pseudo-meso 2,5-disubstituted pyrrolidine catalytic unit on the axle whose local symmetry is broken according to the position of a threaded benzylic amide macrocycle. The macrocycle can be selectively switched (with light in one direction; with catalytic acid in the other) with high fidelity between binding sites located to either side of the pyrrolidine unit. The position of the macrocycle dictates the facial bias of the rotaxane-catalyzed conjugate addition of aldehydes to vinyl sulfones. The pseudo-meso non-interlocked thread does not afford significant selectivity as a catalyst (2-14 % ee), whereas the rotaxane affords selectivities of up to 40 % ee with switching of the position of the macrocycle changing the handedness of the product formed (up to 60 % Δee).
Collapse
Affiliation(s)
- Marcel Dommaschk
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Javier Echavarren
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - David A Leigh
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Vanesa Marcos
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Thomas A Singleton
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
12
|
Dommaschk M, Echavarren J, Leigh DA, Marcos V, Singleton TA. Dynamic Control of Chiral Space Through Local Symmetry Breaking in a Rotaxane Organocatalyst. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908330] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Marcel Dommaschk
- School of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Javier Echavarren
- School of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - David A. Leigh
- School of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Vanesa Marcos
- School of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Thomas A. Singleton
- School of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|