1
|
Tseng PL, Sun W, Salem A, Alaklobie M, Macfarlane SC, Gad AK, Collins MO, Erdmann KS. Mechanical control of the alternative splicing factor PTBP1 regulates extracellular matrix stiffness induced proliferation and cell spreading. iScience 2025; 28:112273. [PMID: 40241749 PMCID: PMC12002664 DOI: 10.1016/j.isci.2025.112273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/23/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Cells sense mechanical cues and convert them into biochemical responses to regulate biological processes such as embryonic development, aging, cellular homeostasis, and disease progression. In this study, we introduce a large-scale, systematic approach to identify proteins with mechanosensitive nuclear localization, highlighting their potential roles in mechanotransduction. Among the proteins identified, we focus here on the splicing factor PTBP1. We demonstrate that its nuclear abundance is regulated by mechanical cues such as cell density, size, and extracellular matrix (ECM) stiffness and that PTBP1 medicates the mechanosensitive alternative splicing of the endocytic adapter protein Numb. Furthermore, we show that PTBP1 and Numb alternative splicing is critical for ECM stiffness-induced epithelial cell spreading and proliferation as well as for mesenchymal stem cell differentiation into osteoblasts on a stiff matrix. Our results underscore the emerging role of alternative splicing in mechanotransduction and provide novel mechanistic insights into how matrix stiffness modulates cellular mechanoresponses.
Collapse
Affiliation(s)
- Pei-Li Tseng
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Weiwei Sun
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Ahmed Salem
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- Department of Biomedical Laboratory Science, Sheba University, Sheba, Libya
| | - Mubarak Alaklobie
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 67714, Saudi Arabia
| | - Sarah C. Macfarlane
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield S10 2TN, UK
| | - Annica K.B. Gad
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield S10 2TN, UK
- Department of Oncology-Pathology, Karolinska Institutet, Anna Steckséns gata 30A, 171 64 Solna, Sweden
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Mark O. Collins
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- biOMICS Mass Spectrometry Facility, University of Sheffield, Sheffield S10 2TN, UK
| | - Kai S. Erdmann
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
2
|
Huang Z, Zhou Y, Liu Y, Quan Y, Yin Q, Luo Y, Su Y, Zhou B, Zhang W, Zhu B, Ma Z. Advancing cellular transfer printing: achieving bioadhesion-free deposition via vibration microstreaming. LAB ON A CHIP 2025; 25:296-307. [PMID: 39655389 DOI: 10.1039/d4lc00601a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Cell transfer printing plays an essential role in biomedical research and clinical diagnostics. Traditional bioadhesion-based methods often necessitate complex surface modifications and offer limited control over the quantity of transferred cells. There is a critical need for a modification-free, non-labeling, and high-throughput cell transfer printing technique. In this study, an adhesion-free cellular transfer printing method based on vibration-induced microstreaming is introduced. By adjusting the volume of the microcavity, the number of cells transferred per microtiter well can be realized to the level of a single cell. Additionally, it allows for precise control of large-scale cellular spatial distribution, leading to the formation of biomimetic patterns. Moreover, the demonstrated biocompatibility and high throughput of this cell transfer printing method highlight its potential utility. The correspondence of the transferred cell amount to the vibration and frequencies allows the system to exhibit excellent tunability of the transferred cell amount and pattern. This bioadhesion-free cell transfer printing method holds promise for advancing cell manipulation in biomedical research and analysis.
Collapse
Affiliation(s)
- Ziyu Huang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China.
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China.
| | - Yu Liu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China.
| | - Yue Quan
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China.
| | - Qiu Yin
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China.
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yucheng Luo
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China.
| | - Yimeng Su
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China.
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China.
| | - Wenming Zhang
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Benpeng Zhu
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhichao Ma
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
3
|
Jin M, Wu K, Wang M, Zhang Y, Yang C, Li Z. High-Resolution, Multiplex Antibody Patterning using Micropillar-Focused Droplet Printing, and Microcontact Printing. Adv Biol (Weinh) 2023; 7:e2300111. [PMID: 37178384 DOI: 10.1002/adbi.202300111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Antibody arrays have great implications in many biomedical settings. However, commonly used patterning methods have difficulties in generating antibody arrays with both high resolution and multiplexity, limiting their applications. Here, a convenient and versatile technique for the patterning of multiple antibodies with resolution down to 20 µm is reported using micropillar-focused droplet printing and microcontact printing. Droplets of antibody solutions are first printed and stably confined on the micropillars of a stamp, and then the antibodies absorbed on the micropillars are contact-printed to the target substrate, generating antibody patterns faithfully replicating the micropillar array. The effect of different parameters on the patterning results is investigated, including hydrophobicity of the stamps, override time of the droplet printing, incubation time, and the diameters of the capillary tips and micropillars. To demonstrate the utility of the method, multiplex arrays of anti-EpCAM and anti-CD68 antibodies is generated to capture breast cancer cells and macrophages, respectively, on the same substrate, and successful capturing of individual cell types and enrichment among the cells are achieved. It is envision that this method would serve as a versatile and useful protein patterning tool for biomedical applications.
Collapse
Affiliation(s)
- Meichi Jin
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Kai Wu
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Mengzhen Wang
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
- School of Dentistry, Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Yang Zhang
- School of Dentistry, Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Chengbin Yang
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Zida Li
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
4
|
Qiang H, Hou C, Zhang Y, Luo X, Li J, Meng C, Liu K, Lv Z, Chen X, Liu F. CaP-coated Zn-Mn-Li alloys regulate osseointegration via influencing macrophage polarization in the osteogenic environment. Regen Biomater 2023; 10:rbad051. [PMID: 37324238 PMCID: PMC10267298 DOI: 10.1093/rb/rbad051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 06/17/2023] Open
Abstract
Immune response is an important factor in determining the fate of bone replacement materials, in which macrophages play an important role. It is a new idea to design biomaterials with immunomodulatory function to reduce inflammation and promote bone integration by regulating macrophages polarization. In this work, the immunomodulatory properties of CaP Zn-Mn-Li alloys and the specific mechanism of action were investigated. We found that the CaP Zn0.8Mn0.1Li alloy promoted the polarization of macrophages toward M2 and reduced inflammation, which could effectively upregulate osteogenesis-related factors and promote new bone formation, indicating the important role of macrophages polarization in biomaterial induction of osteogenesis. In vivo studies further demonstrated that CaP Zn0.8Mn0.1Li alloy could stimulate osteogenesis better than other Zn-Mn-Li alloys implantations by regulating macrophages polarization and reducing inflammation. In addition, transcriptome results showed that CaP Zn0.8Mn0.1Li played an important regulatory role in the life process of macrophages, activating Toll-like receptor signaling pathway, which participated in the activation and attenuation of inflammation, and accelerated bone integration. Thus, by preparing CaP coatings on the surface of Zn-Mn-Li alloys and combining the bioactive ingredient with controlled release, the biomaterial will be imbibed with beneficial immunomodulatory properties that promote bone integration.
Collapse
Affiliation(s)
| | | | - Yujue Zhang
- Liaocheng People’s Hospital, Liaocheng Dongchangfu People’s Hospital, Liaocheng 252000, China
- School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, China
| | - Xin Luo
- Liaocheng People’s Hospital, Liaocheng Dongchangfu People’s Hospital, Liaocheng 252000, China
| | - Jun Li
- Liaocheng People’s Hospital, Liaocheng Dongchangfu People’s Hospital, Liaocheng 252000, China
| | - Chunxiu Meng
- Liaocheng People’s Hospital, Liaocheng Dongchangfu People’s Hospital, Liaocheng 252000, China
| | - Kun Liu
- Liaocheng People’s Hospital, Liaocheng Dongchangfu People’s Hospital, Liaocheng 252000, China
| | - Zhaoyong Lv
- Correspondence address. E-mail: (Z.L.); (X.C.); (F.L.)
| | - Ximeng Chen
- Correspondence address. E-mail: (Z.L.); (X.C.); (F.L.)
| | - Fengzhen Liu
- Correspondence address. E-mail: (Z.L.); (X.C.); (F.L.)
| |
Collapse
|
5
|
Smith E, Zagnoni M, Sandison ME. Cellular microarrays for assessing single-cell phenotypic changes in vascular cell populations. Biomed Microdevices 2023; 25:11. [PMID: 36928445 PMCID: PMC10020314 DOI: 10.1007/s10544-023-00651-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
Microengineering technologies provide bespoke tools for single-cell studies, including microarray approaches. There are many challenges when culturing adherent single cells in confined geometries for extended periods, including the ability of migratory cells to overcome confining cell-repellent surfaces with time. Following studies suggesting clonal expansion of only a few vascular smooth muscle cells (vSMCs) contributes to plaque formation, the investigation of vSMCs at the single-cell level is central to furthering our understanding of atherosclerosis. Herein, we present a medium throughput cellular microarray, for the tracking of single, freshly-isolated vSMCs as they undergo phenotypic modulation in vitro. Our solution facilitates long-term cell confinement (> 3 weeks) utilising novel application of surface functionalisation methods to define individual culture microwells. We demonstrate successful tracking of hundreds of native vSMCs isolated from rat aortic and carotid artery tissue, monitoring their proliferative capacity and uptake of oxidised low-density lipoprotein (oxLDL) by live-cell microscopy. After 7 days in vitro, the majority of viable SMCs remained as single non-proliferating cells (51% aorta, 78% carotid). However, a sub-population of vSMCs demonstrated high proliferative capacity (≥ 10 progeny; 18% aorta, 5% carotid), in line with reports that a limited number of medial SMCs selectively expand to populate atherosclerotic lesions. Furthermore, we show that, when exposed to oxLDL, proliferative cells uptake higher levels of lipoproteins, whilst also expressing greater levels of galectin-3. Our microwell array approach enables long-term characterisation of multiple phenotypic characteristics and the identification of new cellular sub-populations in migratory, proliferative adherent cell types.
Collapse
Affiliation(s)
- E Smith
- Electronic & Electrical Engineering, Royal College Building, University of Strathclyde, G1 1XW, Glasgow, UK
- Biomedical Engineering, Wolfson Centre, University of Strathclyde, G4 0NW, Glasgow, UK
| | - M Zagnoni
- Electronic & Electrical Engineering, Royal College Building, University of Strathclyde, G1 1XW, Glasgow, UK
| | - M E Sandison
- Biomedical Engineering, Wolfson Centre, University of Strathclyde, G4 0NW, Glasgow, UK.
| |
Collapse
|
6
|
Cotner M, Meng S, Jost T, Gardner A, De Santiago C, Brock A. Integration of quantitative methods and mathematical approaches for the modeling of cancer cell proliferation dynamics. Am J Physiol Cell Physiol 2023; 324:C247-C262. [PMID: 36503241 PMCID: PMC9886359 DOI: 10.1152/ajpcell.00185.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
Physiological processes rely on the control of cell proliferation, and the dysregulation of these processes underlies various pathological conditions, including cancer. Mathematical modeling can provide new insights into the complex regulation of cell proliferation dynamics. In this review, we first examine quantitative experimental approaches for measuring cell proliferation dynamics in vitro and compare the various types of data that can be obtained in these settings. We then explore the toolbox of common mathematical modeling frameworks that can describe cell behavior, dynamics, and interactions of proliferation. We discuss how these wet-laboratory studies may be integrated with different mathematical modeling approaches to aid the interpretation of the results and to enable the prediction of cell behaviors, specifically in the context of cancer.
Collapse
Affiliation(s)
- Michael Cotner
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Sarah Meng
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Tyler Jost
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Andrea Gardner
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Carolina De Santiago
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Amy Brock
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
7
|
Gu Z, Fan S, Kundu SC, Yao X, Zhang Y. Fiber diameters and parallel patterns: proliferation and osteogenesis of stem cells. Regen Biomater 2023; 10:rbad001. [PMID: 36726609 PMCID: PMC9887345 DOI: 10.1093/rb/rbad001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Due to the innate extracellular matrix mimicking features, fibrous materials exhibited great application potential in biomedicine. In developing excellent fibrous biomaterial, it is essential to reveal the corresponding inherent fiber features' effects on cell behaviors. Due to the inevitable 'interference' cell adhesions to the background or between adjacent fibers, it is difficult to precisely reveal the inherent fiber diameter effect on cell behaviors by using a traditional fiber mat. A single-layer and parallel-arranged polycaprolactone fiber pattern platform with an excellent non-fouling background is designed and constructed herein. In this unique material platform, the 'interference' cell adhesions through interspace between fibers to the environment could be effectively ruled out by the non-fouling background. The 'interference' cell adhesions between adjacent fibers could also be excluded from the sparsely arranged (SA) fiber patterns. The influence of fiber diameter on stem cell behaviors is precisely and comprehensively investigated based on eliminating the undesired 'interference' cell adhesions in a controllable way. On the SA fiber patterns, small diameter fiber (SA-D1, D1 means 1 μm in diameter) may seriously restrict cell proliferation and osteogenesis when compared to the middle (SA-D8) and large (SA-D56) ones and SA-D8 shows the optimal osteogenesis enhancement effect. At the same time, the cells present similar proliferation ability and even the highest osteogenic ability on the densely arranged (DA) fiber patterns with small diameter fiber (DA-D1) when compared to the middle (DA-D8) and large (DA-D56) ones. The 'interference' cell adhesion between adjacent fibers under dense fiber arrangement may be the main reason for inducing these different cell behavior trends along with fiber diameters. Related results and comparisons have illustrated the effects of fiber diameter on stem cell behaviors more precisely and objectively, thus providing valuable reference and guidance for developing effective fibrous biomaterials.
Collapse
Affiliation(s)
- Zhanghong Gu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Subhas C Kundu
- I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco, Guimarães 4805-017, Portugal
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| |
Collapse
|
8
|
Cao D, Ding J. Recent advances in regenerative biomaterials. Regen Biomater 2022; 9:rbac098. [PMID: 36518879 PMCID: PMC9745784 DOI: 10.1093/rb/rbac098] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 07/22/2023] Open
Abstract
Nowadays, biomaterials have evolved from the inert supports or functional substitutes to the bioactive materials able to trigger or promote the regenerative potential of tissues. The interdisciplinary progress has broadened the definition of 'biomaterials', and a typical new insight is the concept of tissue induction biomaterials. The term 'regenerative biomaterials' and thus the contents of this article are relevant to yet beyond tissue induction biomaterials. This review summarizes the recent progress of medical materials including metals, ceramics, hydrogels, other polymers and bio-derived materials. As the application aspects are concerned, this article introduces regenerative biomaterials for bone and cartilage regeneration, cardiovascular repair, 3D bioprinting, wound healing and medical cosmetology. Cell-biomaterial interactions are highlighted. Since the global pandemic of coronavirus disease 2019, the review particularly mentions biomaterials for public health emergency. In the last section, perspectives are suggested: (i) creation of new materials is the source of innovation; (ii) modification of existing materials is an effective strategy for performance improvement; (iii) biomaterial degradation and tissue regeneration are required to be harmonious with each other; (iv) host responses can significantly influence the clinical outcomes; (v) the long-term outcomes should be paid more attention to; (vi) the noninvasive approaches for monitoring in vivo dynamic evolution are required to be developed; (vii) public health emergencies call for more research and development of biomaterials; and (viii) clinical translation needs to be pushed forward in a full-chain way. In the future, more new insights are expected to be shed into the brilliant field-regenerative biomaterials.
Collapse
Affiliation(s)
- Dinglingge Cao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
9
|
Xu R, Zhang M, Yao J, Wang Y, Ge Y, Kremenakova D, Militky J, Zhu G. Highly Antibacterial Electrospun Double-Layer Mats for Preventing Secondary Wound Damage and Promoting Unidirectional Water Conduction in Wound Dressings. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Gudde AN, van Velthoven MJJ, Roovers JPWR, Kouwer PHJ, Guler Z. Polyisocyanides as a substrate to trigger vaginal fibroblast functioning in an in vitro model for prolapse repair. BIOMATERIALS ADVANCES 2022; 141:213104. [PMID: 36116187 DOI: 10.1016/j.bioadv.2022.213104] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/10/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Pelvic organ prolapse (POP) is the descent of the bladder, uterus, and/or rectum into the vagina. POP is associated with altered vaginal fibroblast functionality and connective tissue composition in the vaginal wall. The results of surgical intervention are poor, which may be related to the lack of true restoration of the connective tissue. An innovative treatment addresses tissue repair after surgery by the introduction of a bioactive supplement that enhances the healing process through collagen and elastin deposition. As a novel strategy, we first studied the effects in an in vitro model. Here, we investigate how the presence of cell binding GRGDS (RGD) peptides on the highly biomimetic polyisocyanide (PIC) gel facilitates and promotes the function of primary vaginal fibroblasts isolated from a POP patient. Fibroblast function was analyzed in terms of morphology, proliferation, and extracellular matrix (ECM) deposition and remodeling. RGD modification of the gel facilitated cell spread and proliferation. Quantitative outcomes of the ECM content indicated increased production of collagen and elastin by fibroblasts on gels with the highest RGD density. The in vitro results suggest that PIC-RGD hydrogel application may translate into improved connective tissue healing in the pelvic floor, which is essential for its use as a regeneration promoting additive in surgery.
Collapse
Affiliation(s)
- Aksel N Gudde
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center-location AMC, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands; Amsterdam Reproduction and Development, Amsterdam University Medical Center-location AMC, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands
| | - Melissa J J van Velthoven
- Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525, GA, Nijmegen, the Netherlands; Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, the Netherlands
| | - Jan-Paul W R Roovers
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center-location AMC, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands; Amsterdam Reproduction and Development, Amsterdam University Medical Center-location AMC, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands
| | - Paul H J Kouwer
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, the Netherlands.
| | - Zeliha Guler
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center-location AMC, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands; Amsterdam Reproduction and Development, Amsterdam University Medical Center-location AMC, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands.
| |
Collapse
|
11
|
Qiang HF, Lv ZY, Hou CY, Luo X, Li J, Liu K, Meng CX, Du WQ, Zhang YJ, Chen XM, Liu FZ. Development of biodegradable Zn-Mn-Li and CaP coatings on Zn-Mn-Li alloys and cytocompatibility evaluation for bone graft. Front Bioeng Biotechnol 2022; 10:1013097. [PMID: 36185442 PMCID: PMC9515419 DOI: 10.3389/fbioe.2022.1013097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Zn-based alloys are considered as new kind of potential biodegradable implanted biomaterials recently. The difficulty of metal implanted biomaterials and bone tissue integration seriously affects the applications of metal implanted scaffolds in bone tissue-related fields. Herein, we self-designed Zn0.8Mn and Zn0.8Mn0.1Li alloys and CaP coated Zn0.8Mn and Zn0.8Mn0.1Li alloys, then evaluated the degradation property and cytocompatibility. The results demonstrated that the Zn0.8Mn0.1Li alloys had profoundly modified the degradation property and cytocompatibility, but Zn0.8Mn0.1Li alloys had particularly adverse effects on the surface morphology of osteoblasts. The results furtherly showed that the CaP-coated Zn0.8Mn and Zn0.8Mn0.1Li alloys scaffold had better biocompatibility, which would further guarantee the biosafety of this new kind of biodegradable Zn-based alloys implants for future clinical applications.
Collapse
Affiliation(s)
- Hui-Fen Qiang
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng, China
| | - Zhao-Yong Lv
- Liaocheng People’s Hospital, Dongchangfu Hospital of Liaocheng Hospital, Liaocheng, China
| | - Cai-Yao Hou
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng, China
| | - Xin Luo
- Liaocheng People’s Hospital, Dongchangfu Hospital of Liaocheng Hospital, Liaocheng, China
| | - Jun Li
- Liaocheng People’s Hospital, Dongchangfu Hospital of Liaocheng Hospital, Liaocheng, China
| | - Kun Liu
- Liaocheng People’s Hospital, Dongchangfu Hospital of Liaocheng Hospital, Liaocheng, China
| | - Chun-Xiu Meng
- Liaocheng People’s Hospital, Dongchangfu Hospital of Liaocheng Hospital, Liaocheng, China
| | - Wan-Qing Du
- Liaocheng People’s Hospital, Dongchangfu Hospital of Liaocheng Hospital, Liaocheng, China
| | - Yu-Jue Zhang
- Liaocheng People’s Hospital, Dongchangfu Hospital of Liaocheng Hospital, Liaocheng, China
- *Correspondence: Feng-Zhen Liu, ; Xi-Meng Chen, ; Yu-Jue Zhang,
| | - Xi-Meng Chen
- Liaocheng People’s Hospital, Dongchangfu Hospital of Liaocheng Hospital, Liaocheng, China
- *Correspondence: Feng-Zhen Liu, ; Xi-Meng Chen, ; Yu-Jue Zhang,
| | - Feng-Zhen Liu
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng, China
- Liaocheng People’s Hospital, Dongchangfu Hospital of Liaocheng Hospital, Liaocheng, China
- *Correspondence: Feng-Zhen Liu, ; Xi-Meng Chen, ; Yu-Jue Zhang,
| |
Collapse
|
12
|
Zou S, Yao X, Shao H, Reis RL, Kundu SC, Zhang Y. Nonmulberry silk fibroin-based biomaterials: Impact on cell behavior regulation and tissue regeneration. Acta Biomater 2022; 153:68-84. [PMID: 36113722 DOI: 10.1016/j.actbio.2022.09.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/28/2022] [Accepted: 09/08/2022] [Indexed: 11/01/2022]
Abstract
Silk fibroin (SF) is a promising biomaterial due to its good biocompatibility, easy availability, and high mechanical properties. Compared with mulberry silk fibroin (MSF), nonmulberry silk fibroin (NSF) isolated from typical nonmulberry silkworm silk exhibits unique arginine-glycine-aspartic acid (RGD) sequences with favorable cell adhesion enhancing effect. This inherent property probably makes the NSF more suitable for cell culture and tissue regeneration-related applications. Accordingly, various types of NSF-based biomaterials, such as particles, films, fiber mats, and 3D scaffolds, are constructed and their application potential in different biomedical fields is extensively investigated. Based on these promising NSF biomaterials, this review firstly makes a systematical comparison between the molecular structure and properties of MSF and typical NSF and highlights the unique properties of NSF. In addition, we summarize the effective fabrication strategies from degummed nonmulberry silk fibers to regenerated NSF-based biomaterials with controllable formats and their recent application progresses in cell behavior regulation and tissue regeneration. Finally, current challenges and future perspectives for the fabrication and application of NSF-based biomaterials are discussed. Related research and perspectives may provide valuable references for designing and modifying effective NSF-based and other natural biomaterials. STATEMENT OF SIGNIFICANCE: There exist many reviews about mulberry silk fibroin (MSF) biomaterials and their biomedical applications, while that about nonmulberry silk fibroin (NSF) biomaterials is scarce. Compared with MSF, NSF exhibits unique arginine-glycine-aspartic acid sequences with promising cell adhesion enhancing effect, which makes NSF more suitable for cell culture and tissue regeneration related applications. Focusing on these advanced NSF biomaterials, this review has systematically compared the structure and properties of MSF and NSF, and emphasized the unique properties of NSF. Following that, the effective construction strategies for NSF-based biomaterials are summarized, and their recent applications in cell behavior regulations and tissue regenerations are highlighted. Furthermore, current challenges and future perspectives for the fabrication and application of NSF-based biomaterials were discussed.
Collapse
Affiliation(s)
- Shengzhi Zou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Huili Shao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Rui L Reis
- I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco, Guimarães 4805-017, Portugal
| | - Subhas C Kundu
- I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco, Guimarães 4805-017, Portugal
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| |
Collapse
|
13
|
Zhang Y, Wang X, Li Y, Liang J, Jiang P, Huang Q, Yang Y, Duan H, Dong X, Rui G, Lin C. Cell osteogenic bioactivity mediated precisely by varying scaled micro-pits on ordered micro/nano hierarchical structures of titanium. Regen Biomater 2022; 9:rbac046. [PMID: 35855110 PMCID: PMC9290875 DOI: 10.1093/rb/rbac046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/12/2022] [Accepted: 06/19/2022] [Indexed: 11/30/2022] Open
Abstract
Hierarchical surface structures with micro–nano scale play a crucial role in regulation of cell proliferation and osteogenic differentiation. It has been proven that cells are extremely sensitive to the nanoscaled structure and show multifarious phenotypes. Though a vital function of microstructure on osseointegration has been confirmed, the cell performances response to different microscaled structure is needed to be further dissected and in depth understood. In this work, the ordered micro–nano hierarchical structures with varying micro-scaled pits were precisely fabricated on titanium successfully by the combination of electrochemical, chemical etching and anodization as well. In vitro systematical assessments indicated that the micro–nano multilevel structures on titanium exhibited excellent cells adhesion and spreading ability, as well as steerable proliferation and osteogenic differentiation behaviors. It is shown that smaller micro-pits and lower roughness of the hierarchical structures enabled faster cell propagation. Despite cell growth was delayed on micro–nano titanium with relatively larger cell-match-size micro-pits and roughness, osteogenic-specific genes were significantly elevated. Furthermore, the alkaline phosphatase activity, collagen secretion and extracellular matrix mineralization of MC3T3-E1 on multi-scaled titanium were suppressed by a large margin after adding IWP-2 (an inhibitor of Wnt/β-catenin signal pathway), indicating this pathway played a crucial part in cell osteogenic differentiation modulated by micro–nano structures.
Collapse
Affiliation(s)
- Yanmei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Xiankuan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Yaxian Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Jianhe Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Pinliang Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Qiaoling Huang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University , Xiamen 361005, China
| | - Yun Yang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University , Xiamen 361005, China
| | - Hongping Duan
- Beijing Engineering Laboratory of Functional Medical Materials and Devices, Beijing Medical Implant Engineering Research Center, Beijing Naton Technology Group Co. Ltd , Beijing, China
| | - Xiang Dong
- Beijing Engineering Laboratory of Functional Medical Materials and Devices, Beijing Medical Implant Engineering Research Center, Beijing Naton Technology Group Co. Ltd , Beijing, China
| | - Gang Rui
- The First Affiliated Hospital of Xiamen University Department of Orthopedics Surgery, , Xiamen, Fujian 361003, China
| | - Changjian Lin
- and College of Chemistry and Chemical Engineering, Xiamen University State Key Laboratory of Physical Chemistry of Solid Surfaces, , Xiamen 361005, China
- Tan Kah Kee Innovation Laboratory, Xiamen , Fujian, 361005 China
| |
Collapse
|
14
|
A role for nuclear stretching and NPCs changes in the cytoplasmic-nuclear trafficking of YAP: An experimental and numerical modelling approach. Mater Today Bio 2022; 15:100335. [PMID: 35813578 PMCID: PMC9263995 DOI: 10.1016/j.mtbio.2022.100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/27/2022] [Accepted: 06/16/2022] [Indexed: 11/22/2022] Open
Abstract
Mechanical forces, acting on eukaryotic cells, are responsible for cell shape, cell proliferation, cell polarity, and cell differentiation thanks to two cells abilities known as mechanosensing and mechanotransduction. Mechanosensing consists of the ability of a cell to sense mechanical cues, while mechanotransduction is the capacity of a cell to respond to these signals by translating mechanical stimuli into biochemical ones. These signals propagate from the extracellular matrix to the nucleus with different well known physical connections, but how the mechanical signals are transduced into biochemical ones remains an open challenge. Recent findings showed that the cell-generated forces affect the translocation of transcription factors (TFs) from the cytoplasm to the nucleus. This mechanism is affected by the features of nuclear pore complexes. Owing to the complex patterns of strains and stresses of the nuclear envelope caused by cytoskeletal forces, it is likely that the morphology of NPC changes as cytoskeleton assemblies’ change. This may ultimately affect molecular transport through the nucleus, hence altering cell functions. Among the various TFs, Yes-associated protein (YAP), which is typically involved in cell proliferation, survival, and differentiation, is able to activate specific pathways when entrapped into the cell nucleus. Here, starting from experimental results, we develop a multiscale finite element (FE) model aimed to simulate the macroscopic cell spreading and consequent changes in the cell mechanical behaviour to be related to the NPCs changes and YAP nuclear transport.
Collapse
|
15
|
Jiao F, Xu J, Zhao Y, Ye C, Sun Q, Liu C, Huo B. Synergistic effects of fluid shear stress and adhesion morphology on the apoptosis and osteogenesis of mesenchymal stem cells. J Biomed Mater Res A 2022; 110:1636-1644. [DOI: 10.1002/jbm.a.37413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/03/2022] [Accepted: 05/13/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Fei Jiao
- Biomechanics Lab, Department of Mechanics School of Aerospace Engineering, Beijing Institute of Technology Beijing People's Republic of China
| | - Jiayi Xu
- Biomechanics Lab, Department of Mechanics School of Aerospace Engineering, Beijing Institute of Technology Beijing People's Republic of China
| | - Yang Zhao
- Biomechanics Lab, Department of Mechanics School of Aerospace Engineering, Beijing Institute of Technology Beijing People's Republic of China
| | - Chongyang Ye
- Biomechanics Lab, Department of Mechanics School of Aerospace Engineering, Beijing Institute of Technology Beijing People's Republic of China
| | - Qing Sun
- Biomechanics Lab, Department of Mechanics School of Aerospace Engineering, Beijing Institute of Technology Beijing People's Republic of China
| | - Chenglin Liu
- Sports Artificial Intelligence Institute Capital University of Physical Education and Sports Beijing People's Republic of China
| | - Bo Huo
- Biomechanics Lab, Department of Mechanics School of Aerospace Engineering, Beijing Institute of Technology Beijing People's Republic of China
- Sports Artificial Intelligence Institute Capital University of Physical Education and Sports Beijing People's Republic of China
| |
Collapse
|
16
|
Che H, Selig M, Rolauffs B. Micro-patterned cell populations as advanced pharmaceutical drugs with precise functional control. Adv Drug Deliv Rev 2022; 184:114169. [PMID: 35217114 DOI: 10.1016/j.addr.2022.114169] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
Human cells are both advanced pharmaceutical drugs and 'drug deliverers'. However, functional control prior to or after cell implantation remains challenging. Micro-patterning cells through geometrically defined adhesion sites allows controlling morphogenesis, polarity, cellular mechanics, proliferation, migration, differentiation, stemness, cell-cell interactions, collective cell behavior, and likely immuno-modulatory properties. Consequently, generating micro-patterned therapeutic cells is a promising idea that has not yet been realized and few if any steps have been undertaken in this direction. This review highlights potential therapeutic applications, summarizes comprehensively the many cell functions that have been successfully controlled through micro-patterning, details the established micro-pattern designs, introduces the available fabrication technologies to the non-specialized reader, and suggests a quality evaluation score. Such a broad review is not yet available but would facilitate the manufacturing of therapeutically patterned cell populations using micro-patterned cell-instructive biomaterials for improved functional control as drug delivery systems in the context of cells as pharmaceutical products.
Collapse
Affiliation(s)
- Hui Che
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215006, China
| | - Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany.
| |
Collapse
|
17
|
Kenry, Eschle BK, Andreiuk B, Gokhale PC, Mitragotri S. Differential Macrophage Responses to Gold Nanostars and Their Implication for Cancer Immunotherapy. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kenry
- Harvard John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Department of Imaging Dana‐Farber Cancer Institute and Harvard Medical School Boston MA 02215 USA
| | - Benjamin K. Eschle
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science Dana‐Farber Cancer Institute Boston MA 02215 USA
| | - Bohdan Andreiuk
- Department of Imaging Dana‐Farber Cancer Institute and Harvard Medical School Boston MA 02215 USA
- Department of Cancer Immunology and Virology Dana‐Farber Cancer Institute and Harvard Medical School Boston MA 02215 USA
| | - Prafulla C. Gokhale
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science Dana‐Farber Cancer Institute Boston MA 02215 USA
| | - Samir Mitragotri
- Harvard John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| |
Collapse
|
18
|
Jing L, Fan S, Yao X, Zhang Y. Effects of compound stimulation of fluid shear stress plus ultrasound on stem cell proliferation and osteogenesis. Regen Biomater 2021; 8:rbab066. [PMID: 34868635 PMCID: PMC8634505 DOI: 10.1093/rb/rbab066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
Bone tissue with strong adaptability is often in a complex dynamical microenvironment in vivo, which is associated with the pathogenesis and treatment of orthopedic diseases. Therefore, it is of great significance to investigate the effects of corresponding compound stimulation on cell behaviors. Herein, a fluid shear stress (FSS) plus ultrasound stimulation platform suitable for cell studies based on a microfluidic chip was constructed and bone marrow mesenchymal stem cell (BMSC) was chosen as a model cell. The proliferation and osteogenesis of BMSCs under the compound stimulation of FSS plus ultrasound in growth medium without any soluble induction factors were firstly investigated. Single FSS stimulation and static culture conditions were also examined. Results illustrated that suitable single FSS stimulation (about 0.06 dyn/cm2) could significantly enhance cell proliferation and osteogenesis simultaneously when compared to the static control, while greater FSS mitigated or even restricted these enhancing effects. Interestingly, ultrasound stimulation combined with this suitable FSS stimulation further accelerated cell proliferation as the intensity of ultrasound increasing. As for the osteogenesis under compound stimulation, it was relatively restricted under lower ultrasound intensity (about 0.075 W/cm2), while promoted when the intensity became higher (about 1.75 W/cm2). This study suggests that both the cell proliferation and osteogenesis are very responsive to the magnitudes of FSS and ultrasound stimulations and can be both significantly enhanced by proper combination strategies. Moreover, these findings will provide valuable references for the construction of effective cell bioreactors and also the treatment of orthopedic diseases.
Collapse
Affiliation(s)
- Lingzhi Jing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China.,Jinan Jinquan Bio-Technology Co. Ltd, Jinan 250101, P.R. China
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China.,Jinan Jinquan Bio-Technology Co. Ltd, Jinan 250101, P.R. China
| |
Collapse
|
19
|
Zheng S, Liu Q, He J, Wang X, Ye K, Wang X, Yan C, Liu P, Ding J. Critical adhesion areas of cells on micro-nanopatterns. NANO RESEARCH 2021; 15:1623-1635. [PMID: 34405038 PMCID: PMC8359768 DOI: 10.1007/s12274-021-3711-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Cell adhesion to extracellular matrices (ECM) is critical to physiological and pathological processes as well as biomedical and biotechnological applications. It has been known that a cell can adhere on an adhesive microisland only over a critical size. But no publication has concerned critical adhesion areas of cells on microislands with nanoarray decoration. Herein, we fabricated a series of micro-nanopatterns with different microisland sizes and arginine-glycine-aspartate (RGD) nanospacings on a nonfouling poly(ethylene glycol) background. Besides reproducing that nanospacing of RGD, a ligand of its receptor integrin (a membrane protein), significantly influences specific cell adhesion on bioactive nanoarrays, we confirmed that the concept of critical adhesion area originally suggested in studies of cells on micropatterns was justified also on the micro-nanopatterns, yet the latter exhibited more characteristic behaviors of cell adhesion. We found increased critical adhesion areas of human mesenchymal stem cells (hMSCs) on nanoarrayed microislands with increased RGD nanospacings. However, the numbers of nanodots with respect to the critical adhesion areas were not a constant. A unified interpretation was then put forward after combining nonspecific background adhesion and specific cell adhesion. We further carried out the asymptotic analysis of a series of micro-nanopatterned surfaces to obtain the effective RGD nanospacing on unpatterned free surfaces with densely grafted RGD, which could be estimated nonzero but has never been revealed previously without the assistance of the micro-nanopatterning techniques and the corresponding analysis. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary materials and methods (details of fabrication of micro-nanopatterns), and supplementary results (selective adhesion or localization of hMSCs on nanoarrayed microislands with non-fouling background, calculation of critical number of integrin-ligand binding N*, etc.) are available in the online version of this article at 10.1007/s12274-021-3711-6.
Collapse
Affiliation(s)
- Shuang Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
| | - Qiong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
- Navy Characteristic Medical Center, the Second Military Medical University, Shanghai, 200433 China
| | - Junhao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
| | - Xinlei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
| | - Kai Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
| | - Xuan Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
| | - Ce Yan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
| | - Peng Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
- College of Bioengineering, Chongqing University, Chongqing, 400044 China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
| |
Collapse
|
20
|
Development of a decellularized meniscus matrix-based nanofibrous scaffold for meniscus tissue engineering. Acta Biomater 2021; 128:175-185. [PMID: 33823327 DOI: 10.1016/j.actbio.2021.03.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/25/2022]
Abstract
The meniscus plays a critical role in knee mechanical function but is commonly injured given its central load bearing role. In the adult, meniscus repair is limited, given the low number of endogenous cells, the density of the matrix, and the limited vascularity. Menisci are fibrocartilaginous tissues composed of a micro-/nano- fibrous extracellular matrix (ECM) and a mixture of chondrocyte-like and fibroblast-like cells. Here, we developed a fibrous scaffold system that consists of bioactive components (decellularized meniscus ECM (dME) within a poly(e-caprolactone) material) fashioned into a biomimetic morphology (via electrospinning) to support and enhance meniscus cell function and matrix production. This work supports that the incorporation of dME into synthetic nanofibers increased hydrophilicity of the scaffold, leading to enhanced meniscus cell spreading, proliferation, and fibrochondrogenic gene expression. This work identifies a new biomimetic scaffold for therapeutic strategies to substitute or replace injured meniscus tissue. STATEMENT OF SIGNIFICANCE: In this study, we show that a scaffold electrospun from a combination of synthetic materials and bovine decellularized meniscus ECM provides appropriate signals and a suitable template for meniscus fibrochondrocyte spreading, proliferation, and secretion of collagen and proteoglycans. Material characterization and in vitro cell studies support that this new bioactive material is susceptible to enzymatic digestion and supports meniscus-like tissue formation.
Collapse
|
21
|
Rao W, Cai C, Tang J, Wei Y, Gao C, Yu L, Ding J. Coordination Insertion Mechanism of
Ring‐Opening
Polymerization of Lactide Catalyzed by Stannous Octoate
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000519] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Weihan Rao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Caiyun Cai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Jingyu Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Yiman Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Caiyun Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
- Zhuhai Fudan Innovation Institute Zhuhai Guangdong 519000 China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
- Zhuhai Fudan Innovation Institute Zhuhai Guangdong 519000 China
| |
Collapse
|
22
|
Yao X, Wang X, Ding J. Exploration of possible cell chirality using material techniques of surface patterning. Acta Biomater 2021; 126:92-108. [PMID: 33684535 DOI: 10.1016/j.actbio.2021.02.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Consistent left-right (LR) asymmetry or chirality is critical for embryonic development and function maintenance. While chirality on either molecular or organism level has been well established, that on the cellular level has remained an open question for a long time. Although it remains unclear whether chirality exists universally on the cellular level, valuable efforts have recently been made to explore this fundamental topic pertinent to both cell biology and biomaterial science. The development of material fabrication techniques, surface patterning, in particular, has afforded a unique platform to study cell-material interactions. By using patterning techniques, chirality on the cellular level has been examined for cell clusters and single cells in vitro in well-designed experiments. In this review, we first introduce typical fabrication techniques of surface patterning suitable for cell studies and then summarize the main aspects of preliminary evidence of cell chirality on patterned surfaces to date. We finally indicate the limitations of the studies conducted thus far and describe the perspectives of future research in this challenging field. STATEMENT OF SIGNIFICANCE: While both biomacromolecules and organisms can exhibit chirality, it is not yet conclusive whether a cell has left-right (LR) asymmetry. It is important yet challenging to study and reveal the possible existence of cell chirality. By using the technique of surface patterning, the recent decade has witnessed progress in the exploration of possible cell chirality within cell clusters and single cells. Herein, some important preliminary evidence of cell chirality is collected and analyzed. The open questions and perspectives are also described to promote further investigations of cell chirality in biomaterials.
Collapse
|
23
|
Zou S, Wang X, Fan S, Yao X, Zhang Y, Shao H. Electrospun regenerated Antheraea pernyi silk fibroin scaffolds with improved pore size, mechanical properties and cytocompatibility using mesh collectors. J Mater Chem B 2021; 9:5514-5527. [PMID: 34152355 DOI: 10.1039/d1tb00944c] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Generally, electrospun silk fibroin scaffolds collected by traditional plates present limited pore size and mechanical properties, which may restrict their biomedical applications. Herein, regenerated Antheraea pernyi silk fibroin (RASF) with excellent inherent cell adhesion property was chosen as a raw material and the conductive metal meshes were used as collectors to prepare modified RASF scaffolds by electrospinning from its aqueous solution. A traditional intact plate was used as a control. The morphology and mechanical properties of the obtained scaffolds were investigated. Schwann cells were further used to assess the cytocompatibility and cell migration ability of the typical scaffolds. Interestingly, compared with the traditional intact plate, the mesh collector with an appropriate gap size (circa 7 mm) could significantly improve the pore size, porosity and mechanical properties of the RASF scaffolds simultaneously. In addition, the scaffold collected under this condition (RASF-7mmG) showed higher cell viability, deeper cell permeation and faster cell migration of Schwann cells. Combined with the excellent inherent properties of ASF and the obviously enhanced scaffold cytocompatibility and mechanical properties, the RASF-7mmG scaffold is expected to be a candidate with great potential for biomedical applications.
Collapse
Affiliation(s)
- Shengzhi Zou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Xinru Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China. and Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical & Materials Engineering, Huaiyin Institute of Technology, Huai'an, 223003, People's Republic of China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Huili Shao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| |
Collapse
|
24
|
Jo J, Abdi Nansa S, Kim DH. Molecular Regulators of Cellular Mechanoadaptation at Cell-Material Interfaces. Front Bioeng Biotechnol 2020; 8:608569. [PMID: 33364232 PMCID: PMC7753015 DOI: 10.3389/fbioe.2020.608569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022] Open
Abstract
Diverse essential cellular behaviors are determined by extracellular physical cues that are detected by highly orchestrated subcellular interactions with the extracellular microenvironment. To maintain the reciprocity of cellular responses and mechanical properties of the extracellular matrix, cells utilize a variety of signaling pathways that transduce biophysical stimuli to biochemical reactions. Recent advances in the micromanipulation of individual cells have shown that cellular responses to distinct physical and chemical features of the material are fundamental determinants of cellular mechanosensation and mechanotransduction. In the process of outside-in signal transduction, transmembrane protein integrins facilitate the formation of focal adhesion protein clusters that are connected to the cytoskeletal architecture and anchor the cell to the substrate. The linkers of nucleoskeleton and cytoskeleton molecular complexes, collectively termed LINC, are critical signal transducers that relay biophysical signals between the extranuclear cytoplasmic region and intranuclear nucleoplasmic region. Mechanical signals that involve cytoskeletal remodeling ultimately propagate into the nuclear envelope comprising the nuclear lamina in assistance with various nuclear membrane proteins, where nuclear mechanics play a key role in the subsequent alteration of gene expression and epigenetic modification. These intracellular mechanical signaling cues adjust cellular behaviors directly associated with mechanohomeostasis. Diverse strategies to modulate cell-material interfaces, including alteration of surface rigidity, confinement of cell adhesive region, and changes in surface topology, have been proposed to identify cellular signal transduction at the cellular and subcellular levels. In this review, we will discuss how a diversity of alterations in the physical properties of materials induce distinct cellular responses such as adhesion, migration, proliferation, differentiation, and chromosomal organization. Furthermore, the pathological relevance of misregulated cellular mechanosensation and mechanotransduction in the progression of devastating human diseases, including cardiovascular diseases, cancer, and aging, will be extensively reviewed. Understanding cellular responses to various extracellular forces is expected to provide new insights into how cellular mechanoadaptation is modulated by manipulating the mechanics of extracellular matrix and the application of these materials in clinical aspects.
Collapse
Affiliation(s)
| | | | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| |
Collapse
|
25
|
He Y, Mao T, Gu Y, Yang Y, Ding J. A simplified yet enhanced and versatile microfluidic platform for cyclic cell stretching on an elastic polymer. Biofabrication 2020; 12:045032. [DOI: 10.1088/1758-5090/abb295] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Liu R, Ding J. Chromosomal Repositioning and Gene Regulation of Cells on a Micropillar Array. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35799-35812. [PMID: 32667177 DOI: 10.1021/acsami.0c05883] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
While various cell responses on material surfaces have been examined, relatively few reports are focused on significant self-deformation of cell nuclei and corresponding chromosomal repositioning. Herein, we prepared a micropillar array of poly(lactide-co-glycolide) (PLGA) and observed significant nuclear deformation of HeLa cells on the polymeric micropillars. In particular, we detected the territory positioning of chromosomes 18 and 19 and gene expression profiles of HeLa cells on the micropillar array using fluorescence in situ hybridization and a DNA microarray. Chromosome 18 was found to be translocated closer to the nuclear periphery than chromosome 19 on the micropillar array. With the repositioning of chromosomal territories, HeLa cells changed their gene expressions on the micropillar array with 180 genes upregulated and 255 genes downregulated for all of the 23 pairs of chromosomes under the experimental conditions and the employed Bioinformatics criteria. Hence, this work deepens the understanding on cell-material interactions by revealing that material surface topography can probably influence chromosomal repositioning in the nuclei and gene expressions of cells.
Collapse
Affiliation(s)
- Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
27
|
Yao X, Ding J. Effects of Microstripe Geometry on Guided Cell Migration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27971-27983. [PMID: 32479054 DOI: 10.1021/acsami.0c05024] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cell migration on material surfaces is a fundament issue in the fields of biomaterials, cell biology, tissue engineering, regenerative medicine, etc. Herein, we aim to guide cell migration by flat microstripes with significant contrast of cell adhesion and varied geometric features of the adhesive stripes. To this end, we designed and fabricated cell-adhesive arginine-glycine-aspartate (RGD) microstripes on the nonfouling poly(ethylene glycol) (PEG) background and examined the microstripe-guided adhesion and migration of a few cell types. The migration of cell clusters adhering on the RGD regions was found to be significantly affected by the widths and arc radiuses of the guided microstripes. The cells migrated fastest on the straight microstripes with width of about 20 μm, which we defined as single file confined migration (SFCM). We also checked the possible left-right asymmetric bias of cell migration guided by combinatory microstripes with alternative wavy and quasi-straight stripes under a given width, and found that the velocity of CCW (counter clockwise) migration was higher than that of CW (clockwise) migration for primary rat mesenchymal stem cells (rMSCs), whereas no left-right asymmetric bias was observed for NIH3T3 (mouse embryonic fibroblast cell line) and Hela (human cervix epithelial carcinoma cell line) cells. Comparison of migration of cells on the nanotopological stripe and smooth surfaces further confirmed the importance of cell orientation coherence for guided cell migration and strengthened the superiority of SFCM.
Collapse
Affiliation(s)
- Xiang Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
28
|
Jiao F, Zhao Y, Sun Q, Huo B. Spreading area and shape regulate the apoptosis and osteogenesis of mesenchymal stem cells on circular and branched micropatterned islands. J Biomed Mater Res A 2020; 108:2080-2089. [PMID: 32319192 DOI: 10.1002/jbm.a.36967] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/20/2020] [Accepted: 03/28/2020] [Indexed: 12/22/2022]
Abstract
The topography of extracellular matrix regulates the differentiation of mesenchymal stem cells (MSCs). In particular, the effect of spreading shape or area on cellular differentiation and viability of individual MSCs cultured in the confined adhesive regions is an interesting fundamental issue. In this study, the adhesive patterns with the circularity of 0.1 or 1 and the areas of 314; 628; 1,256; or 2,512 μm2 were constructed using micropatterning technology. The expression of osteogenesis marker alkaline phosphatase and the apoptosis level of individual MSCs were measured using double fluorescent staining. Results indicated that individual MSCs confined in the small area showed an apoptotic tendency, and those in the large area might enter into osteogenesis. The branched shape with small circularity increased MSC viability but reduced their pluripotency compared with the circular shape. The expression of other osteogenesis markers, such as osteocalcin and Collagen I, confirmed that large and branched pattern promoted MSC osteogenesis. In addition, the transcriptional coactivator yes-associated protein (YAP) was transferred higher in the nuclei of the large and branched cells than other micropatterned groups. This study suggested that the spreading area and shape of individual MSCs regulate their viability and osteogenesis through the YAP pathway.
Collapse
Affiliation(s)
- Fei Jiao
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Yang Zhao
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Qing Sun
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Bo Huo
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| |
Collapse
|
29
|
Li X, Zhang W, Lin W, Qiu H, Qi Y, Ma X, Qi H, He Y, Zhang H, Qian J, Zhang G, Gao R, Zhang D, Ding J. Long-Term Efficacy of Biodegradable Metal-Polymer Composite Stents After the First and the Second Implantations into Porcine Coronary Arteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15703-15715. [PMID: 32159942 DOI: 10.1021/acsami.0c00971] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A biodegradable coronary stent is expected to eliminate the adverse events of an otherwise eternally implanting material after vessel remodeling. Both biocorrodible metals and biodegradable polymers have been tried as the matrix of the new-generation stent. Herein, we utilized a metal-polymer composite material to combine the advantages of the high mechanical strength of metals and the adjustable degradation rate of polymers to prepare the biodegradable stent. After coating polylactide (PLA) on the surface of iron, the degradation of iron was accelerated significantly owing to the decrease of local pH resulting from the hydrolysis of PLA, etc. We implanted the metal-polymer composite stent (MPS) into the porcine artery and examined its degradation in vivo, with the corresponding metal-based stent (MBS) as a control. Microcomputed tomography (micro-CT), coronary angiography (CA), and optical coherence tomography (OCT) were performed to observe the stents and vessels during the animal experiments. The MPS exhibited faster degradation than MBS, and the inflammatory response of MPS was acceptable 12 months after implantation. Additionally, we implanted another MPS after 1-year implantation of the first MPS to investigate the result of the MPS in the second implantation. The feasibility of the biodegradable MPS in second implantation in mammals was also confirmed.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Wanqian Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
- R&D Center, Biotyx Medical (Shenzhen) Co., Ltd., Shenzhen 518109, China
| | - Wenjiao Lin
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
- R&D Center, Biotyx Medical (Shenzhen) Co., Ltd., Shenzhen 518109, China
| | - Hong Qiu
- Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yongli Qi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xun Ma
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Haiping Qi
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
- R&D Center, Biotyx Medical (Shenzhen) Co., Ltd., Shenzhen 518109, China
| | - Yao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Hongjie Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jie Qian
- Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Gui Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
- R&D Center, Biotyx Medical (Shenzhen) Co., Ltd., Shenzhen 518109, China
| | - Runlin Gao
- Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Deyuan Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
- R&D Center, Biotyx Medical (Shenzhen) Co., Ltd., Shenzhen 518109, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
30
|
Wang Z, Lang B, Qu Y, Li L, Song Z, Wang Z. Single-cell patterning technology for biological applications. BIOMICROFLUIDICS 2019; 13:061502. [PMID: 31737153 PMCID: PMC6847985 DOI: 10.1063/1.5123518] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/15/2019] [Indexed: 06/01/2023]
Abstract
Single-cell patterning technology has revealed significant contributions of single cells to conduct basic and applied biological studies in vitro such as the understanding of basic cell functions, neuronal network formation, and drug screening. Unlike traditional population-based cell patterning approaches, single-cell patterning is an effective technology of fully understanding cell heterogeneity by precisely controlling the positions of individual cells. Therefore, much attention is currently being paid to this technology, leading to the development of various micro-nanofabrication methodologies that have been applied to locate cells at the single-cell level. In recent years, various methods have been continuously improved and innovated on the basis of existing ones, overcoming the deficiencies and promoting the progress in biomedicine. In particular, microfluidics with the advantages of high throughput, small sample volume, and the ability to combine with other technologies has a wide range of applications in single-cell analysis. Here, we present an overview of the recent advances in single-cell patterning technology, with a special focus on current physical and physicochemical methods including stencil patterning, trap- and droplet-based microfluidics, and chemical modification on surfaces via photolithography, microcontact printing, and scanning probe lithography. Meanwhile, the methods applied to biological studies and the development trends of single-cell patterning technology in biological applications are also described.
Collapse
Affiliation(s)
| | - Baihe Lang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | | | | | | | - Zuobin Wang
- Author to whom correspondence should be addressed:
| |
Collapse
|
31
|
Hespel L, Dupré de Baubigny J, Lalanne P, de Beco S, Coppey M, Villard C, Humblot V, Marie E, Tribet C. Redox-Triggered Control of Cell Adhesion and Deadhesion on Poly(lysine)- g-poly(ethylene oxide) Adlayers. ACS APPLIED BIO MATERIALS 2019; 2:4367-4376. [DOI: 10.1021/acsabm.9b00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Louise Hespel
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Julien Dupré de Baubigny
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Pierre Lalanne
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Simon de Beco
- Laboratoire Physico Chimie, Institut Curie, PSL Université, Sorbonne Université, CNRS UMR168, F-75005 Paris, France
| | - Mathieu Coppey
- Laboratoire Physico Chimie, Institut Curie, PSL Université, Sorbonne Université, CNRS UMR168, F-75005 Paris, France
| | - Catherine Villard
- Laboratoire Physico Chimie, Institut Curie, PSL Université, Sorbonne Université, CNRS UMR168, F-75005 Paris, France
| | - Vincent Humblot
- Laboratoire Réactivité de Surface, Sorbonne Université, CNRS UMR 7197, 4 Place Jussieu, F-75005 Paris, France
| | - Emmanuelle Marie
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Christophe Tribet
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|