1
|
Jun BM, Kim D, Shin J, Chon K, Park C, Rho H. Removal of trivalent chromium ions in model contaminated groundwater using hexagonal boron nitride as an adsorbent. CHEMOSPHERE 2024; 361:142539. [PMID: 38844110 DOI: 10.1016/j.chemosphere.2024.142539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The feasibility of using hexagonal boron nitride (h-BN) to treat heavy metal Cr(III) from model contaminated groundwater was evaluated in this study by adsorption experiments and characterizations. To the best of our knowledge, this study is the first attempt to conduct the adsorption of Cr(III) by h-BN under various experimental conditions such as exposure time, ratio of adsorbates and adsorbents, solution pH, background ions with different ionic strength, and the presence of humic acids (HA) in model contaminated groundwater. The optimized h-BN showed excellent maximum adsorption capacity (i.e., 177 mg ∙ g-1) when the concentrations of Cr(III) and h-BN were 10 and 10 mg ∙ L-1, respectively. Subsequently, we confirmed there was a negligible change in the adsorption performance of Cr(III) by h-BN in the presence of co-ions (i.e., K and Mg) in concentrations in a range from 50 to 1000 mg ∙ L-1. Furthermore, the adsorption performance of Cr(III) gradually improved with HA concentrations from 2.5 to 25 mg ∙ L-1. Interestingly, the maximum adsorption performance of Cr(III) by both HA and h-BN increased until 500 mg ∙ g-1 in the presence of 25 mg ∙ L-1 HA. The adsorption mechanism was clarified by Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. Additionally, we successfully confirmed that h-BN could be reused until five cycles. On the basis of the adsorption performance results and characterizations, h-BN can be utilized as an efficient and practical adsorbent to treat Cr(III) in groundwater treatment.
Collapse
Affiliation(s)
- Byung-Moon Jun
- Radwaste Management Center, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok-Daero 989beon-gil, Yuseong-Gu, Daejeon, 34057, Republic of Korea
| | - Deokhwan Kim
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283 Goyang-Daero, Ilsanseo-Gu, Goyang-si, Gyeonggi-do, 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Jaegwan Shin
- Department of Integrated Energy and Infra system, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Kangmin Chon
- Department of Integrated Energy and Infra system, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea; Department of Environmental Engineering, College of Engineering, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Chanhyuk Park
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Hojung Rho
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283 Goyang-Daero, Ilsanseo-Gu, Goyang-si, Gyeonggi-do, 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
2
|
Jun BM, Chae SH, Kim D, Jung JY, Kim TJ, Nam SN, Yoon Y, Park C, Rho H. Adsorption of uranyl ion on hexagonal boron nitride for remediation of real U-contaminated soil and its interpretation using random forest. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134072. [PMID: 38522201 DOI: 10.1016/j.jhazmat.2024.134072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/09/2024] [Accepted: 03/16/2024] [Indexed: 03/26/2024]
Abstract
Acid leaching has been widely applied to treat contaminated soil, however, it contains several inorganic pollutants. The decommissioning of nuclear power plants introduces radioactive and soluble U(VI), a substance posing chemical toxicity to humans. Our investigation sought to ascertain the efficacy of hexagonal boron nitride (h-BN), an highly efficient adsorbent, in treating U(VI) in wastewater. The adsorption equilibrium of U(VI) by h-BN reached saturation within a mere 2 h. The adsorption of U(VI) by h-BN appears to be facilitated through electrostatic attraction, as evidenced by the observed impact of pH variations, acidic agents (i.e., HCl or H2SO4), and the presence of background ions on the adsorption performance. A reusability test demonstrated the successful completion of five cycles of adsorption/desorption, relying on the surface characteristics of h-BN as influenced by solution pH. Based on the experimental variables of initial U(VI) concentration, exposure time, temperature, pH, and the presence of background ions/organic matter, a feature importance analysis using random forest (RF) was carried out to evaluate the correlation between performances and conditions. To the best of our knowledge, this study is the first attempt to conduct the adsorption of U(VI) generated from real contaminated soil by h-BN, followed by interpretation of the correlation between performance and conditions using RF. Lastly, a. plausible adsorption mechanism between U(VI) and h-BN was explained based on the experimental results, characterizations, and a. comparison with previous adsorption studies on the removal of heavy metals by h-BN.
Collapse
Affiliation(s)
- Byung-Moon Jun
- Radwaste Management Center, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok-Daero 989beon-gil, Yuseong-Gu, Daejeon 34057, Republic of Korea
| | - Sung Ho Chae
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Deokhwan Kim
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283 Goyang-Daero, Ilsanseo-Gu, Goyang-si, Gyeonggi-do 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon 34113, Republic of Korea
| | - Jun-Young Jung
- Radwaste Management Center, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok-Daero 989beon-gil, Yuseong-Gu, Daejeon 34057, Republic of Korea
| | - Tack-Jin Kim
- Radwaste Management Center, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok-Daero 989beon-gil, Yuseong-Gu, Daejeon 34057, Republic of Korea
| | - Seong-Nam Nam
- Department of Chemical and Environmental Science, Korea Army Academy, Yeong-Cheon 495 Hoguk-ro, Gokyeong-myeon, Yeongcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - Yeomin Yoon
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Chanhyuk Park
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Hojung Rho
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283 Goyang-Daero, Ilsanseo-Gu, Goyang-si, Gyeonggi-do 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
3
|
Gadore V, Mishra SR, Singh AK, Ahmaruzzaman M. Advances in boron nitride-based nanomaterials for environmental remediation and water splitting: a review. RSC Adv 2024; 14:3447-3472. [PMID: 38259991 PMCID: PMC10801356 DOI: 10.1039/d3ra08323c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Boron nitride has gained wide-spread attention globally owing to its outstanding characteristics, such as a large surface area, high thermal resistivity, great mechanical strength, low density, and corrosion resistance. This review compiles state-of-the-art synthesis techniques, including mechanical exfoliation, chemical exfoliation, chemical vapour deposition (CVD), and green synthesis for the fabrication of hexagonal boron nitride and its composites, their structural and chemical properties, and their applications in hydrogen production and environmental remediation. Additionally, the adsorptive and photocatalytic properties of boron nitride-based nanocomposites for the removal of heavy metals, dyes, and pharmaceuticals from contaminated waters are discussed. Lastly, the scope of future research, including the facile synthesis and large-scale applicability of boron nitride-based nanomaterials for wastewater treatment, is presented. This review is expected to deliver preliminary knowledge of the present state and properties of boron nitride-based nanomaterials, encouraging the future study and development of these materials for their applications in various fields.
Collapse
Affiliation(s)
- Vishal Gadore
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| | - Soumya Ranjan Mishra
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| | - Ashish Kumar Singh
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| |
Collapse
|
4
|
Er Zeybekler S. Polydopamine-coated hexagonal boron nitride-based electrochemical immunosensing of T-Tau as a marker of Alzheimer's disease. Bioelectrochemistry 2023; 154:108552. [PMID: 37651881 DOI: 10.1016/j.bioelechem.2023.108552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/02/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Alzheimer's disease (AD) is a complex pathological process that is one of the leading causes of dementia globally. The demand for diagnostic tools that are minimally invasive, timely, and accurate is on the rise. Total tau (T-Tau) protein in blood serum is a promising biomarker for predicting early-stage AD diagnosis. In this study, the hexagonal boron nitride (HBN) based immunosensor platform was developed to detect T-Tau in artificial blood serum. After the exfoliation of HBN, its surface was coated with polydopamine (PDA) in alkaline conditions. The Anti-T-Tau was immobilized on a hydrophilic nanocomposite surface using PDA's reactive catechol and quinone groups, eliminating the need for extra crosslinkers. The working electrode surface of the screen-printed carbon electrode (SPCE) was coated with HBN-PDA nanocomposite using the drop-casting method. The biofunctional surface was created by directly immobilizing Anti-T-Tau on the HBN-PDA nanocomposite-modified SPCE. The analytical performance of the HBN-PDA/Anti-T-Tau/T-Tau immunosensor in the presence of T-Tau isoforms was determined through electrochemical measurements. The linear detection range was 1-30 pg/mL with a detection limit of 0.42 pg/mL for T-Tau, which is suitable for detecting T-Tau in the blood serum.
Collapse
Affiliation(s)
- Simge Er Zeybekler
- Ege University, Faculty of Science Biochemistry Department, 35100 Bornova-Izmir, Turkey
| |
Collapse
|
5
|
Zhang B, Zhang J, Zhang Y, Zuo Q, Zheng H. Ce(IV)-Based Metal-Organic Gel for Ultrafast Removal of Trace Arsenate from Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37515556 DOI: 10.1021/acs.langmuir.3c01079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
As a potential replacement for metal-organic frameworks (MOFs), constructing metal-organic gels (MOGs) is an appealing but challenging topic since MOGs are a kind of shapeable MOF gels. Also, the rapid adsorption of trace heavy metal ions in aqueous media remains a serious challenge. Herein, a simple strategy for the synthesis of Ce(IV)-based metal-organic gel (Ce-MOG) was first developed for the rapid adsorption of trace As(V). The (NH4)2Ce(NO3)6 obtains hydroxide bridges after adding apposite NaOH, leading to [Ce6O4(OH)4]12+ clustering and inducing fast and excessive nucleation rates, which also leads to coordination disturbance of MOF nanocrystals to obtain Ce-MOG. The Ce-OH groups are the key to gel formation through hydrogen bonding and are the active site for the ultrafast adsorption of As(V). As expected, the resultant Ce-MOG has an excellent adsorption rate, making it possible to effectively decontaminate 500 ppb of As(V) to below the World Health Organization (WHO) recommended threshold for drinking water (10 ppb) within 1 min. It achieves equilibrium adsorption in 10 min, and the final arsenate-removing efficiency reaches 99.8%. For Ce-MOF, the effluent concentration of As(V) is higher than the drinking water standard, while equilibrium adsorption takes 60 min. The initial adsorption rate of Ce-MOG, h(k2qe2) is calculated and indicated to be 67.67 mg g-1 min-1, about 19.96 times that of Ce-MOF (3.39 mg g-1 min-1). As such, the excellent As(V) decontamination rate, selectivity, and reusability of Ce-MOG indicate its great potential for practical drinking water purification.
Collapse
Affiliation(s)
- Baichao Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Jiejing Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yu Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Qi Zuo
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Hong Zheng
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
6
|
Yoon K, Cho DW, Kwon G, Rinklebe J, Wang H, Song H. Practical approach of As(V) adsorption by fabricating biochar with low basicity from FeCl3 and lignin. CHEMOSPHERE 2023; 329:138665. [PMID: 37044148 DOI: 10.1016/j.chemosphere.2023.138665] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
One of the main challenges of biochar application for environmental cleanup is rise of pH in water or soil due to high ash and alkali metal contents in the biochar. While this intrinsic property of biochar is advantageous in alleviating soil and water acidity, it severely impairs the affinity of biochar toward anionic contaminants such as arsenic. This study explored a technical approach that can reduce the basicity of lignin-based biochar by utilizing FeCl3 during production of biochar. Three types of biochar were produced by co-pyrolyzing feedstock composed of different combinations of lignin, red mud (RM), and FeCl3, and the produced biochar samples were applied to adsorption of As(V). The biochar samples commonly possessed porous carbon structure embedded with magnetite (Fe3O4) particles. The addition of FeCl3 in the pyrolysis feedstock had a notable effect on reducing basicity of the biochar to yield significantly lower solution pH values than the biochar produced without FeCl3 addition. The extent of As(V) removal was also closely related to the final solution pH and the greatest As(V) removal (>77.6%) was observed for the biochar produced from co-pyrolysis of lignin, RM, and FeCl3. The results of adsorption kinetics and isotherm experiments, along with x-ray spectroscopy (XPS), strongly suggested adsorption of As(V) occurred via specific chemical reaction (chemisorption) between As(V) and Fe-O functional groups on magnetite. Thus, the overall results suggest the use of FeCl3 is a feasible practical approach to control the intrinsic pH of biochar and impart additional functionality that enables effective treatment of As(V).
Collapse
Affiliation(s)
- Kwangsuk Yoon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Dong-Wan Cho
- Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon, 34132, Republic of Korea
| | - Gihoon Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Hocheol Song
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
7
|
Polyacrylonitrile support impregnated with amine-functionalized graphitic carbon nitride/magnetite composite nanofibers towards enhanced arsenic remediation: A mechanistic approach. J Colloid Interface Sci 2023; 640:890-907. [PMID: 36907149 DOI: 10.1016/j.jcis.2023.02.104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
Recently, novel composite materials are rapidly being explored for water treatment applications. However, their physicochemical behavior and mechanistic investigations are still a mystery. Therefore, our key prospect is to develop a highly stable mixed-matrix adsorbent system using polyacrylonitrile (PAN) support impregnated with amine-functionalized graphitic carbon nitride/magnetite (gCN-NH2/Fe3O4) composite nanofibers (PAN/gCN-NH2/Fe3O4: PCNFe) by simple electrospinning techniques. Various instrumental techniques were used to explore the structural, physicochemical, and mechanical behavior of the synthesized nanofiber. The developed PCNFe with a specific surface area of 39.0 m2/g was found to be non-aggregated and to have outstanding water dispersibility, abundant surface functionality, greater hydrophilicity, superior magnetic property, and higher thermal & mechanical characteristics making it favorable for rapid As removal. Based on the experimental findings from the batch study, 97.0 and 99.0 % of arsenite (As(III)) and arsenate (As(V)), respectively, could be adsorbed by utilizing0.02 g of adsorbent dosage within 60 min of contact time at pH 7 and 4, with an initial concentration of 10 mg/L. Adsorption of As(III) and As(V) followed the pseudo-second-order kinetic and Langmuir isotherm models with an sorption capacities of 32.26 and 33.22 mg/g, respectively, at ambient temperature. The adsorption was endothermic and spontaneous, in accordance with the thermodynamic study. Furthermore, the addition of co-anions in a competitive environment did not affect As adsorption except for PO43-. Moreover, PCNFe preserves its adsorption efficiency above 80 % after five regeneration cycles. The combined results of FTIR and XPS after adsorption further support the adsorption mechanism. Also, the composite nanostructures retain their morphological and structural integrity after the adsorption process. The facile synthesis protocol, high As adsorption capacity, and enhanced mechanical integrity of PCNFe foreshadow its huge prospects for real wastewater treatment.
Collapse
|
8
|
Boruah H, Tyagi N, Gupta SK, Chabukdhara M, Malik T. Understanding the adsorption of iron oxide nanomaterials in magnetite and bimetallic form for the removal of arsenic from water. FRONTIERS IN ENVIRONMENTAL SCIENCE 2023; 11. [DOI: 10.3389/fenvs.2023.1104320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Arsenic decontamination is a major worldwide concern as prolonged exposure to arsenic (>10 µg L-1) through drinking water causes serious health hazards in human beings. The selection of significant, cost-effective, and affordable processes for arsenic removal is the need of the hour. For the last decades, iron-oxide nanomaterials (either in the magnetite or bimetallic form) based adsorptive process gained attention owing to their high arsenic removal efficiency and high regenerative capacity as well as low yield of harmful by-products. In the current state-of-the-art, a comprehensive literature review was conducted focused on the applicability of iron-based nanomaterials for arsenic removal by considering three main factors: (a) compilation of arsenic removal efficiency, (b) identifying factors that are majorly affecting the process of arsenic adsorption and needs further investigation, and (c) regeneration capacity of adsorbents without affecting the removal process. The results revealed that magnetite and bimetallic nanomaterials are more effective for removing Arsenic (III) and Arsenic (V). Further, magnetite-based nanomaterials could be used up to five to six reuse cycles, whereas this value varied from three to six reuse cycles for bimetallic ones. However, most of the literature was based on laboratory findings using decided protocols and sophisticated instruments. It cannot be replicated under natural aquatic settings in the occurrence of organic contents, fluctuating pH and temperature, and interfering compounds. The primary rationale behind this study is to provide a comparative picture of arsenic removal through different iron-oxide nanomaterials (last twelve yearsof published literature) and insights into future research directions.
Collapse
|
9
|
Ahmaruzzaman M. Magnetic nanocomposite adsorbents for abatement of arsenic species from water and wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82681-82708. [PMID: 36219282 DOI: 10.1007/s11356-022-23357-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The presence of high concentrations of arsenic species in drinking water and other water bodies has become one of the most critical environmental concerns. Therefore, decontamination of arsenic-containing water is essential for improved health and environmental concern. In recent years, nano-adsorbents have been widely used for the adsorptive removal of arsenic from water. Separating existing nano-adsorbents from treated waters, on the other hand, is a critical issue for their potential applications in natural water treatment. To address these issues and to effectively remove arsenic from water, researchers looked at iron oxide-based magnetic nanocomposite adsorbents. The magnetic nanoadsorbents have the benefit of surface functionalization, making it easier to target a specific pollutant for adsorption, and magnetic separation. In addition, magnetic nanoparticles have a large surface area, high chemical inertness, superparamagnetic, high magnetic susceptibility, small particle size, and large specific surface area, and are especially easily separated in a magnetic field. Magnetic nano-adsorbents have been discovered to have a lot of potential for eliminating arsenic from water. The recent advances in magnetic nano-absorbents for the cleanup of arsenic species from water are summarized in this paper. Future perspectives and directions were also discussed in this article. This will help budding researchers for the further advancement of magnetic nanocomposites for the treatment of water and wastewater contaminated with arsenic.
Collapse
Affiliation(s)
- Mohammed Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar-788010, Assam, India.
| |
Collapse
|
10
|
Hexagonal boron nitride nanosheets based magnetic solid phase extraction for the extraction of phenoxy carboxylic acid herbicides from water samples followed by high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2022; 1682:463519. [PMID: 36162251 DOI: 10.1016/j.chroma.2022.463519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/23/2022]
Abstract
High-efficiency caption of pesticide residue is of vital significance for environmental safety monitoring. Herein, a hexagonal boron nitride nanosheets-based magnetic composite (Fe3O4@h-BNNSs) was synthesized and applied for the magnetic solid phase extraction (MSPE) of five phenoxy carboxylic acid (PCA) herbicides from water samples. Based on the π-π interaction, hydrogen bond and halogen bond, the Fe3O4@h-BNNSs composite showed excellent adsorption ability towards PCA herbicides. Several main variables that influenced the extraction efficiencies of PCA herbicides were investigated and optimized via single-factor experiment. Combining this Fe3O4@h-BNNSs composite-based MSPE with high-performance liquid chromatography-tandem mass spectrometry, a novel sensitive method for the analysis of PCA herbicides was developed. Under the most favorable conditions, the proposed method displayed good linear ranges (20.0-10000.0 ng L-1), low limits of detection (5.6-10.3 ng L-1), satisfactory precisions (1.1-6.8%) and recoveries (76.6-107.2%). Overall, the present work can be a versatile and worthy utility for the determination of PCA herbicides from different water samples.
Collapse
|
11
|
Lawal Usman U, Kumar Allam B, Bahadur Singh N, Banerjee S. Adsorptive removal of Cr(VI) from wastewater by hexagonal boron nitride-magnetite nanocomposites: Kinetics, mechanism and LCA analysis. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Park YG, Nam SN, Jang M, Min Park C, Her N, Sohn J, Cho J, Yoon Y. Boron nitride-based nanomaterials as adsorbents in water: A review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Bao Y, Yan W, Sun PP, Yeow Seow JZ, Lua SK, Lee WJ, Liang YN, Lim TT, Xu ZJ, Zhou K, Hu X. Unexpected Intrinsic Catalytic Function of Porous Boron Nitride Nanorods for Highly Efficient Peroxymonosulfate Activation in Water Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18409-18419. [PMID: 35426679 DOI: 10.1021/acsami.2c00755] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Porous boron nitride (BN) nanorods, which were synthesized via a one-stage pyrolysis, exhibited excellent catalytic performance for organics' degradation via peroxymonosulfate (PMS) activation. The origin of the unexpected catalytic function of porous BN nanorods was proposed, in which non-radical oxidation driven by the defects on porous BN dominated the sulfamethoxazole degradation via the generation of singlet oxygen (1O2). The adsorption energy between PMS and BN was calculated via density functional theory (DFT), and the PMS activation kinetics were further investigated using an electrochemical methodology. The evolution of 1O2 was verified by electron spin resonance (ESR) and chemical scavenging experiments. The observed non-radical oxidation presented a high robustness in different water matrices, combined with a series of much less toxic intermediates. The used BN was easily regenerated by heating in air, in which the B-O bond was fully recovered. These findings provide new insights for BN as a non-metal catalyst for organics' degradation via PMS activation, in both theoretical and practical prospects.
Collapse
Affiliation(s)
- Yueping Bao
- Environmental Chemistry & Materials Centre (ECMC), Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, Singapore 637141, Singapore
| | - Weili Yan
- Rolls-Royce @ NTU Corporate Lab, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Ping-Ping Sun
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Justin Zhu Yeow Seow
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore 639798 Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shun Kuang Lua
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Emerging nanoscience Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wen Jie Lee
- Environmental Chemistry & Materials Centre (ECMC), Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, Singapore 637141, Singapore
- Interdisciplinary Graduate Programme (IGP), Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yen Nan Liang
- Environmental Chemistry & Materials Centre (ECMC), Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, Singapore 637141, Singapore
| | - Teik-Thye Lim
- Environmental Chemistry & Materials Centre (ECMC), Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, Singapore 637141, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Zhichuan J Xu
- Environmental Chemistry & Materials Centre (ECMC), Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, Singapore 637141, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kun Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Environmental Process Modelling Centre (EPMC), Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, Singapore 637141, Singapore
| | - Xiao Hu
- Environmental Chemistry & Materials Centre (ECMC), Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, Singapore 637141, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
14
|
Jain R. Recent advances of magnetite nanomaterials to remove arsenic from water. RSC Adv 2022; 12:32197-32209. [PMID: 36425726 PMCID: PMC9644904 DOI: 10.1039/d2ra05832d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Pure water is one of the major requirements for living beings but water bodies are contaminated with toxic pollutants and heavy metals. Around 225–500 million people on the earth depend on groundwater, which is highly contaminated by arsenic. Arsenic impurities are present in water as arsenite As(iii) and arsenate As(v). Arsenic is a highly toxic metalloid ranking one in toxicity. Researchers have been exploring new techniques and methods to purify water. Magnetic nanoparticles have high absorption and reaction capabilities due to their high surface-to-volume ratio and quantum size effects. Due to their high magnetization, adsorption behaviour, and biodegradability, magnetite nanomaterials are considered excellent materials to purify water. These nanomaterials and their composites are cost-effective as well as they can be easily separated, regenerated, and reused. This review gives a recent overview of the potential of magnetite nanoparticles and their composites to treat contaminated water and remove unwanted arsenic impurities. Pure water is one of the major requirements for living beings but water bodies are contaminated with toxic pollutants and heavy metals.![]()
Collapse
Affiliation(s)
- Richa Jain
- Department of Physics, Motilal Nehru College, Benito Juarez Road, New Delhi-110021, India
| |
Collapse
|
15
|
Spanos A, Athanasiou K, Ioannou A, Fotopoulos V, Krasia-Christoforou T. Functionalized Magnetic Nanomaterials in Agricultural Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3106. [PMID: 34835870 PMCID: PMC8623625 DOI: 10.3390/nano11113106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/23/2022]
Abstract
The development of functional nanomaterials exhibiting cost-effectiveness, biocompatibility and biodegradability in the form of nanoadditives, nanofertilizers, nanosensors, nanopesticides and herbicides, etc., has attracted considerable attention in the field of agriculture. Such nanomaterials have demonstrated the ability to increase crop production, enable the efficient and targeted delivery of agrochemicals and nutrients, enhance plant resistance to various stress factors and act as nanosensors for the detection of various pollutants, plant diseases and insufficient plant nutrition. Among others, functional magnetic nanomaterials based on iron, iron oxide, cobalt, cobalt and nickel ferrite nanoparticles, etc., are currently being investigated in agricultural applications due to their unique and tunable magnetic properties, the existing versatility with regard to their (bio)functionalization, and in some cases, their inherent ability to increase crop yield. This review article provides an up-to-date appraisal of functionalized magnetic nanomaterials being explored in the agricultural sector.
Collapse
Affiliation(s)
- Alexandros Spanos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Limassol 3036, Cyprus; (A.S.); (A.I.); (V.F.)
| | - Kyriakos Athanasiou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus;
| | - Andreas Ioannou
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Limassol 3036, Cyprus; (A.S.); (A.I.); (V.F.)
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Limassol 3036, Cyprus; (A.S.); (A.I.); (V.F.)
| | | |
Collapse
|
16
|
Saleh S, Mohammadnejad S, Khorgooei H, Otadi M. Photooxidation/adsorption of arsenic (III) in aqueous solution over bentonite/ chitosan/TiO 2 heterostructured catalyst. CHEMOSPHERE 2021; 280:130583. [PMID: 33957471 DOI: 10.1016/j.chemosphere.2021.130583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Arsenic contamination of the environment is a serious health hazard due to its toxicity and carcinogenic effects thus demanding developed and robust removal methodologies. In this study, bentonite/chitosan/titania (BT/CS-TiO2) was developed to boost photo-oxidation/adsorption efficiency while providing a low-cost and potential heterostructured platform for arsenic removal from aqueous media. Under UV irradiation, BT/CS-TiO2 heterostructured exhibited the desired capability (97%) of boosting oxidize toxic AsIII to minor toxic AsV. Results confirmed that •OH radicals available at TiO2 sites under UV light played a critical role in the proposed photo-oxidation process of AsIII. BT/CS exhibited a high adsorption capacity (160 mg g-1) for AsV removal due to its electrostatic interaction and surface complexation. Additionally, BT/CS-TiO2 heterostructured showed satisfactory recyclability with no considerable interferences in the presence of coexisting anions due to the suitability of the valence band position of TiO2 for the oxidation of AsIII as well as the presence of CS into BT layers. Thereby, the findings revealed that impregnation of TiO2 in BT/CS is a promising approach for arsenic removal.
Collapse
Affiliation(s)
- Shahin Saleh
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad university, Iran.
| | - Sepideh Mohammadnejad
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad university, Iran
| | - Hossein Khorgooei
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad university, Iran
| | - Maryam Otadi
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad university, Iran.
| |
Collapse
|
17
|
Yang J, Shang J, Chen J, Xue F, Ke Z, Zhang X, Ding E. Preparation and characterization of boron nitride nanosheet ferric oxide composite (BNNS@Fe3O4) through the double stabilization of PVP and its adsorption to congo red. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-020-02396-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Ihsanullah I. Boron nitride-based materials for water purification: Progress and outlook. CHEMOSPHERE 2021; 263:127970. [PMID: 32835978 DOI: 10.1016/j.chemosphere.2020.127970] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Analogous to the carbon family, boron nitride (BN)-based materials have gained considerable attention in recent times for applications in various fields. Owing to their extraordinary characteristics, i.e., high surface area, low density, superior thermal stability, mechanical strength, and conductivity, excellent corrosion, and oxidation resistance, the BN nanomaterials have been explored in water remediation. This article critically evaluates the latest development in applications of BN-based materials in water purification with focus on adsorption, synthesis of novel membranes and photocatalytic degradation of pollutants. The adsorption of various noxious pollutants, i.e., dyes, organic compounds, antibiotics, and heavy metals from aqueous medium BN-based materials are described in detail by illustrating the adsorption mechanism and regeneration potential. The major hurdles and opportunities related to the synthesis and water purification applications of BN-based materials are underscored. Finally, a roadmap is suggested for future research to assure the effective applications of BN-based materials in water purification. This review is beneficial in understanding the current status of these unique materials in water purification and accelerating the research focusing their future water remediation applications.
Collapse
Affiliation(s)
- Ihsanullah Ihsanullah
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
19
|
Jain N, Maiti A. Arsenic adsorbent derived from the ferromanganese slag. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3230-3242. [PMID: 32914302 DOI: 10.1007/s11356-020-10745-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Arsenic-contaminated groundwater has a severe negative impact on the health of living beings. Groundwater majorly contains arsenite (As(III)) as well as arsenate (As(V)). Among these two, the arsenite species are more carcinogenic, mobile, and lethal. Hence, it is more difficult to remove by conventional water treatment methods. Ferromanganese slag, waste generated from steel industries, has been utilized in this study for the development of arsenic adsorbent. A chemical treatment method is applied to the ferromanganese slag to prepare efficient arsenic adsorbent, and it is easy to scale up. An adsorbent with the capacity for simultaneous oxidation of As(III) and adsorption of total arsenic species can be efficient for arsenic decontamination. X-ray photoelectron spectroscopy and X-ray absorption near edge spectra techniques prove the As(III) oxidation capability of the developed material is about 70 ± 5% based on initial As(III) concentration. The adsorbent not only oxidizes the As(III) species but also adsorbs both the arsenic species. The Langmuir isotherm model estimates the maximum adsorption capacities at the equilibrium concentration of 10 μg/L are 1.010 ± 0.004 mg/g and 1.614 ± 0.006 mg/g for As(III) and As(V), respectively. The rate of adsorption of As(III) was higher compared to the As(V), which was confirmed by the pseudo-second-order kinetic model. Therefore, the treated water quality meets the World Health Organization and Indian drinking water standards.
Collapse
Affiliation(s)
- Nishant Jain
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh, 247001, India
| | - Abhijit Maiti
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh, 247001, India.
| |
Collapse
|
20
|
Zubair YO, Fuchida S, Tokoro C. Insight into the Mechanism of Arsenic(III/V) Uptake on Mesoporous Zerovalent Iron-Magnetite Nanocomposites: Adsorption and Microscopic Studies. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49755-49767. [PMID: 33084324 DOI: 10.1021/acsami.0c14088] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mesoporous zerovalent iron-magnetite nanocomposites (ZVI-MNCs) were developed to circumvent the limitations of magnetite, such as its susceptibility to phase transition in air-water interfaces. High-resolution transmission electron microscopy images revealed the presence of Fe0 and Fe3O4 in the as-prepared adsorbent. High-resolution X-ray photoelectron spectroscopy (HR-XPS) Fe 2p deconvoluted spectra showed that electron transfer between Fe0 and Fe3O4 controlled the magnetite transformation. The isotherm equilibrium data for As(III) and As(V) are described by the Sips model, which suggests single- and multilayer formation onto a heterogeneous surface with different binding sites, whereas adsorption is controlled by a pseudo-second-order kinetic model, which indicates chemisorption. The maximum sorption capacities (qm) for As(III) and As(V) are 632.6 and 1000 μmol g-1, respectively, which are larger than the qm of similar adsorbents. The greater qm for As(V) is attributed to a higher multilayer formation and a stronger bonding force compared with As(III). The arsenic uptake capacity showed that the as-prepared adsorbent was effective over a wide pH range, and an optimal uptake capacity was recorded between pH 5.0 and 9.0 for As(III) and 3.0 and 7.0 for As(V). The adsorbent exhibited a remarkable regeneration performance for As(III) and As(V) uptake. Several microscopic analytical tools, including Fourier transform infrared spectroscopy, HR-XPS, and X-ray absorption near-edge structure together with zeta potential, confirmed that the binding mode of As(III) and As(V) on ZVI-MNCs was predominantly inner-sphere coordination. Partial redox transformation occurred for As(III) and As(V) on nearly 10 nm of the adsorbent, which indicates that a surface redox mechanism contributed partially to arsenic uptake on the near surface of the ZVI-MNCs. Extended X-ray absorption fine structure spectral analysis proposed that a corner-sharing monodentate mononuclear (1V) complex occurred for As(III) with a small portion of a corner-sharing bidentate binuclear (2C) complex, whereas As(V) formed a corner-sharing bidentate binuclear (2C) complex with octahedral Fe bonding.
Collapse
Affiliation(s)
- Yusuf O Zubair
- Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Shigeshi Fuchida
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Chiharu Tokoro
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
21
|
Zhang S, Liu C, Yuan Y, Fan M, Zhang D, Wang D, Xu Y. Selective, highly efficient extraction of Cr(III), Pb(II) and Fe(III) from complex water environment with a tea residue derived porous gel adsorbent. BIORESOURCE TECHNOLOGY 2020; 311:123520. [PMID: 32413638 DOI: 10.1016/j.biortech.2020.123520] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
A novel macroporous (~150 μm) double network hydrogel (TR/PAA) was prepared from tea residue and acrylic acid, and its performance was systematically evaluated. The static adsorption experiments showed that gel exhibited high selectivity and adsorption capacity, ultrafast kinetics (~10 min) for Cr(III), Pb(II) and Fe(III). The adsorption behavior showed heterogeneous and chemisorption process adsorption capacities of 206.19, 253.16, and 94.88 mg g-1 for Cr(III), Pb(II) and Fe(III), respectively. In pluralistic systems, TR/PAA showed the adsorption order of Fe(III) > Cr(III) > Pb(II). Mechanism studies confirm that nitrogen and oxygen-containing functional groups play a major role in the adsorption process. In the fixed-bed column experiments, the treatment volume of simulated wastewater reached 1400 bed volumes (BV) (21.6 L), producing only 7 BV (323 mL) eluent. This work provides a new avenue for the combination of TR/PAA reuse and heavy metal removal, which is expected to be applied in actual wastewater treatment.
Collapse
Affiliation(s)
- Shuaizhong Zhang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Shinan District, Qingdao, Shandong Province 266003, China
| | - Chengzhen Liu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Shinan District, Qingdao, Shandong Province 266003, China
| | - Yongkai Yuan
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Shinan District, Qingdao, Shandong Province 266003, China
| | - Minghao Fan
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Shinan District, Qingdao, Shandong Province 266003, China
| | - Dandan Zhang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Shinan District, Qingdao, Shandong Province 266003, China
| | - Dongfeng Wang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Shinan District, Qingdao, Shandong Province 266003, China
| | - Ying Xu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Shinan District, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
22
|
Bangari R, Yadav VK, Singh JK, Sinha N. Fe 3O 4-Functionalized Boron Nitride Nanosheets as Novel Adsorbents for Removal of Arsenic(III) from Contaminated Water. ACS OMEGA 2020; 5:10301-10314. [PMID: 32426587 PMCID: PMC7226862 DOI: 10.1021/acsomega.9b04295] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
We report the application of Fe3O4-functionalized boron nitride nanosheets (BNNS-Fe3O4 nanocomposite) for the remediation of As(III) ions from contaminated water. The specific surface area of the nanocomposite has been found as 179.5 m2 g-1. Due to its superparamagnetic nature at room temperature, the nanocomposite can be easily isolated from the solution under an external magnetic field. For As(III) ions, the maximum adsorption capacity of the nanocomposite is obtained as 30.3 mg g-1, which is approximately 4 times more than that of the bare BNNSs (8.5 mg g-1). The results from density functional theory calculations are also in close agreement with experimental findings and show that As(OH)3 binds more (∼4 times) efficiently to the BNNS-Fe3O4 nanocomposite than the bare BNNSs, implying a 4 times higher adsorption capacity of the nanocomposite. Especially, it is found that the synthesized nanocomposite could lessen the concentration of As(III) ions from 134 to 2.67 ppb in a solution at 25 °C. On increasing the temperature to 35 °C, the level of As(III) ions could be reduced from 556 to 10.29 ppb, which is close to the limit prescribed by the World Health Organization. The adsorbent was easily separable and showed regeneration properties. These outcomes depict the prospect of using BNNS-Fe3O4 nanocomposites as commercial adsorbents for the removal of As(III) ions from contaminated water.
Collapse
Affiliation(s)
- Raghubeer
S. Bangari
- Department
of Mechanical Engineering, Indian Institute
of Technology Kanpur, Kanpur 208016, India
| | - Vivek K. Yadav
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur 208016, India
| | - Jayant K. Singh
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur 208016, India
| | - Niraj Sinha
- Department
of Mechanical Engineering, Indian Institute
of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
23
|
Zhao D, Xu B, Yang J, Wu J, Zhai W, Yang B, Liu M. Rapid Preparation of TiO 2-x and Its Photocatalytic Oxidation for Arsenic Adsorption under Visible Light. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3853-3861. [PMID: 32200636 DOI: 10.1021/acs.langmuir.9b02444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A rapid preparation method of TiO2-x by thermal treatment using H2TiO3 as the precursor was proposed compared with the static hydrogenation thermal treatment process. Its adsorption properties of arsenic under visible light were explored and investigated as well. Various colors of TiO2-x were prepared and characterized via XRD, TEM, BET, and so on. The results indicate that the method of rapid preparation is feasible. The TiO2-x exhibits a larger particle size that varied from 10 nm to 2 μm, and deeper color products were obtained as the treatment temperature increased from 600 to 900 °C. Light yellow TiO2-x was prepared after increasing the temperature from 600 to 900 °C, Ti4O7 and Ti6O11 with a dark color were formed under a H2 atmosphere at 1500 °C. The arsenic adsorption performances of some samples under visible light were tested, and reveal a high efficiency of TiO2-x in the photocatalytic oxidation arsenic adsorption under visible light, the conversion ratio of As(III) photocatalytic oxidation fluctuates around 2.85 mgAsg-1 h-1. In the absence of visible light, the adsorption capacities for As(III) and As(V) are 3.7 and 42.7 mg/g, respectively, at pH = 3. Under visible light condition, the adsorption capacity of As(III) increases sharply to 15.6 mg/g, which provides the foundation for a new application of TiO2-x in the field of arsenic adsorption.
Collapse
Affiliation(s)
- Ding Zhao
- State Key Laboratory of Complex Nonferrous Metal Resources Clear Utilization, 253 Xuefu Road, Kunming 650093, P. R. China
- Yunnan Provincial Key Laboratory for Nonferrous Vacuum Metallurgy, 253 Xuefu Road, Kunming 650093, P. R. China
- National Engineering Laboratory for Vacuum Metallurgy, 253 Xuefu Road, Kunming 650093, P. R. China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, 253 Xuefu Road, Kunming 650093, P. R. China
| | - Baoqiang Xu
- State Key Laboratory of Complex Nonferrous Metal Resources Clear Utilization, 253 Xuefu Road, Kunming 650093, P. R. China
- Yunnan Provincial Key Laboratory for Nonferrous Vacuum Metallurgy, 253 Xuefu Road, Kunming 650093, P. R. China
- National Engineering Laboratory for Vacuum Metallurgy, 253 Xuefu Road, Kunming 650093, P. R. China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, 253 Xuefu Road, Kunming 650093, P. R. China
| | - Jia Yang
- State Key Laboratory of Complex Nonferrous Metal Resources Clear Utilization, 253 Xuefu Road, Kunming 650093, P. R. China
- Yunnan Provincial Key Laboratory for Nonferrous Vacuum Metallurgy, 253 Xuefu Road, Kunming 650093, P. R. China
- National Engineering Laboratory for Vacuum Metallurgy, 253 Xuefu Road, Kunming 650093, P. R. China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, 253 Xuefu Road, Kunming 650093, P. R. China
| | - Jian Wu
- Yunnan Provincial Key Laboratory for Nonferrous Vacuum Metallurgy, 253 Xuefu Road, Kunming 650093, P. R. China
- National Engineering Laboratory for Vacuum Metallurgy, 253 Xuefu Road, Kunming 650093, P. R. China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, 253 Xuefu Road, Kunming 650093, P. R. China
| | - Weiran Zhai
- Yunnan Provincial Key Laboratory for Nonferrous Vacuum Metallurgy, 253 Xuefu Road, Kunming 650093, P. R. China
- National Engineering Laboratory for Vacuum Metallurgy, 253 Xuefu Road, Kunming 650093, P. R. China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, 253 Xuefu Road, Kunming 650093, P. R. China
| | - Bin Yang
- State Key Laboratory of Complex Nonferrous Metal Resources Clear Utilization, 253 Xuefu Road, Kunming 650093, P. R. China
- Yunnan Provincial Key Laboratory for Nonferrous Vacuum Metallurgy, 253 Xuefu Road, Kunming 650093, P. R. China
- National Engineering Laboratory for Vacuum Metallurgy, 253 Xuefu Road, Kunming 650093, P. R. China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, 253 Xuefu Road, Kunming 650093, P. R. China
| | - Minghui Liu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, 253 Xuefu Road, Kunming 650093, P. R. China
| |
Collapse
|
24
|
Separating and Characterizing Functional Nitrogen Degraders via Magnetic Nanoparticle-Mediated Isolation. J CHEM-NY 2020. [DOI: 10.1155/2020/1841364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Magnetic nanoparticle-mediated isolation (MMI) is a new method for isolating active functional microbes from complex microorganisms without substrate labeling. In this study, the composition and properties of magnetic nanoparticles (MNPs) were characterized by a number of techniques, indicating that MNPs have characteristics such as microinterfaces and can be efficiently fixed on the surface of microbial cells. It also introduced the MMI technology in activated sludge after stable long-term treatment. With further addition of promotor carbon sources, the enrichment of the functional nitrogen degraders in MMI was significantly higher than in samples without MNPs, showing the advantages of MMI in identifying the active degraders. Redundancy analysis (RDA) also showed that the functional nitrogen degraders such as Comamonadaceae_unclassified and Thiobacillus absolutely dominated in situ ammonia degradation, and the change in dominant genera had the same trend as the degradation rate of ammonia nitrogen. In the magnetically functionalized system, the separated functional nitrogen degraders significantly improved ammonia nitrogen degradation efficiency, making it basically stable at more than 80%, up to 91.6%. These results prove that the complex flora created after the addition of MNPs is more adaptable to newly introduced pollutants, and MMI is a powerful tool for studying pollutant-degrading microorganisms under in situ conditions.
Collapse
|
25
|
Huang T, Liu L, Zhang S. Electrokinetic removals of arsenate and arsenite from the aqueous environment by a fluidized bed of superparamagnetic iron oxide nanoparticle-coated pyrite microelectrodes. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1708113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Tao Huang
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu, China
- Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu, China
| | - Longfei Liu
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu, China
| | - Shuwen Zhang
- Nuclear Resources Engineering College, University of South China, Hengyang, China
| |
Collapse
|
26
|
Bangari RS, Sinha N. Adsorption of tetracycline, ofloxacin and cephalexin antibiotics on boron nitride nanosheets from aqueous solution. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111376] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Magnetic hollow poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol)-Fe3O4 hybrid nanocapsules for adsorbing Safranine T and catalytic oxidation of 3,3′,5,5′-tetramethylbenzidine. J Colloid Interface Sci 2019; 556:278-291. [DOI: 10.1016/j.jcis.2019.08.073] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 01/14/2023]
|