1
|
Yin Y, Yu Q, Fu H, Li Y. Constructing conical helices inside carbon nanocones. Phys Chem Chem Phys 2025; 27:2588-2600. [PMID: 39807039 DOI: 10.1039/d4cp03149k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Molecular dynamics simulations demonstrate that regular conical helices of poly(para-phenylene) (PPP) chains can be constructed inside the confined space of single-walled carbon nanocones (CNCs). The translocation displacement of the PPP chain combined with the change of the system total potential energy including each energy component and structural parameters of the formed conical helix is discussed to deeply explore the microstructure evolution, driving forces and dynamic mechanisms. In addition, the influence of chain length, cone angle, temperature, chain number, linked position of benzene rings and the form of Lennard-Jones potential on the helical encapsulation is further studied. The proposed method may provide a new way for constructing regular conical helices from polymer chains, with potential applications in electronic nanodevices.
Collapse
Affiliation(s)
- Yuliang Yin
- School of Mechanical & Vehicle Engineering, Linyi University, Linyi, Shandong 276000, China.
| | - Qinzheng Yu
- School of Mechanical & Vehicle Engineering, Linyi University, Linyi, Shandong 276000, China.
| | - Hongjin Fu
- School of Mechanical & Vehicle Engineering, Linyi University, Linyi, Shandong 276000, China.
| | - Yunfang Li
- School of Mechanical & Vehicle Engineering, Linyi University, Linyi, Shandong 276000, China.
| |
Collapse
|
2
|
Yang CF, Udumulla T, Sha R, Canary JW. Control of Solid-Supported Intra- vs Interstrand Stille Coupling Reactions for Synthesis of DNA-Oligophenylene Conjugates. Bioconjug Chem 2024; 35:1166-1171. [PMID: 39046902 PMCID: PMC11342295 DOI: 10.1021/acs.bioconjchem.4c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Programmed DNA structures and assemblies are readily accessible, but site-specific functionalization is critical to realize applications in various fields such as nanoelectronics, nanomaterials and biomedicine. Besides pre- and post-DNA synthesis conjugation strategies, on-solid support reactions offer advantages in certain circumstances. We describe on-solid support internucleotide coupling reactions, often considered undesirable, and a workaround strategy to overcome them. Palladium coupling reactions enabled on-solid support intra- and interstrand coupling between single-stranded DNAs (ss-DNAs). Dilution with a capping agent suppressed interstrand coupling, maximizing intrastrand coupling. Alternatively, interstrand coupling actually proved advantageous to provide dimeric organic/DNA conjugates that could be conveniently separated from higher oligomers, and was more favorable with longer terphenyl coupling partners.
Collapse
Affiliation(s)
- Chu-Fan Yang
- Department of Chemistry, New
York University, New York, New York 10003, United States
| | - Thanuka Udumulla
- Department of Chemistry, New
York University, New York, New York 10003, United States
| | - Ruojie Sha
- Department of Chemistry, New
York University, New York, New York 10003, United States
| | - James W. Canary
- Department of Chemistry, New
York University, New York, New York 10003, United States
| |
Collapse
|
3
|
Wang S, Li X, Zhang X, Huang P, Fang P, Wang J, Yang S, Wu K, Du P. A supramolecular polymeric heterojunction composed of an all-carbon conjugated polymer and fullerenes. Chem Sci 2021; 12:10506-10513. [PMID: 34447543 PMCID: PMC8356743 DOI: 10.1039/d1sc03410c] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 11/29/2022] Open
Abstract
Herein, we design and synthesize a novel all-carbon supramolecular polymer host (SPh) containing conjugated macrocycles interconnected by a linear poly(para-phenylene) backbone. Applying the supramolecular host and fullerene C60 as the guest, we successfully construct a supramolecular polymeric heterojunction (SPh⊃C60). This carbon structure offers a means to explore the convex-concave π-π interactions between SPh and C60. The produced SPh was characterized by gel permeation chromatography, mass spectrometry, FTIR, Raman spectroscopy, and other spectroscopies. The polymeric segment can be directly viewed using a scanning tunneling microscope. Femtosecond transient absorption and fluorescence up-conversion measurements revealed femtosecond (≪300 fs) electron transfer from photoexcited SPh to C60, followed by nanosecond charge recombination to produce the C60 triplet excited state. The potential applications of SPh⊃C60 in electron- and hole-transport devices were also investigated, revealing that C60 incorporation enhances the charge transport properties of SPh. These results expand the scope of the synthesis and application of supramolecular polymeric heterojunctions.
Collapse
Affiliation(s)
- Shengda Wang
- Hefei National Laboratory of Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC) 96 Jinzhai Road Hefei Anhui Province 230026 P. R. China +86-551-63606207
| | - Xingcheng Li
- Hefei National Laboratory of Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC) 96 Jinzhai Road Hefei Anhui Province 230026 P. R. China +86-551-63606207
| | - Xinyu Zhang
- Hefei National Laboratory of Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC) 96 Jinzhai Road Hefei Anhui Province 230026 P. R. China +86-551-63606207
| | - Pingsen Huang
- Hefei National Laboratory of Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC) 96 Jinzhai Road Hefei Anhui Province 230026 P. R. China +86-551-63606207
| | - Pengwei Fang
- Hefei National Laboratory of Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC) 96 Jinzhai Road Hefei Anhui Province 230026 P. R. China +86-551-63606207
| | - Junhui Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian Liaoning 116023 P. R. China
| | - Shangfeng Yang
- Hefei National Laboratory of Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC) 96 Jinzhai Road Hefei Anhui Province 230026 P. R. China +86-551-63606207
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian Liaoning 116023 P. R. China
| | - Pingwu Du
- Hefei National Laboratory of Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC) 96 Jinzhai Road Hefei Anhui Province 230026 P. R. China +86-551-63606207
| |
Collapse
|
4
|
Ikizer B, Lawton CW, Orbey N. Poly(para-phenylene) fibers – Characterization and preliminary data for conversion to carbon fiber. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Abdulkarim A, Nathusius M, Bäuerle R, Strunk KP, Beck S, Räder HJ, Pucci A, Melzer C, Jänsch D, Freudenberg J, Bunz UHF, Müllen K. Beyond p-Hexaphenylenes: Synthesis of Unsubstituted p-Nonaphenylene by a Precursor Protocol. Chemistry 2021; 27:281-288. [PMID: 32786130 PMCID: PMC7839583 DOI: 10.1002/chem.202001531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/11/2020] [Indexed: 11/12/2022]
Abstract
The synthesis of unsubstituted oligo‐para‐phenylenes (OPP) exceeding para‐hexaphenylene—in the literature often referred to as p‐sexiphenyl—has long remained elusive due to their insolubility. We report the first preparation of unsubstituted para‐nonaphenylenes (9PPs) by extending our precursor route to poly‐para‐phenylenes (PPP) to a discrete oligomer. Two geometric isomers of methoxylated syn‐ and anti‐cyclohexadienylenes were synthesized, from which 9PP was obtained via thermal aromatization in thin films. 9PP was characterized via optical, infrared and solid‐state 13C NMR spectroscopy as well as atomic force microscopy and mass spectrometry, and compared to polymeric analogues. Due to the lack of substitution, para‐nonaphenylene, irrespective of the precursor isomer employed, displays pronounced aggregation in the solid state. Intermolecular excitonic coupling leads to formation of H‐type aggregates, red‐shifting emission of the films to greenish. 9PP allows to study the structure–property relationship of para‐phenylene oligomers and polymers, especially since the optical properties of PPP depend on the molecular shape of the precursor.
Collapse
Affiliation(s)
- Ali Abdulkarim
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,InnovationLab, Speyerer Str. 4, 69115, Heidelberg, Germany
| | - Marvin Nathusius
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,InnovationLab, Speyerer Str. 4, 69115, Heidelberg, Germany.,Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Rainer Bäuerle
- InnovationLab, Speyerer Str. 4, 69115, Heidelberg, Germany.,Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 227, 69120, Heidelberg, Germany
| | - Karl-Philipp Strunk
- Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 227, 69120, Heidelberg, Germany.,Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Sebastian Beck
- InnovationLab, Speyerer Str. 4, 69115, Heidelberg, Germany.,Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 227, 69120, Heidelberg, Germany
| | - Hans Joachim Räder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Annemarie Pucci
- InnovationLab, Speyerer Str. 4, 69115, Heidelberg, Germany.,Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 227, 69120, Heidelberg, Germany.,Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Christian Melzer
- InnovationLab, Speyerer Str. 4, 69115, Heidelberg, Germany.,Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 227, 69120, Heidelberg, Germany.,Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Daniel Jänsch
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,InnovationLab, Speyerer Str. 4, 69115, Heidelberg, Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,InnovationLab, Speyerer Str. 4, 69115, Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,InnovationLab, Speyerer Str. 4, 69115, Heidelberg, Germany.,Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
6
|
Huang Q, Zhuang G, Zhang M, Wang J, Wang S, Wu Y, Yang S, Du P. A Long π-Conjugated Poly(para-Phenylene)-Based Polymeric Segment of Single-Walled Carbon Nanotubes. J Am Chem Soc 2019; 141:18938-18943. [DOI: 10.1021/jacs.9b10358] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Qiang Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM, University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei, Anhui Province 230026, P. R. China
| | - Guilin Zhuang
- College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang Province 310032, P. R. China
| | - Mengmeng Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM, University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei, Anhui Province 230026, P. R. China
| | - Jinyi Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM, University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei, Anhui Province 230026, P. R. China
| | - Shengda Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM, University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei, Anhui Province 230026, P. R. China
| | - Yayu Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM, University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei, Anhui Province 230026, P. R. China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM, University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei, Anhui Province 230026, P. R. China
| | - Pingwu Du
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM, University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei, Anhui Province 230026, P. R. China
| |
Collapse
|
7
|
Abdulkarim A, Strunk KP, Bäuerle R, Beck S, Makowska H, Marszalek T, Pucci A, Melzer C, Jänsch D, Freudenberg J, Bunz UHF, Müllen K. Small Change, Big Impact: The Shape of Precursor Polymers Governs Poly-p-phenylene Synthesis. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ali Abdulkarim
- InnovationLab, Speyerer Str. 4, 69115 Heidelberg, Germany
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Karl-Philipp Strunk
- Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Rainer Bäuerle
- InnovationLab, Speyerer Str. 4, 69115 Heidelberg, Germany
- Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Sebastian Beck
- InnovationLab, Speyerer Str. 4, 69115 Heidelberg, Germany
- Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Hanna Makowska
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Tomasz Marszalek
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Annemarie Pucci
- InnovationLab, Speyerer Str. 4, 69115 Heidelberg, Germany
- Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Christian Melzer
- InnovationLab, Speyerer Str. 4, 69115 Heidelberg, Germany
- Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Daniel Jänsch
- InnovationLab, Speyerer Str. 4, 69115 Heidelberg, Germany
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Jan Freudenberg
- InnovationLab, Speyerer Str. 4, 69115 Heidelberg, Germany
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Uwe H. F. Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|