1
|
Rani B, Yadav JK, Saini P, Pandey AP, Dixit A. Aluminum-air batteries: current advances and promises with future directions. RSC Adv 2024; 14:17628-17663. [PMID: 38832240 PMCID: PMC11145468 DOI: 10.1039/d4ra02219j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024] Open
Abstract
Owing to their attractive energy density of about 8.1 kW h kg-1 and specific capacity of about 2.9 A h g-1, aluminum-air (Al-air) batteries have become the focus of research. Al-air batteries offer significant advantages in terms of high energy and power density, which can be applied in electric vehicles; however, there are limitations in their design and aluminum corrosion is a main bottleneck. Herein, we aim to provide a detailed overview of Al-air batteries and their reaction mechanism and electrochemical characteristics. This review emphasizes each component/sub-component including the anode, electrolyte, and air cathode together with strategies to modify the electrolyte, air-cathode, and even anode for enhanced performance. The latest advancements focusing on the specific design of Al-air batteries and their rechargeability characteristics are discussed. Finally, the constraints and prospects of their use in mobility applications are also covered in depth. Thus, the present review may pave the way for researchers and developers working in energy storage solutions to look beyond lithium/sodium ion-based storage solutions.
Collapse
Affiliation(s)
- Bharti Rani
- Advanced Material and Devices Laboratory (A-MAD), Department of Physics, Indian Institute of Technology Jodhpur Rajasthan 342030 India
| | - Jitendra Kumar Yadav
- Advanced Material and Devices Laboratory (A-MAD), Department of Physics, Indian Institute of Technology Jodhpur Rajasthan 342030 India
| | - Priyanka Saini
- Advanced Material and Devices Laboratory (A-MAD), Department of Physics, Indian Institute of Technology Jodhpur Rajasthan 342030 India
| | - Anant Prakash Pandey
- Advanced Material and Devices Laboratory (A-MAD), Department of Physics, Indian Institute of Technology Jodhpur Rajasthan 342030 India
| | - Ambesh Dixit
- Advanced Material and Devices Laboratory (A-MAD), Department of Physics, Indian Institute of Technology Jodhpur Rajasthan 342030 India
| |
Collapse
|
2
|
Nayem SMA, Islam S, Mohamed M, Shaheen Shah S, Ahammad AJS, Aziz MA. A Mechanistic Overview of the Current Status and Future Challenges of Aluminum Anode and Electrolyte in Aluminum-Air Batteries. CHEM REC 2024; 24:e202300005. [PMID: 36807755 DOI: 10.1002/tcr.202300005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/06/2023] [Indexed: 02/20/2023]
Abstract
Aluminum-air batteries (AABs) are regarded as attractive candidates for usage as an electric vehicle power source due to their high theoretical energy density (8100 Wh kg-1 ), which is considerably higher than that of lithium-ion batteries. However, AABs have several issues with commercial applications. In this review, we outline the difficulties and most recent developments in AABs technology, including electrolytes and aluminum anodes, as well as their mechanistic understanding. First, the impact of the Al anode and alloying on battery performance is discussed. Then we focus on the impact of electrolytes on battery performances. The possibility of enhancing electrochemical performances by adding inhibitors to electrolytes is also investigated. Additionally, the use of aqueous and non-aqueous electrolytes in AABs is also discussed. Finally, the challenges and potential future research areas for the advancement of AABs are suggested.
Collapse
Affiliation(s)
- S M Abu Nayem
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Santa Islam
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Mostafa Mohamed
- Physics Department, King Fahd University of Petroleum & Minerals, KFUPM, Box 5047, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM, Box 5040, Dhahran, 31261, Saudi Arabia
- K.A.CARE Energy Research & Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
3
|
Islam S, Nayem SMA, Anjum A, Shaheen Shah S, Ahammad AJS, Aziz MA. A Mechanistic Overview of the Current Status and Future Challenges in Air Cathode for Aluminum Air Batteries. CHEM REC 2024; 24:e202300017. [PMID: 37010435 DOI: 10.1002/tcr.202300017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/16/2023] [Indexed: 04/04/2023]
Abstract
Aluminum air batteries (AABs) are a desirable option for portable electronic devices and electric vehicles (EVs) due to their high theoretical energy density (8100 Wh K-1 ), low cost, and high safety compared to state-of-the-art lithium-ion batteries (LIBs). However, numerous unresolved technological and scientific issues are preventing AABs from expanding further. One of the key issues is the catalytic reaction kinetics of the air cathode as the fuel (oxygen) for AAB is reduced there. Additionally, the performance and price of an AAB are directly influenced by an air electrode integrated with an oxygen electrocatalyst, which is thought to be the most crucial element. In this study, we covered the oxygen chemistry of the air cathode as well as a brief discussion of the mechanistic insights of active catalysts and how they catalyze and enhance oxygen chemistry reactions. There is also extensive discussion of research into electrocatalytic materials that outperform Pt/C such as nonprecious metal catalysts, metal oxide, perovskites, metal-organic framework, carbonaceous materials, and their composites. Finally, we provide an overview of the present state, and possible future direction for air cathodes in AABs.
Collapse
Affiliation(s)
- Santa Islam
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - S M Abu Nayem
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Ahtisham Anjum
- Physics Department, King Fahd University of Petroleum & Minerals, KFUPM, Box 5047, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
- K.A.CARE Energy Research & Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
4
|
Liu X, Liu X, Li C, Yang B, Wang L. Defect engineering of electrocatalysts for metal-based battery. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Xie L, Liu Q, Sun S, Hu L, Zhang L, Zhao D, Liu Q, Chen J, Li J, Ouyang L, Alshehri AA, Hamdy MS, Kong Q, Sun X. High-Efficiency Electrosynthesis of Ammonia with Selective Reduction of Nitrate in Neutral Media Enabled by Self-Supported Mn 2CoO 4 Nanoarray. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33242-33247. [PMID: 35834395 DOI: 10.1021/acsami.2c07818] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ambient ammonia synthesis by electroreduction of nitrate (NO3-) provides us a sustainable and environmentally friendly alternative to the traditional Haber-Bosch process. In this work, Mn2CoO4 nanoarray grown on carbon cloth (Mn2CoO4/CC) serves as a superior electrocatalyst for efficient NH3 synthesis by selective reduction of NO3-. When operated in 0.1 M PBS with 0.1 M NaNO3, Mn2CoO4/CC reaches a high Faraday efficiency of 98.6% and a large NH3 yield up to 11.19 mg/h/cm2. Moreover, it exhibits excellent electrocatalytic stability. Theory calculations show that the Mn2CoO4 surface has strong interaction with NO3-, which can effectively inhibit the occurrence of hydrogen evolution, beneficial for NO3--to-NH3 conversion.
Collapse
Affiliation(s)
- Lisi Xie
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, China
| | - Shengjun Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Long Hu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Longcheng Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Donglin Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Qin Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Jie Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Jun Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Ling Ouyang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Abdulmohsen Ali Alshehri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mohamed S Hamdy
- Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Qingquan Kong
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| |
Collapse
|
6
|
Chemical coupling of manganese–cobalt oxide and oxidized multi-walled carbon nanotubes for enhanced lithium storage. J Colloid Interface Sci 2022; 618:322-332. [DOI: 10.1016/j.jcis.2022.03.094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023]
|
7
|
Chatterjee A, Or SW. Metal–organic framework-derived MnO/CoMn2O4@N–C nanorods with nanoparticle interstitial decoration in core@shell structure as improved bifunctional electrocatalytic cathodes for Li–O2 batteries. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135809] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|