1
|
Li X, Wang G, Zhang S, Wei S, Yu Y, Wang B, Jing Y, Chen J, Zhang J, Zhou Y, Chen J, Wang R. A Novel Sulfonated Polyimide Composite Membrane Containing a Sulfonated Porous Material for All-Vanadium Redox Flow Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54529-54538. [PMID: 39320928 DOI: 10.1021/acsami.4c09622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
To improve the battery efficiency and cycling stability of sulfonated polyimide (SPI), a polyphosphazene with built-in -SO3H moieties (PP-SO3H), which is a porous covalent organic framework (COF) material, is facilely synthesized by the polymeric combination of hexachlorocyclotriphosphazene (HCCP) and p-diaminobenzenesulfonic acid. Due to its tunable pore size and flexible molecular design, the COF material can address the trade-off between the conductivity and the ion permeability of ion exchange membranes well, thereby improving the ion selectivity of membranes. The experimental results show that the SPI/PP-SO3H composite membrane has an excellent conductivity (up to 114.8 mS cm-1); the ion selectivity of the SPI/2% PP-SO3H membrane is 11.69 × 104 S min cm-3, which is 2.18 times higher than that of the SPI base membrane. PP-SO3H also improves the SPI membrane's mechanical strength, and the effect of PP-SO3H on SPI intermolecular interactions is analyzed by surface electrostatic potential (ESP) theoretical calculations. The Coulombic efficiency (CE) of the SPI/2% PP-SO3H membrane is 98.92%, the energy efficiency (EE) is 84.1% at a current density of 100 mA cm-2, and the self-discharge time of the SPI/2% PP-SO3H membrane is 3.5 times compared with the SPI base membrane. To measure the cycling stability of the composite membrane, the SPI/2% PP-SO3H membrane is cycled in the VRFB for more than 400 cycles, which is more stable than that of the SPI base membrane. These results show that SPI/2% PP-SO3H composite membranes are viable for VRFB applications.
Collapse
Affiliation(s)
- Xuesong Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Gang Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Shuwen Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Shiguo Wei
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yan Yu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Bing Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yangtian Jing
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jijun Chen
- Sichuan Weilide Energy Co., Ltd., Leshan 614000, China
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yufeng Zhou
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Li G, Wang G, Wei S, Yu Y, Li X, Zhang J, Chen J, Wang R. Side-Chain Grafting-Modified Sulfonated Poly(ether ether ketone) with Significantly Improved Selectivity for a Vanadium Redox Flow Battery. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Gang Li
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, China
| | - Gang Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, China
| | - Shiguo Wei
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, China
| | - Yan Yu
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, China
| | - Xuesong Li
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, China
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, China
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, China
| | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, China
| |
Collapse
|
3
|
Zhang B, Fu Y, Liu Q, Li L, Zhang X, Yang Z, Zhang E, Wang K, Wang G, Zhang Z, Zhang S. Swelling-Induced Quaternized Anthrone-Containing Poly(aryl ether ketone) Membranes with Low Area Resistance and High Ion Selectivity for Vanadium Flow Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50858-50869. [PMID: 36331393 DOI: 10.1021/acsami.2c14107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A vanadium flow battery (VFB) is one of the most promising electrochemical energy storage technologies. However, membranes for VFBs still suffer from high cost or low conductivity and poor stability. Here, we report new quaternized anthrone-containing poly(aryl ether ketone) (QAnPEK) membranes for VFBs. QAnPEK membranes with moderate ion exchange capacity (1.26 mmol g-1) were swelling-induced in H3PO4 (50 wt %) to form wider ion transport pathways that significantly enhanced membrane conductivity (e.g., 0.49 Ω cm2 for the QAnPEK-virgin membrane and 0.12 Ω cm2 for the swelling-induced QAnPEK-90 membrane). The bulky rigid anthrone-containing backbone provided high swelling resistance and enabled QAnPEK membranes to have high ion selectivity. As a result, QAnPEK membranes displayed low area resistance, high ion selectivity, and robust mechanical strength. The QAnPEK-90 membrane yielded excellent energy efficiencies (92.4% at 80 mA cm-2, 85.1% at 200 mA cm-2, and 80.3% at 280 mA cm-2). Moreover, QAnPEK membranes exhibited outstanding in situ and ex situ stability, for example, the VFB with the QAnPEK-40 membrane demonstrated highly stable battery performance for 3000 cycles at 160 mA cm-2. QAnPEK membranes are attractive candidates for VFB application.
Collapse
Affiliation(s)
- Bengui Zhang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| | - Yanshi Fu
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Qian Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| | - Lu Li
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Xueting Zhang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Zhirong Yang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Enlei Zhang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Kangjun Wang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Guosheng Wang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Zhigang Zhang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Shouhai Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| |
Collapse
|
4
|
Robust Adamantane-Based Membranes with Enhanced Conductivity for Vanadium Flow Battery Application. Polymers (Basel) 2022; 14:polym14081552. [PMID: 35458299 PMCID: PMC9029318 DOI: 10.3390/polym14081552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 02/05/2023] Open
Abstract
Membranes with high conductivity, high selectivity, and high stability are urgently needed for high-power-density vanadium flow batteries (VFBs). Enhancing membrane conductivity presents many challenges, often resulting in sacrificing membrane selectivity and mechanical strength. To overcome this, new robust adamantane-based membranes with enhanced conductivity are constructed for VFB. Low-content basic piperazine (IEC = 0.78 mmol g−1) and hydrophilic hydroxyl groups are introduced into highly rigid, hydrophobic adamantane containing poly(aryl ether ketone) backbone (PAPEK) and then selectively swelled to induce microphase separation and form ion transport pathways. The highly rigid and hydrophobic PAPEK exhibits high swelling resistance and provides the membranes with slight swelling, high selectivity, and high mechanical strength. The selective swelling temperature has a significant influence on the areal resistance of the resulting membrane, e.g., the PAPEK-130 membrane, when selectively swelled at 130 °C, has low areal resistance (0.22 Ω∙cm2), which is approximately two-fifths that of the PAEKK-60 membrane (treated at 60 °C, 0.57 Ω∙cm2). Consequently, the resulting PAPEK membranes exhibit low swelling, high selectivity, and low areal resistance, with the VFB constructed with a PAPEK-90 membrane exhibiting excellent energy efficiency (91.7%, at 80 mA∙cm−2, and 80.0% at 240 mA∙cm−2) and stable cycling performance for 2000 cycles.
Collapse
|
5
|
The Application of a Modified Polyacrylonitrile Porous Membrane in Vanadium Flow Battery. MEMBRANES 2022; 12:membranes12040388. [PMID: 35448358 PMCID: PMC9026392 DOI: 10.3390/membranes12040388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022]
Abstract
Vanadium flow battery (VFB) is one of the most promising candidates for large-scale energy storage. A modified polyacrylonitrile (PAN) porous membrane is successfully applied in VFB. Herein, a simple solvent post-processing method is presented to modify PAN porous membranes prepared by the traditional nonsolvent induced phase separation (NIPS) method. In the design, polymer PAN is chosen as the membrane material owing to its low cost and high stability. The large-size pores from NIPS method are well optimized by the solvent swelling and shrinking during the solvent post-processing. Meanwhile, the interconnectivity of pores is maintained well. As a result, the ion selectivity of PAN porous membranes is dramatically improved, and the CE of a VFB with PAN porous membranes rises from 68% to 93% after the solvent post-processing process. A VFB with the modified PAN porous membranes is capable of delivering a limiting current density of 900 mA cm−2, and a high peak power density of 650 mW cm−2, which is very competitive among the various flow batteries.
Collapse
|
6
|
Zhai S, Lu Z, Ai Y, Liu X, Wang Q, Lin J, He S, Tian M, Chen L. Highly selective proton exchange membranes for vanadium redox flow batteries enabled by the incorporation of water-insoluble phosphotungstic acid-metal organic framework nanohybrids. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Zhang B, Fu Y, Liu Q, Zhang X, Yang Z, Jiang H, Zhang E, Wang K, Wang G, Zhang Z, Zhang S. Steric-hindrance benzimidazole constructed highly conductive and robust membrane for vanadium flow battery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Zhang B, Zhao M, Liu Q, Zhang X, Fu Y, Zhang E, Wang G, Zhang Z, Zhang S. Advanced anion exchange membranes with selective swelling-induced ion transport channels for vanadium flow battery application. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119985] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Nolte O, Volodin IA, Stolze C, Hager MD, Schubert US. Trust is good, control is better: a review on monitoring and characterization techniques for flow battery electrolytes. MATERIALS HORIZONS 2021; 8:1866-1925. [PMID: 34846470 DOI: 10.1039/d0mh01632b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Flow batteries (FBs) currently are one of the most promising large-scale energy storage technologies for energy grids with a large share of renewable electricity generation. Among the main technological challenges for the economic operation of a large-scale battery technology is its calendar lifetime, which ideally has to cover a few decades without significant loss of performance. This requirement can only be met if the key parameters representing the performance losses of the system are continuously monitored and optimized during the operation. Nearly all performance parameters of a FB are related to the two electrolytes as the electrochemical storage media and we therefore focus on them in this review. We first survey the literature on the available characterization methods for the key FB electrolyte parameters. Based on these, we comprehensively review the currently available approaches for assessing the most important electrolyte state variables: the state-of-charge (SOC) and the state-of-health (SOH). We furthermore discuss how monitoring and operation strategies are commonly implemented as online tools to optimize the electrolyte performance and recover lost battery capacity as well as how their automation is realized via battery management systems (BMSs). Our key findings on the current state of this research field are finally highlighted and the potential for further progress is identified.
Collapse
Affiliation(s)
- Oliver Nolte
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
| | | | | | | | | |
Collapse
|