1
|
Chen Q, Steinmetz K, Oh JK, Travaš-Sejdić J, Domigan LJ. Engineering an Extracellular Matrix Mimic Using Hemoglobin Protein Nanofibrils. ACS APPLIED BIO MATERIALS 2024; 7:6089-6100. [PMID: 39183644 DOI: 10.1021/acsabm.4c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Extracellular matrix (ECM) is essential for tissue development, providing structural support and a microenvironment that is necessary for cells. As tissue engineering advances, there is a growing demand for ECM mimics. Polycaprolactone (PCL) is a commonly used synthetic polymer for ECM mimic materials. However, its biologically inactive surface limits its direct application in tissue engineering. Our study aimed to improve the biocompatibility of PCL by incorporating hemoglobin nanofibrils (HbFs) into PCL using an electrospinning technique. HbFs were formed from bovine hemoglobin (Hb) extracted from industrial byproducts and designed to offer PCL an improved cell adhesion property. The fabricated HbFs@PCL electrospun scaffold exhibits improved fibroblast adherence, proliferation, and deeper fibroblast infiltration into the scaffold compared with the pure PCL scaffold, indicating its potential to be an ECM mimic. This study represents the pioneering utilization of Hb-sourced nanofibrils in the electrospun PCL scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Qun Chen
- Chemical and Materials Engineering, The University of Auckland, 5 Grafton Road, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Kai Steinmetz
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- The Riddet Institute-Advancing Frontiers in Food Science, Palmerston North 4410, New Zealand
- New Harvest, California 95811, United States
| | - Jin Kyo Oh
- Chemical and Materials Engineering, The University of Auckland, 5 Grafton Road, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Jadranka Travaš-Sejdić
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1023, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Laura J Domigan
- Chemical and Materials Engineering, The University of Auckland, 5 Grafton Road, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- The Riddet Institute-Advancing Frontiers in Food Science, Palmerston North 4410, New Zealand
| |
Collapse
|
2
|
Maine A, Tamayo L, Leiva Á, González A, Ríos HE, Rojas-Romo C, Jara P, Araya-Durán I, González-Nilo F, Yazdani-Pedram M, Santana P, Leal M, González N, Briones X, Villalobos V, Urzúa M. Conformational Changes of Poly(Maleic Anhydride- alt-styrene) Modified with Amino Acids in an Aqueous Medium and Their Effect on Cytocompatibility and Hemolytic Response. ACS APPLIED BIO MATERIALS 2023; 6:5333-5348. [PMID: 38032020 DOI: 10.1021/acsabm.3c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The conformational changes of poly(maleic anhydride-alt-styrene) (PSMA) modified with different amino acids (PSMA-Aa) were studied in an aqueous medium as a function of ionic strength and pH. The specific viscosity of PSMA-Aa decreased with increasing salt concentration due to a more compact conformation. There was a decrease in surface tension with increasing concentrations of the modified polyelectrolyte having a greater effect for the PSMA modified with l-phenylalanine at pH 7.0, demonstrating a greater surface-active character. The conformational changes were also confirmed by molecular dynamics studies, indicating that PSMA-Aa exhibits a compact structure at pH 4.0 and a more extended structure at pH 7.0. On the other hand, the conformational changes of PSMA-Aa were related to its biological response, where the higher surface-active character of the PSMA modified with l-phenylalanine correlates very well with the higher hemolytic activity observed in red blood cells, in which the surface-active capacity supports lytic potency in erythrocytes. The cytocompatibility assays indicated that there were no significant cytotoxic effects of the PSMA-Aa. Additionally, in solvent-accessible surface area studies, it was shown that the carboxylate groups of the PSMA modified with l-phenylalanine are more exposed to the solvent at pH 7.0 and high salt concentrations, which correlates with lower fluorescence intensity, reflecting a loss of mitochondrial membrane potential. It is concluded that the study of the conformational changes in PE modified with amino acids is essential for their use as biomaterials and relevant to understanding the possible effects of PE modified with amino acids in biological systems.
Collapse
Affiliation(s)
- Arianne Maine
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago 7800003,Chile
| | - Laura Tamayo
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago 7800003,Chile
| | - Ángel Leiva
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna N° 4860, Macul, Santiago 7821093, Chile
| | - Alex González
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago 7800003,Chile
| | - Hernán E Ríos
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago 7800003,Chile
| | - Carlos Rojas-Romo
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago 7800003,Chile
| | - Paul Jara
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago 7800003,Chile
| | - Ingrid Araya-Durán
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias para la Vida, Universidad Andrés Bello, Avenida República 330, Santiago 8370146, Chile
| | - Fernando González-Nilo
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias para la Vida, Universidad Andrés Bello, Avenida República 330, Santiago 8370146, Chile
| | - Mehrdad Yazdani-Pedram
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007 Santiago, Chile
| | - Paula Santana
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, San Miguel, Santiago 8910123, Chile
| | - Matías Leal
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias para la Vida, Universidad Andrés Bello, Avenida República 330, Santiago 8370146, Chile
| | - Nicolás González
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago 7800003,Chile
| | - Ximena Briones
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007 Santiago, Chile
| | - Valeria Villalobos
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago 7800003,Chile
| | - Marcela Urzúa
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago 7800003,Chile
| |
Collapse
|
3
|
Santander S, Padilla-Manzano N, Díaz B, Bacchiega R, Jara E, Álvarez LF, Pinto C, Forero JC, Santana P, Hamm E, Urzúa M, Tamayo L. Wettability of Amino Acid-Functionalized PSMA Electrospun Fibers for the Modulated Release of Active Agents and Its Effect on Their Bioactivity. Pharmaceutics 2023; 15:1659. [PMID: 37376107 DOI: 10.3390/pharmaceutics15061659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
The ideal treatment for chronic wounds is based on the use of bioactive dressings capable of releasing active agents. However, the control of the rate at which these active agents are released is still a challenge. Bioactive polymeric fiber mats of poly(styrene-co-maleic anhydride) [PSMA] functionalized with amino acids of different hydropathic indices and L-glutamine, L-phenylalanine and L-tyrosine levels allowed obtaining derivatives of the copolymers named PSMA@Gln, PSMA@Phe and PSMA@Tyr, respectively, with the aim of modulating the wettability of the mats. The bioactive characteristics of mats were obtained by the incorporation of the active agents Calendula officinalis (Cal) and silver nanoparticles (AgNPs). A higher wettability for PSMA@Gln was observed, which is in accordance with the hydropathic index value of the amino acid. However, the release of AgNPs was higher for PSMA and more controlled for functionalized PSMA (PSMAf), while the release curves of Cal did not show behavior related to the wettability of the mats due to the apolar character of the active agent. Finally, the differences in the wettability of the mats also affected their bioactivity, which was evaluated in bacterial cultures of Staphylococcus aureus ATCC 25923 and methicillin-resistant Staphylococcus aureus ATCC 33592, an NIH/3T3 fibroblast cell line and red blood cells.
Collapse
Affiliation(s)
- Sebastián Santander
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
| | - Nicolás Padilla-Manzano
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
| | - Bastián Díaz
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
| | - Renato Bacchiega
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
| | - Elizabeth Jara
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
| | - Luis Felipe Álvarez
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
| | - Cristóbal Pinto
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
| | - Juan C Forero
- Escuela de Ciencias de la Salud, Universidad de Viña del Mar, Viña del Mar 2572007, Chile
| | - Paula Santana
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile
| | - Eugenio Hamm
- Departamento de Física, Facultad de Ciencia, Universidad de Santiago de Chile, Av. Víctor Jara 3493, Estación Central, Santiago 9160000, Chile
| | - Marcela Urzúa
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
| | - Laura Tamayo
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
| |
Collapse
|
4
|
|
5
|
Luo C, Li M, Yuan R, Yang Y, Lu Z, Ge L. Biocompatible Self-Healing Coating Based on Schiff Base for Promoting Adhesion of Coral Cells. ACS APPLIED BIO MATERIALS 2020; 3:1481-1495. [PMID: 35021639 DOI: 10.1021/acsabm.9b01113] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Layer-by-layer self-assembly (LBL) technique is a very efficient and convenient method to modify the substrate surface. In this study, we report a self-repairing surface coating that can promote cell adhesion, especially for enhancing the adhesion of coral cells on the basal surface. The results confirmed that the modified chitosan-dialdehyde starch film based on Schiff base has good biocompatibility for common mammalian cells, such as normal human dermal fibroblasts (NHDFs) and relatively special cells (coral cells). The cytotoxicity test indicated that the optical density values of the experimental group films at 490 nm were higher than those of the control group in this study. In addition, the self-repairing coating modified by phase transition lysozyme can maintain its adhesion ability underwater for a period of time. Therefore, they have great application on substrates requiring underwater adhesion. Our results confirmed that the modified chitosan-dialdehyde starch self-healing films could provide a biocompatible coating material to promote the adhesion of normal human epidermal fibroblasts or coral cells.
Collapse
Affiliation(s)
- Chenxi Luo
- National Demonstration Centre for Experimental Biomedical Engineering Education, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Minli Li
- National Demonstration Centre for Experimental Biomedical Engineering Education, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Renqiang Yuan
- National Demonstration Centre for Experimental Biomedical Engineering Education, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Yifan Yang
- National Demonstration Centre for Experimental Biomedical Engineering Education, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Zuhong Lu
- National Demonstration Centre for Experimental Biomedical Engineering Education, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Liqin Ge
- National Demonstration Centre for Experimental Biomedical Engineering Education, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| |
Collapse
|
6
|
Jose J, Sultan S, Kalarikkal N, Thomas S, Mathew AP. Fabrication and functionalization of 3D-printed soft and hard scaffolds with growth factors for enhanced bioactivity. RSC Adv 2020; 10:37928-37937. [PMID: 35515181 PMCID: PMC9057203 DOI: 10.1039/d0ra08295c] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/09/2020] [Indexed: 01/09/2023] Open
Abstract
Strategies to improve the acceptance of scaffolds by the body is crucial in tissue engineering (TE) which requires tailoring of the pore structure, mechanical properties and surface characteristics of the scaffolds. In the current study we used a 3-dimensional (3D) printing technique to tailor the pore structure and mechanical properties of (i) nanocellulose based hydrogel scaffolds for soft tissue engineering and (ii) poly lactic acid (PLA) based scaffolds for hard tissue engineering in combination with surface treatment by protein conjugation for tuning the scaffold bioactivity. Dopamine coating of the scaffolds enhanced the hydrophilicity and their capability to bind bioactive molecules such as fibroblast growth factor (FGF-18) for soft TE scaffolds and arginyl glycyl aspartic acid (RGD) peptide for hard TE scaffolds, which was confirmed using MALDI-TOFs. This functionalization approach enhanced the performance of the scaffolds and provided antimicrobial activity indicating that these scaffolds can be used for cartilage or bone regeneration applications. Blood compatibility studies revealed that both the materials were compatible with human red blood cells. Significant enhancement of cell attachment and proliferation confirmed the bioactivity of growth factor functionalized 3D printed soft and hard tissues. This approach of combining 3D printing with biological tuning of the interface is expected to significantly advance the development of biomedical materials related to soft and hard tissue engineering. 3D printed scaffolds with tailored bioactivity using protein conjugation.![]()
Collapse
Affiliation(s)
- Jiya Jose
- Department of Materials and Environmental Chemistry
- Stockholm University
- Stockholm
- Sweden
- International and Inter University Center for Nanoscience and Nanotechnology
| | - Sahar Sultan
- Department of Materials and Environmental Chemistry
- Stockholm University
- Stockholm
- Sweden
| | - Nandakumar Kalarikkal
- International and Inter University Center for Nanoscience and Nanotechnology
- Mahatma Gandhi University
- Kottayam-686 560
- India
| | - Sabu Thomas
- International and Inter University Center for Nanoscience and Nanotechnology
- Mahatma Gandhi University
- Kottayam-686 560
- India
| | - Aji P. Mathew
- Department of Materials and Environmental Chemistry
- Stockholm University
- Stockholm
- Sweden
| |
Collapse
|