1
|
Keldibekova R, Suleimenova S, Nurgozhina G, Kopishev E. Interpolymer Complexes Based on Cellulose Ethers: Application. Polymers (Basel) 2023; 15:3326. [PMID: 37571220 PMCID: PMC10422396 DOI: 10.3390/polym15153326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Interpolymer complexes based on cellulose ethers have gained significant interest in recent years due to their versatile applications. These complexes are formed by combining different polymers through non-covalent interactions, resulting in stable structures. This article provides an overview of the various fields where IPCs based on cellulose ethers find application. IPCs based on cellulose ethers show great potential in drug delivery systems. These complexes can encapsulate drugs and enable controlled release, making them suitable for sustained drug delivery. They offer advantages in terms of precise dosage and enhanced therapeutic efficacy. Coatings and adhesives also benefit from IPCs based on cellulose ethers. These complexes can form films with excellent mechanical strength and enhanced water resistance, providing durability and protection. They have applications in various industries where coatings and adhesives play a crucial role. In food packaging, IPCs based on cellulose ethers are highly relevant. These complexes can form films with effective barrier properties against oxygen and water vapor, making them ideal for packaging perishable foods. They help extend to shelf life of food products by minimizing moisture and oxygen transfer. Various methods, such as solvent casting, coacervation, and electrostatic complexation, are employed to synthesize IPCs based on cellulose ethers.
Collapse
Affiliation(s)
- Raushan Keldibekova
- Faculty of Natural Sciences, Department of Chemistry, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan; (R.K.)
| | - Symbat Suleimenova
- Faculty of Natural Sciences, Department of Chemistry, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan; (R.K.)
| | - Gulden Nurgozhina
- Faculty of Natural Sciences, Department of Chemistry, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan; (R.K.)
| | - Eldar Kopishev
- Faculty of Natural Sciences, Department of Chemistry, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan; (R.K.)
- Faculty of Natural Sciences, Department of General and Inorganic Chemistry, Bukhara State University, Bukhara 705018, Uzbekistan
| |
Collapse
|
2
|
Guo S, Tao H, Gao G, Mhatre S, Lu Y, Takagi A, Li J, Mo L, Rojas OJ, Chu G. All-Aqueous Bicontinuous Structured Liquid Crystal Emulsion through Intraphase Trapping of Cellulose Nanoparticles. Biomacromolecules 2023; 24:367-376. [PMID: 36479984 PMCID: PMC9832472 DOI: 10.1021/acs.biomac.2c01177] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Here, we describe the all-aqueous bicontinuous emulsions with cholesteric liquid crystal domains through hierarchical colloidal self-assembly of nanoparticles. This is achieved by homogenization of a rod-like cellulose nanocrystal (CNC) with two immiscible, phase separating polyethylene glycol (PEG) and dextran polymer solutions. The dispersed CNCs exhibit unequal affinity for the binary polymer mixtures that depends on the balance of osmotic and chemical potential between the two phases. Once at the critical concentration, CNC particles are constrained within one component of the polymer phases and self-assemble into a cholesteric organization. The obtained liquid crystal emulsion demonstrates a confined three-dimensional percolating bicontinuous network with cholesteric self-assembly of CNC within the PEG phase; meanwhile, the nanoparticles in the dextran phase remain isotropic instead. Our results provide an alternative way to arrest bicontinuous structures through intraphase trapping and assembling of nanoparticles, which is a viable and flexible route to extend for a wide range of colloidal systems.
Collapse
Affiliation(s)
- Shasha Guo
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Pulp
and Paper Engineering, South China University
of Technology, Guangzhou 510640, China,Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry and Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Han Tao
- Bio-based
Colloids and Materials, Department of Bioproducts and Biosystems,
School of Chemical Engineering, Aalto University, Vuorimiehentie 1, Espoo 02510, Finland
| | - Guang Gao
- Department
of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Sameer Mhatre
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry and Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yi Lu
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry and Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Ayako Takagi
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry and Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jun Li
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Pulp
and Paper Engineering, South China University
of Technology, Guangzhou 510640, China
| | - Lihuan Mo
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Pulp
and Paper Engineering, South China University
of Technology, Guangzhou 510640, China
| | - Orlando J. Rojas
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry and Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada,Bio-based
Colloids and Materials, Department of Bioproducts and Biosystems,
School of Chemical Engineering, Aalto University, Vuorimiehentie 1, Espoo 02510, Finland,, . Phone: +358503080661
| | - Guang Chu
- Bio-based
Colloids and Materials, Department of Bioproducts and Biosystems,
School of Chemical Engineering, Aalto University, Vuorimiehentie 1, Espoo 02510, Finland,. Phone: +1-604-822-3457
| |
Collapse
|
3
|
Warwar Damouny C, Martin P, Vasilyev G, Vilensky R, Fadul R, Redenski I, Srouji S, Zussman E. Injectable Hydrogels Based on Inter-Polyelectrolyte Interactions between Hyaluronic Acid, Gelatin, and Cationic Cellulose Nanocrystals. Biomacromolecules 2022; 23:3222-3234. [PMID: 35771870 DOI: 10.1021/acs.biomac.2c00316] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present work dealt with the development of physically cross-linked injectable hydrogels with potential applications in tissue engineering. The hydrogels were composed of a ternary mixture of a polyanion and a polyampholyte, hyaluronic acid (HA) and gelatin, respectively, bridged by cationic cellulose nanocrystals (cCNCs). A 3D network is formed by employing attractive electrostatic interactions and hydrogen bonding between these components under physiological conditions. The hydrogels demonstrated low viscosity at high stresses, enabling easy injection, structural stability at low stresses (<15 Pa), and nearly complete structure recovery within several minutes. Increasing the cCNC content (>3%) reduced hydrogel swelling and decelerated the degradation in phosphate-buffered saline as compared to that in pure HA and HA-gelatin samples. Biological evaluation of the hydrogel elutions showed excellent cell viability. The proliferation of fibroblasts exposed to elutions of hydrogels with 5% cCNCs reached ∼200% compared to that in the positive control after 11 days. Considering these results, the prepared hydrogels hold great potential in biomedical applications, such as injectable dermal fillers, 3D bioprintable inks, or 3D scaffolds to support and promote soft tissue regeneration.
Collapse
Affiliation(s)
- Christine Warwar Damouny
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Patrick Martin
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Gleb Vasilyev
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Rita Vilensky
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Reema Fadul
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.,Oral and Maxillofacial Department, Galilee Medical Center, Nahariya 22100, Israel
| | - Idan Redenski
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.,Oral and Maxillofacial Department, Galilee Medical Center, Nahariya 22100, Israel
| | - Samer Srouji
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.,Oral and Maxillofacial Department, Galilee Medical Center, Nahariya 22100, Israel
| | - Eyal Zussman
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
4
|
Kang S, Li Y, Bukharina D, Kim M, Lee H, Buxton ML, Han MJ, Nepal D, Bunning TJ, Tsukruk VV. Bio-Organic Chiral Nematic Materials with Adaptive Light Emission and On-Demand Handedness. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103329. [PMID: 34331313 DOI: 10.1002/adma.202103329] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/28/2021] [Indexed: 06/13/2023]
Abstract
Real-time active control of the handedness of circularly polarized light emission requires sophisticated manufacturing and structural reconfigurations of inorganic optical components that can rarely be achieved in traditional passive optical structures. Here, robust and flexible emissive optically-doped biophotonic materials that facilitate the dynamic optical activity are reported. These optically active bio-enabled materials with a chiral nematic-like organization of cellulose nanocrystals with intercalated organic dye generated strong circularly polarized photoluminescence with a high asymmetric factor. Reversible phase-shifting of the photochromic molecules intercalated into chiral nematic organization enables alternating circularly polarized light emission with on-demand handedness. Real-time alternating handedness can be triggered by either remote light illumination or changes in the acidic environment. This unique dynamic chiro-optical behavior presents an efficient way to design emissive bio-derived materials for dynamic programmable active photonic materials for optical communication, optical coding, visual protection, and visual adaptation.
Collapse
Affiliation(s)
- Saewon Kang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yingying Li
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Daria Bukharina
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Minkyu Kim
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hansol Lee
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Madeline L Buxton
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Moon Jong Han
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Dhriti Nepal
- Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, 45433, USA
| | - Timothy J Bunning
- Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, 45433, USA
| | - Vladimir V Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
5
|
Martin P, Vasilyev G, Chu G, Boas M, Arinstein A, Zussman E. pH‐Controlled network formation in a mixture of oppositely charged cellulose nanocrystals and poly(allylamine). ACTA ACUST UNITED AC 2019. [DOI: 10.1002/polb.24898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Patrick Martin
- Nano Engineering Group, Department of Mechanical Engineering, Technion, Israel Institute of Technology Haifa 32000 Israel
| | - Gleb Vasilyev
- Nano Engineering Group, Department of Mechanical Engineering, Technion, Israel Institute of Technology Haifa 32000 Israel
| | - Guang Chu
- Nano Engineering Group, Department of Mechanical Engineering, Technion, Israel Institute of Technology Haifa 32000 Israel
| | - Mor Boas
- Nano Engineering Group, Department of Mechanical Engineering, Technion, Israel Institute of Technology Haifa 32000 Israel
| | - Arkadii Arinstein
- Nano Engineering Group, Department of Mechanical Engineering, Technion, Israel Institute of Technology Haifa 32000 Israel
| | - Eyal Zussman
- Nano Engineering Group, Department of Mechanical Engineering, Technion, Israel Institute of Technology Haifa 32000 Israel
| |
Collapse
|