1
|
Istirokhatun T, Lin Y, Kinooka K, Shen Q, Zhang P, Jia Y, Matsuoka A, Kumagai K, Yoshioka T, Matsuyama H. Unveiling the impact of imidazole derivative with mechanistic insights into neutralize interfacial polymerized membranes for improved solute-solute selectivity. WATER RESEARCH 2023; 230:119567. [PMID: 36621280 DOI: 10.1016/j.watres.2023.119567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/20/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Domestic wastewater (DWW) contains a reservoir of nutrients, such as nitrogen, potassium, and phosphorus; however, emerging micropollutants (EMPs) hinder its applications in resource recovery. In this study, a novel class of nanofiltration (NF) membranes was developed; it enabled the efficient removal of harmful EMP constituents while preserving valuable nutrients in the permeate. Neutral (IM-N) and positively charged (IM-P) imidazole derivative compounds have been used to chemically functionalize pristine polyamide (PA) membranes to synchronously inhibit the hydrolysis of residual acyl chloride and promote their amination. Owing to their distinct properties, these IM modifiers can custom-build the membrane physicochemical properties and structures to benefit the NF process in DWW treatment. The electroneutral NF membrane exhibited ultrahigh solute-solute selectivity by minimizing the Donnan effects on ion penetration (K, N, and P ions rejection < 25%) while imposing remarkable size-sieving obstruction against EMPs (rejection ratio > 91%). Moreover, the hydrophilic IM-modifier synergistically led to enhanced water permeance of 9.2 L m-2 h-1 bar-1, reaching a 2-fold higher magnitude than that of the pristine PA membrane, along with excellent antifouling/antibacterial fouling properties. This study may provide a paradigm shift in membrane technology to convert wastewater streams into valuable water and nutrient resources.
Collapse
Affiliation(s)
- Titik Istirokhatun
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan; Department of Environmental Engineering, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedarto-Tembalang, Semarang 50275, Indonesia
| | - Yuqing Lin
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Ken Kinooka
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Qin Shen
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Pengfei Zhang
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Yuandong Jia
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Atsushi Matsuoka
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Kazuo Kumagai
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Tomohisa Yoshioka
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
2
|
Soyekwo F, Wen H, Liao D, Liu C. Fouling-resistant ionic graft-polyamide nanofiltration membrane with improved permeance for lithium separation from MgCl2/LiCl mixtures. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Boubakri A, Al-Tahar Bouguecha S, Hafiane A. FO–MD integrated process for nitrate removal from contaminated groundwater using seawater as draw solution to supply clean water for rural communities. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Khan AU, Tahir K, Khan QU, Albalawi K, Jevtovic V, Almarhoon ZM, El-Zahhar AA, Al-Shehri HS, Ullah S, Khan MU. Scaled-up development of recyclable Pd@ZnO/CuO nanostructure for efficient removal of arsenic from wastewater. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Forero-Martinez NC, Cortes-Huerto R, Benedetto A, Ballone P. Thermoresponsive Ionic Liquid/Water Mixtures: From Nanostructuring to Phase Separation. Molecules 2022; 27:1647. [PMID: 35268747 PMCID: PMC8912101 DOI: 10.3390/molecules27051647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/15/2022] [Accepted: 02/28/2022] [Indexed: 12/10/2022] Open
Abstract
The thermodynamics, structures, and applications of thermoresponsive systems, consisting primarily of water solutions of organic salts, are reviewed. The focus is on organic salts of low melting temperatures, belonging to the ionic liquid (IL) family. The thermo-responsiveness is represented by a temperature driven transition between a homogeneous liquid state and a biphasic state, comprising an IL-rich phase and a solvent-rich phase, divided by a relatively sharp interface. Demixing occurs either with decreasing temperatures, developing from an upper critical solution temperature (UCST), or, less often, with increasing temperatures, arising from a lower critical solution temperature (LCST). In the former case, the enthalpy and entropy of mixing are both positive, and enthalpy prevails at low T. In the latter case, the enthalpy and entropy of mixing are both negative, and entropy drives the demixing with increasing T. Experiments and computer simulations highlight the contiguity of these phase separations with the nanoscale inhomogeneity (nanostructuring), displayed by several ILs and IL solutions. Current applications in extraction, separation, and catalysis are briefly reviewed. Moreover, future applications in forward osmosis desalination, low-enthalpy thermal storage, and water harvesting from the atmosphere are discussed in more detail.
Collapse
Affiliation(s)
- Nancy C. Forero-Martinez
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 9, 55128 Mainz, Germany;
- Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Antonio Benedetto
- School of Physics, University College Dublin, 94568 Dublin, Ireland; (A.B.); (P.B.)
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, 94568 Dublin, Ireland
- Department of Sciences, University of Roma Tre, 00146 Rome, Italy
| | - Pietro Ballone
- School of Physics, University College Dublin, 94568 Dublin, Ireland; (A.B.); (P.B.)
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, 94568 Dublin, Ireland
| |
Collapse
|
6
|
Liu Y, Yang S, Jiang H, Yang B, Fang X, Shen C, Yang J, Sand W, Li F. Sea urchin-like FeOOH functionalized electrochemical CNT filter for one-step arsenite decontamination. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124384. [PMID: 33229265 DOI: 10.1016/j.jhazmat.2020.124384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/17/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Advanced nanotechnologies for efficient arsenic decontamination remain largely underdeveloped. The most abundant inorganic arsenic species are neutrally-charged arsenate, As(III), and negatively-charged arsenite, As(V). Compared with As(V), As(III) is 60 times more toxic and more difficult to remove due to high mobility. Herein, an electrochemical filtration system was rationally designed for one-step As(III) decontamination. The key to this technology is a functional electroactive carbon nanotube (CNT) filter functionalized with sea urchin-like FeOOH. With the assistance of electric field, CNT-FeOOH anodic filter can in situ transform As(III) to less toxic As(V) while passing through. Then, as-produced As(V) could be effectively sequestrated by FeOOH. The sufficient exposed sorption sites, flow-through design, and filter's electrochemical reactivity synergistically guaranteed a rapid arsenic removal kinetic. The underlying working mechanism was unveiled based on systematic experimental investigations and theoretical calculations. The system efficacy can be adapted across a wide pH range and environmental matrixes. Exhausted CNT-FeOOH filters could be effectively regenerated by chemical washing with diluted NaOH solution. Outcomes of the present study are dedicated to provide a straightforward and effective strategy by integrating electrochemistry, nanotechnology, and membrane separation for the removal of arsenic and other similar heavy metals from water bodies.
Collapse
Affiliation(s)
- Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China.
| | - Shengnan Yang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Hualin Jiang
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Bo Yang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xiaofeng Fang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Chensi Shen
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Jianmao Yang
- Research Center for Analysis & Measurement, Donghua University, Shanghai 201620, China
| | - Wolfgang Sand
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Institute of Biosciences, Freiberg University of Mining and Technology, Freiberg 09599, Germany
| | - Fang Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
7
|
Wu F, Zhao C, Qu G, Yan Z, Zeng Y, Chen B, Hu Y, Ji W, Li Y, Tang H. Adsorption of arsenic from aqueous solution using a zero-valent iron material modified by the ionic liquid [Hmim]SbF 6. RSC Adv 2021; 11:6577-6585. [PMID: 35423198 PMCID: PMC8694885 DOI: 10.1039/d0ra09339d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/21/2021] [Indexed: 01/22/2023] Open
Abstract
The environmental and health impacts caused by arsenic (As) in wastewater make it necessary to carefully manage As wastes. In the present work, a composite of the ionic liquid [Hmim]SbF6 and nano-iron (H/Fe) was used as an adsorbent to remove As(v) from aqueous solution. To better understand the removal effect of H/Fe on As(v) in aqueous solution, the reaction parameters of pH, reaction temperature, time and H/Fe dosage were systematically analyzed in detail. The results show that H/Fe has significant removal efficiency toward As(v), and that the adsorption of As(v) by 0.5 g H/Fe reaches its maximum adsorption capacity within 2 h. The adsorption of As(v) on H/Fe is a non-linear, time-varying process. The initial adsorption reaction is fast; however, unlike at the beginning, the later reaction involves sustained slow absorption, resulting in a distinct two-phase adsorption characteristic. Redox reaction may be one of the mechanisms responsible for the slow adsorption of As(v) on H/Fe. At the same time, the As(v) removal effect of H/Fe is greatly restricted by the pH. Electrostatic adsorption, adsorption co-precipitation and redox reactions act together on H/Fe in the As(v) removal process. This study provides a basis for further clarifying the adsorption, adsorption rules and mechanism of As(v) on H/Fe and a feasible method for the improvement of As(v) removal efficiency of zero-valent iron materials.
Collapse
Affiliation(s)
- Fenghui Wu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 Yunnan People's Republic of China .,National Regional Engineering Research Center-NCW Kunming 650500 Yunnan People's Republic of China
| | - Chenyang Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 Yunnan People's Republic of China .,National Regional Engineering Research Center-NCW Kunming 650500 Yunnan People's Republic of China
| | - Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 Yunnan People's Republic of China .,National Regional Engineering Research Center-NCW Kunming 650500 Yunnan People's Republic of China
| | - Zhoupeng Yan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 Yunnan People's Republic of China .,National Regional Engineering Research Center-NCW Kunming 650500 Yunnan People's Republic of China
| | - Yingda Zeng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 Yunnan People's Republic of China .,National Regional Engineering Research Center-NCW Kunming 650500 Yunnan People's Republic of China
| | - Bangjin Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 Yunnan People's Republic of China .,National Regional Engineering Research Center-NCW Kunming 650500 Yunnan People's Republic of China
| | - Yinghui Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 Yunnan People's Republic of China .,National Regional Engineering Research Center-NCW Kunming 650500 Yunnan People's Republic of China
| | - Wei Ji
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 Yunnan People's Republic of China .,National Regional Engineering Research Center-NCW Kunming 650500 Yunnan People's Republic of China
| | - Yingli Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 Yunnan People's Republic of China .,National Regional Engineering Research Center-NCW Kunming 650500 Yunnan People's Republic of China
| | - Huimin Tang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 Yunnan People's Republic of China .,National Regional Engineering Research Center-NCW Kunming 650500 Yunnan People's Republic of China
| |
Collapse
|
8
|
Weerasundara L, Ok YS, Bundschuh J. Selective removal of arsenic in water: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115668. [PMID: 33017746 DOI: 10.1016/j.envpol.2020.115668] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 05/28/2023]
Abstract
Selective removal of arsenic (As) is the key challenge for any of As removal mechanisms as this not only increases the efficiency of removal of the main As species (neutral As(III) and As(V) hydroxyl-anions) but also allows for a significant reduction of waste as it does not co-remove other solutes. Selective removal has a number of benefits: it increases the capacity and lifetime of units while lowering the cost of the process. Therefore, a sustainable selective mitigation method should be considered concerning the economic resources available, the ability of infrastructure to sustain water treatment, and the options for reuse and/or safe disposal of treatment residuals. Several methods of selective As removal have been developed, such as precipitation, adsorption and modified iron and ligand exchange. The biggest challenge in selective removal of As is the presence of phosphate in water which is chemically comparable with As(V). There are two types of mechanisms involved with As removal: Coulombic or ion exchange; and Lewis acid-base interaction. Solution pH is one of the major controlling factors limiting removal efficiency since most of the above-mentioned methods depend on complexation through electrostatic effects. The different features of two different As species make the selective removal process more difficult, especially under natural conditions. Most of the selective As removal methods involve hydrated Fe(III) oxides through Lewis acid-base interaction. Microbiological methods have been studied recently for selective removal of As, and although there have been only a small number of studies, the method shows remarkable results and indicates positive prospects for the future.
Collapse
Affiliation(s)
- Lakshika Weerasundara
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, Queensland, 4350, Australia.
| | - Yong-Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea.
| | - Jochen Bundschuh
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, Queensland, 4350, Australia; UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, Queensland, 4350, Australia.
| |
Collapse
|
9
|
He B, Peng H, Chen Y, Zhao Q. High performance polyamide nanofiltration membranes enabled by surface modification of imidazolium ionic liquid. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118202] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Sun ZK, Zhou Y, Jiao Y, Cheng XQ, Zhang Y, Wang P, Liang H, Yang X, Drioli E, Figoli A, Ma J, Shao L. Multi-hydrophilic functional network enables porous membranes excellent anti-fouling performance for highly efficient water remediation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118191] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
11
|
Sun H, Du Y, Gao C, Iftikhar, Long J, Li S, Shao L. Pressure-assisted in-depth hydrophilic tailoring of porous membranes achieving high water permeability, excellent fouling resistance and superior antimicrobial ability. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Cai J, Cao XL, Zhao Y, Zhou FY, Cui Z, Wang Y, Sun SP. The establishment of high-performance anti-fouling nanofiltration membranes via cooperation of annular supramolecular Cucurbit[6]uril and dendritic polyamidoamine. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117863] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
13
|
Li JL, Wang CP, Xiang Z, Zhao Y, Zhang Y, Li X, Cai T. "Button and Buttonhole" Supramolecular Structure Enables the Self-Healing Behaviors of Functionalized Poly(ether sulfone) Membranes for Osmotic Power Generation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42322-42329. [PMID: 31664807 DOI: 10.1021/acsami.9b16895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Osmotic power generation has emerged as an advanced technology toward water-energy nexus to tackle global water pollution. It provides a sustainable use of salinity gradient from water resources yet encounters major obstacles caused by pressure-retarded osmosis (PRO) membrane fouling. Although membranes with good antifouling properties are widely studied, their antifouling functions are readily lost when scratches or detachments occur through physical damage during operation and chemical degradation by water and corrosive foulants. Consequently, it is important to develop antifouling membranes with autonomous self-healing capabilities. Herein, self-healable functionalized poly(ether sulfone) (PES) antifouling membranes have been fabricated via the sequential conjugation of the zwitterionic random copolymer [poly(1-(1-(1-adamantylcarbonyloxy)methyl)-3-vinylimidazolium bromide-co-1-(3-sulfopropyl)-3-vinylimidazolium-co-vinylamine)] (P(ADVI-co-SBVI-co-VA), abbreviated as PASV copolymer) and linear cyclodextrin polymer (LPCD) on polydopamine-preactivated PES supports. The self-healing behaviors rely on the judiciously designed "button-and-buttonhole" supramolecular network. Specifically, β-cyclodextrins in LPCD and adamantines in PASV act as "buttonholes" and "buttons", respectively. Under physical and chemical damages, the β-cyclodextrin "buttonhole" may sacrificially detach from the adamantine "button" of PASV but then recap another adamantine to restore the protective function. The antifouling and self-healing traits of as-functionalized PES-g-PASV-LPCD membranes were demonstrated by the superior antiprotein behaviors and improved antimicrobial performances on both nonaged and aged samples. In the PRO process, the modified membranes were effective in mitigating organic fouling and exhibited higher power density (79% of the initial value) than the nonmodified ones (47% of the initial value) in municipal wastewater testing. The strategy for engineering inherently healable and antifouling membranes paves a new pathway for the development of sustainable membranes for osmotic power production.
Collapse
Affiliation(s)
- Jia Le Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science , Wuhan University , Wuhan , Hubei 430072 , P. R. China
- Wuhan University Shenzhen Research Institute , Shenzhen , Guangdong 518057 , P. R. China
| | - Chun Ping Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science , Wuhan University , Wuhan , Hubei 430072 , P. R. China
| | - Zheng Xiang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science , Wuhan University , Wuhan , Hubei 430072 , P. R. China
- Wuhan University Shenzhen Research Institute , Shenzhen , Guangdong 518057 , P. R. China
| | - Yujie Zhao
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science , Wuhan University , Wuhan , Hubei 430072 , P. R. China
| | - Yu Zhang
- Department of Chemical & Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4, Kent Ridge , 117585 , Singapore
| | - Xue Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science , Wuhan University , Wuhan , Hubei 430072 , P. R. China
- Wuhan University Shenzhen Research Institute , Shenzhen , Guangdong 518057 , P. R. China
| | - Tao Cai
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science , Wuhan University , Wuhan , Hubei 430072 , P. R. China
- Wuhan University Shenzhen Research Institute , Shenzhen , Guangdong 518057 , P. R. China
| |
Collapse
|
14
|
Dong X, Ge Q. Metal Ion-Bridged Forward Osmosis Membranes for Efficient Pharmaceutical Wastewater Reclamation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37163-37171. [PMID: 31545586 DOI: 10.1021/acsami.9b14162] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Membrane performance in separation relies largely on the membrane properties. In this study, metal ions of Cu2+, Co2+, and Fe3+ are used individually as a bridge to develop forward osmosis (FO) membranes via a clean complexation reaction. A metal ion-bridged hydration layer is formed and endows the membrane with a more hydrophilic and smoother surface, higher fouling resistance, and renewability. These improvements make the newly developed membranes superior to the pristine one with better FO performances. The Fe3+-bridged membrane produces water fluxes increased up to 133% (FO mode) and 101% (PRO mode) compared with the pristine membrane against DI water with 0.5-2.0 M MgCl2 as the draw solution. The Fe3+-bridged membrane can efficiently reclaim pharmaceuticals such as trimethoprim and sulfamethoxazole from their dilute solutions with good water permeability and a high pharmaceutical retention. This membrane also exhibits a stronger renewability with water flux restored to 98% of its original value after 20 h experiments in trimethoprim-containing water treatment. This study provides a facile and clean approach to develop highly efficient FO membranes for wastewater reclamation and pharmaceutical enrichment.
Collapse
|
15
|
Chen Y, Ge Q. A Bifunctional Zwitterion That Serves as Both a Membrane Modifier and a Draw Solute for Forward Osmosis Wastewater Treatment. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36118-36129. [PMID: 31498984 DOI: 10.1021/acsami.9b13142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Producing clean water and simultaneously recovering valuable compounds are a big challenge in wastewater treatment. Here we designed a bifunctional zwitterion of (1-(3-aminopropyl)imidazole) propanesulfonate (APIS) for membrane modification and being a draw solute as well for water production and protein enrichment via forward osmosis (FO). Immobilized to the membrane surface by a fast amidation reaction, APIS endows the membrane with favorable properties benefiting the FO process. The APIS-modified sulfonated poly(ether sulfone) (APIS-sPES) membrane produces a water flux 101% higher than that of the nascent membrane (from 9.3 to 18.7 LMH) with 0.5 M NaCl as the draw solution. The APIS-sPES membrane also exhibits higher fouling resistance with a much smaller decline in water permeation and stronger renewability with the flux restored to 88% of the original value compared to a 59% recovery rate of the nascent membrane after 20-h experiments against a 200 ppm ovalbumin solution. APIS produces a fair good water flux coupled with negligible reverse diffusion when used as a draw solute and can be readily regenerated via pH regulation. Unlike the conventional NaCl draw solute, APIS does not contaminate or damage protein structure. The APIS-sPES membrane and APIS draw solute prove a perfect match in protein-containing wastewater treatment and protein enrichment.
Collapse
Affiliation(s)
- Yichen Chen
- College of Environment and Resources , Fuzhou University , Fujian 350116 , China
| | - Qingchun Ge
- College of Environment and Resources , Fuzhou University , Fujian 350116 , China
| |
Collapse
|
16
|
Li P, Ge Q. Membrane Surface Engineering with Bifunctional Zwitterions for Efficient Oil-Water Separation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31328-31337. [PMID: 31381295 DOI: 10.1021/acsami.9b09773] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chemical modification provides a solution to the membrane fouling problem in oily water purification. However, complicated synthesis processes and harsh reaction conditions are frequently encountered with this approach. Here we developed two bifunctional zwitterionic materials, i.e., n-aminoethyl piperazine propanesulfonate (P-SO3-NH2) and 1,4-bis (3-aminopropyl) piperazine propanesulfonate (P-2SO3-2NH2), by a clean method and grafted them onto membrane surface via a fast single-step reaction. These materials endow the resultant membrane a more hydrophilic and smoother surface, significantly improving the water permeability, fouling resistance and recyclability of membrane in forward osmosis oily water reclamation. The water fluxes produced by the P-2SO3-2NH2 modified membrane are 47% (from 20.0 to 29.3 LMH) and 60% (from 16.0 to 25.6 LMH) higher than those of the unmodified membrane when DI water and an oily emulsion (1500 ppm) as the respective feeds. A higher water flux recovery is also achieved for the P-2SO3-2NH2 modified membrane (94%) than that of the nascent membrane (82%) after a 12-h experiment. These promising findings coupled with a facile and efficient membrane modification approach provide inspiration for both membrane exploration and oily water treatment.
Collapse
Affiliation(s)
- Ping Li
- College of Environment and Resources , Fuzhou University , Fujian 350116 , P. R. China
| | - Qingchun Ge
- College of Environment and Resources , Fuzhou University , Fujian 350116 , P. R. China
| |
Collapse
|