1
|
Liu X, Xi R, Hu Y, Wang Y, Abdukayum A. A multi-functional nano-platform based on LiGa 4.99O 8:Cr 0.01/IrO 2 with near infrared-persistent luminescence, "afterglow" photodynamic and photo-thermal functions. Dalton Trans 2024; 53:6601-6608. [PMID: 38512315 DOI: 10.1039/d4dt00240g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Multi-functionalised nano-platforms based on persistent-luminescence nanoparticles (PLNPs) have attracted considerable attention for biomedical applications owing to their lack of background noise and suitability for in vivo imaging without the need for in situ excitation. However, nano-platforms based on PLNPs for continuous photodynamic therapy (PDT) are currently lacking. Herein, we report a nano-platform (LiGa4.99O8:Cr0.01/IrO2, LGO:Cr/IrO2) prepared using PLNPs (LiGa4.99O8:Cr0.01, LGO:Cr) covalently bonded with iridium oxide nanoparticles (IrO2 NPs), producing near-infrared (NIR) persistent luminescence, "afterglow" PDT and photo-thermal therapy (PTT) effects. The LGO:Cr/IrO2 not only exhibits NIR-persistent luminescence at 719 nm and a PTT effect under 808 nm irradiation but also a continuous "afterglow" PDT effect without the need for in situ excitation owing to persistent energy transfer from LGO:Cr to the IrO2 NPs, in turn generating reactive oxygen species (ROS). This multi-functional nano-platform is expected to further promote the application of PLNPs in tumour treatment.
Collapse
Affiliation(s)
- Xiangyu Liu
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China.
| | - Rujie Xi
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China.
| | - Yanfang Hu
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China.
| | - Yong Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Abdukader Abdukayum
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China.
| |
Collapse
|
2
|
Mushtaq U, Ayoub I, Kumar V, Sharma V, Swart HC, Chamanehpour E, Rubahn HG, Mishra YK. Persistent luminescent nanophosphors for applications in cancer theranostics, biomedical, imaging and security. Mater Today Bio 2023; 23:100860. [PMID: 38179230 PMCID: PMC10765243 DOI: 10.1016/j.mtbio.2023.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 01/06/2024] Open
Abstract
The extraordinary and unique properties of persistent luminescent (PerLum) nanostructures like storage of charge carriers, extended afterglow, and some other fascinating characteristics like no need for in-situ excitation, and rechargeable luminescence make such materials a primary candidate in the fields of bio-imaging and therapeutics. Apart from this, due to their extraordinary properties they have also found their place in the fields of anti-counterfeiting, latent fingerprinting (LPF), luminescent markings, photocatalysis, solid-state lighting devices, glow-in-dark toys, etc. Over the past few years, persistent luminescent nanoparticles (PLNPs) have been extensively used for targeted drug delivery, bio-imaging guided photodynamic and photo-thermal therapy, biosensing for cancer detection and subsequent treatment, latent fingerprinting, and anti-counterfeiting owing to their enhanced charge storage ability, in-vitro excitation, increased duration of time between excitation and emission, low tissue absorption, high signal-to-noise ratio, etc. In this review, we have focused on most of the key aspects related to PLNPs, including the different mechanisms leading to such phenomena, key fabrication techniques, properties of hosts and different activators, emission, and excitation characteristics, and important properties of trap states. This review article focuses on recent advances in cancer theranostics with the help of PLNPs. Recent advances in using PLNPs for anti-counterfeiting and latent fingerprinting are also discussed in this review.
Collapse
Affiliation(s)
- Umer Mushtaq
- Department of Physics, National Institute of Technology Srinagar, Jammu and Kashmir, 190006, India
- Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA9300, South Africa
| | - Irfan Ayoub
- Department of Physics, National Institute of Technology Srinagar, Jammu and Kashmir, 190006, India
- Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA9300, South Africa
| | - Vijay Kumar
- Department of Physics, National Institute of Technology Srinagar, Jammu and Kashmir, 190006, India
- Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA9300, South Africa
| | - Vishal Sharma
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh, 160014, India
| | - Hendrik C. Swart
- Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA9300, South Africa
| | - Elham Chamanehpour
- NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, Sønderborg, 6400, Denmark
| | - Horst-Günter Rubahn
- NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, Sønderborg, 6400, Denmark
| | - Yogendra Kumar Mishra
- NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, Sønderborg, 6400, Denmark
| |
Collapse
|
3
|
Wang X, Song B, Wang Z, Qin L, Liang W. The innovative design of a delivery and real-time tracer system for anti-encephalitis drugs that can penetrate the blood-brain barrier. J Control Release 2023; 363:136-148. [PMID: 37742845 DOI: 10.1016/j.jconrel.2023.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/09/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
As a "wall" between blood flow and brain cells, the blood-brain barrier (BBB) makes it really difficult for drugs to cross this barrier and work. This is particularly the case for pharmaceuticals of acute encephalitis therapies, largely excluded from the brain following systemic administration. Herein we report an advanced drug delivery system that can cross the BBB and target acute inflammation based on the controlled release of macrophage-camouflaged glow nanoparticles via a Trojan horse strategy. Benefiting from afterglow imaging that eliminates background interference and RAW 264.7 cells (RAW) with special immune homing and long-term tracking capabilities, polydopamine (PDA)-modified afterglow nanoparticles (ANPs) as near-infrared photo-responsive drug carriers in a controlled delivery system camouflaged by macrophages can penetrate the BBB by crossing the intercellular space and trigger the anti-inflammatory drug by photothermal conversion in the brain parenchyma dexamethasone (Dex) release, exhibiting good acute inflammation recognition and healing ability. APD@RAW was monitored to cross the BBB and image deep brain inflamed areas in a model of acute brain inflammation. Meanwhile, the delivered Dex mitigated the brain damage caused by inflammatory cytokines secretion (IL-6, TNF-α, and IL-1β). Overall, this drug delivery system holds excellent potential for BBB penetrating and acute encephalitis therapies.
Collapse
Affiliation(s)
- Xiu Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Baoqin Song
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Zixuan Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Lijing Qin
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Wanjun Liang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China.
| |
Collapse
|
4
|
Ou A, Wang Y, Zhang J, Huang Y. Living Cells and Cell-Derived Vesicles: A Trojan Horse Technique for Brain Delivery. Pharmaceutics 2023; 15:pharmaceutics15041257. [PMID: 37111742 PMCID: PMC10145830 DOI: 10.3390/pharmaceutics15041257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Brain diseases remain a significant global healthcare burden. Conventional pharmacological therapy for brain diseases encounters huge challenges because of the blood-brain barrier (BBB) limiting the delivery of therapeutics into the brain parenchyma. To address this issue, researchers have explored various types of drug delivery systems. Cells and cell derivatives have attracted increasing interest as "Trojan horse" delivery systems for brain diseases, owing to their superior biocompatibility, low immunogenicity, and BBB penetration properties. This review provided an overview of recent advancements in cell- and cell-derivative-based delivery systems for the diagnosis and treatment of brain diseases. Additionally, it discussed the challenges and potential solutions for clinical translation.
Collapse
Affiliation(s)
- Ante Ou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuewei Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
5
|
Yang S, Dai W, Zheng W, Wang J. Non-UV-activated persistent luminescence phosphors for sustained bioimaging and phototherapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Liu Y, Wang Z, Miao K, Zhang X, Li W, Zhao P, Sun P, Zheng T, Zhang X, Chen C. Research progress on near-infrared long persistent phosphor materials in biomedical applications. NANOSCALE ADVANCES 2022; 4:4972-4996. [PMID: 36504755 PMCID: PMC9680941 DOI: 10.1039/d2na00426g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/22/2022] [Indexed: 06/17/2023]
Abstract
After excitation is stopped, long persistent phosphor materials (LPPs) can emit light for a long time. The most important feature is that it allows the separation of excitation and emission in time. Therefore, it plays a vital role in various fields such as data storage, information technology, and biomedicine. Owing to the unique mechanism of storage and luminescence, LPPs can avoid the interference of sample autofluorescence, as well as show strong tissue penetration ability, good afterglow performance, and rich spectral information in the near-infrared (NIR) region, which provides a broad prospect for the application of NIR LPPs in the field of biomedicine. In recent years, the development and applications in biomedical fields have been advanced significantly, such as biological imaging, sensing detection, and surgical guidance. In this review, we focus on the synthesis methods and luminescence mechanisms of different types of NIR LPPs, as well as their applications in bioimaging, biosensing detection, and cancer treatment in the field of biomedicine. Finally, future prospects and challenges of NIR LPPs in biomedical applications are also discussed.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Zengxue Wang
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Kun Miao
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Xundi Zhang
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Wei Li
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Pan Zhao
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Peng Sun
- Innovative of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Tingting Zheng
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Xiuyun Zhang
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Chen Chen
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| |
Collapse
|
7
|
Jiang H, Wang R, Zhang Q, Song L, Sun X, Shi J, Zhang Y. A dual-functional nanoplatform based on NIR and green dual-emissive persistent luminescence nanoparticles for X-ray excited persistent luminescence imaging and photodynamic therapy. NANOSCALE 2022; 14:15451-15461. [PMID: 36226462 DOI: 10.1039/d2nr03631b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Persistent luminescence nanoparticles (PLNPs) possess advantages for high-sensitivity bioimaging and continuous photodynamic therapy (PDT) because they can emit persistent luminescence (PerL) after excitation ceases. However, PLNPs are limited to single-wavelength emission, which can only efficiently realize one of the functions of bioimaging or PDT. In addition, most PLNPs are excited by shallow tissue penetrating excitation light, which makes it difficult to achieve repeatable in vivo applications with high efficiency. Herein, X-ray-excited PLNPs (Zn3Ga2Ge2O10:Cr3+,Mn2+, ZGGCM) with dual emission for in vivo X-rays repeatedly activated PerL imaging and tumor PDT are reported for the first time. ZGGCM exhibits dual-emission peaks after X-ray excitation/re-excitation, located at 698 nm and 532 nm, respectively. Additionally, ZGGCM is modified with the photosensitizer rose bengal (RB) to construct a dual-functional nanoplatform based on PerL imaging and PDT. The results indicate that the PerL emission peak (698 nm) of Cr3+ ions in ZGGCM possesses excellent near-infrared (NIR) PerL imaging performance, and the green PerL emission peak (532 nm) of Mn2+ ions can activate RB effectively and generate reactive oxygen species (ROS), thereby causing a significant antitumor effect. This unique dual-functional nanoplatform is expected to further promote the application of PLNPs in the integration of efficient tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Huimin Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - Ruoping Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - Liang Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - Xia Sun
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, P.R. China
| | - Junpeng Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Deng H, Li Xu, Ju J, Mo X, Ge G, Zhu X. Multifunctional nanoprobes for macrophage imaging. Biomaterials 2022; 290:121824. [PMID: 36209580 DOI: 10.1016/j.biomaterials.2022.121824] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/28/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022]
|
9
|
Yu B, Wang YJ, Lin YY, Feng Y, Wu J, Liu WS, Wang M, Gao XP. HKUST-1 nano metal-organic frameworks combined with ZnGa 2O 4:Cr 3+ near-infrared persistent luminescence nanoparticles for in vivo imaging and tumor chemodynamic and photothermal synergic therapy. NANOSCALE 2022; 14:8978-8985. [PMID: 35687017 DOI: 10.1039/d1nr07927a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The multifunctional theranostic nanoplatform based on the combination of persistent luminescent nanoparticles (PLNPs) and metal-organic frameworks (MOFs) has both in vivo imaging and tumor therapeutic drug-loading functions, providing a new strategy for accurate and effective tumor diagnosis and treatment. Herein, the near-infrared (NIR) PLNP SiO2@Zn1.05Ga1.9O4:Cr was combined with HKUST-1 MOFs to form a core-shell structure theranostic nanoplatform which possessed the triple function of autofluorescence-free NIR PersL bioimaging, tumor chemodynamic therapy (CDT), and tumor photothermal therapy (PTT). Also, the photothermal conversion efficiency reached 58.7%, which is superior to the reported nano metal-organic framework (NMOF) photothermal reagents. We demonstrated that the nanoplatform could enter the tumors of mice within 0.5 h and could be target-activated by H2O2 and H2S in the tumor cells, resulting in effective PTT and CDT synergistic treatment. Tumor-bearing mice experiments showed that the tumor could be completely cured without harming normal tissue. This theranostic nanoplatform may provide a promising strategy showing imaging, PTT, and CDT synergistic treatment tri-mode for clinical cancer therapy.
Collapse
Affiliation(s)
- Bin Yu
- The Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China.
| | - Yun-Jian Wang
- The Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China.
| | - Yuan-Ying Lin
- The Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China.
| | - Yan Feng
- The Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China.
| | - Juan Wu
- The Key Laboratory of Rare Earth Functional Materials and Applications, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, P.R. China
| | - Wei-Sheng Liu
- The Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China.
| | - Min Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou730000, P.R. China.
| | - Xiu-Ping Gao
- School of Physical Science and Technology. Lanzhou University, Lanzhou 730000, P.R. China.
| |
Collapse
|
10
|
Gong JH, Chen LJ, Zhao X, Yan XP. Persistent Production of Reactive Oxygen Species with Zn 2GeO 4:Cu Nanorod-Loaded Microneedles for Methicillin-Resistant Staphylococcus Aureus Infectious Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17142-17152. [PMID: 35404061 DOI: 10.1021/acsami.2c02503] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Skin wound infection caused by methicillin-resistant Staphylococcus aureus (MRSA) is an urgent concern. Photodynamic therapy has emerged as a promising means of combating bacterial infection. However, continuous or repeated in situ light excitation is required for photosensitizers to produce reactive oxygen species (ROS), and most photosensitizers need sufficient oxygen to produce singlet oxygen (1O2), which greatly limits their clinical application. In this work, we report the preparation of Zn2GeO4:Cu2+ (ZGC) persistent luminescence nanorods with excellent ability for persistent ROS production after stopping excitation for MRSA infectious wound healing. The prepared ZGC nanorods were loaded into dissolvable microneedles (MNs) (ZGC@MNs) to penetrate biofilms and treat MRSA-infected wounds in a minimally invasive manner. ZGC showed a long-persistent photocatalytic effect to constantly produce multiple ROS (1O2, hydroxyl radical, and superoxide radical) accompanied by persistent luminescence after a pre-illumination. The MN tips of ZGC@MNs were rapidly dissolved to release ZGC for the continuous production of multiple ROS for at least 48 h with no need for in situ excitation and no special requirement on the amount of oxygen for eliminating MRSA biofilms. The developed ZGC@MN patches exhibited excellent antibacterial activity and biocompatibility for effectively reducing inflammation and promoting wound healing in vivo.
Collapse
Affiliation(s)
- Jia-Hua Gong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li-Jian Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xu Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Wang X, Wang Y, Chen S, Fu P, Lin Y, Ye S, Long Y, Gao G, Zheng J. A persistent luminescence resonance energy transfer-based molecular beacon probe for the highly sensitive detection of microRNA in biological samples. Biosens Bioelectron 2022; 198:113849. [PMID: 34861528 DOI: 10.1016/j.bios.2021.113849] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/12/2021] [Accepted: 11/25/2021] [Indexed: 12/30/2022]
Abstract
Herein, a time-resolved luminescence resonance energy transfer (TR-LRET) molecular beacon (MB) probe employing persistent luminescence nanoparticles (PLNPs) as the energy donors was first constructed, and further designed for microRNA21 (miR21) sensing. This probe (named as PLNPs-MB) was facilely fabricated by covalent bioconjugation between poly-(acrylic acid) (PAA) modified near-infrared (NIR) emissive PLNPs i.e. ZnGa2O4:Cr3+ and functionalized MB oligonucleotide (5'-NH2 and 3'-BHQ3). Accordingly, PLNPs and BHQ3 were in close proximity to each other, leading to the occurrence of LRET and obvious persistent luminescence (PL) quenching. In the presence of miR21, loop of the PLNP-MB was hybridized, accompanying BHQ3 away from PLNPs and the restraint of LRET process. As a result, PL of the PLNPs was recovered, which built the foundation of miR21 quantification. The probe provided a linear response range from 0.1 to 10 nM for miR21 detection. Quantification limit of this probe was competitive and about 1-2 orders of magnitude lower than that of other reported MB probes for nucleic acid. Moreover, the proposed probe was successfully adopted for miR21 detection in biological fluids (human serum, cell extraction). This work also provided a sensitive detection nanoplatform for other targets through modifying diverse MBs onto the surface of PLNPs.
Collapse
Affiliation(s)
- Xiuhua Wang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, PR China; Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, 315300, PR China
| | - Yuhui Wang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, 315300, PR China.
| | - Shu Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, PR China
| | - Pan Fu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, 315300, PR China
| | - Yuanbin Lin
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, 315300, PR China
| | - Shuyuan Ye
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, PR China
| | - Yunfei Long
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, PR China.
| | - Guosheng Gao
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, PR China
| | - Jianping Zheng
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, 315300, PR China.
| |
Collapse
|
12
|
Wang J, Li Q, Zhao H, Yue W, Zhang K, Jiang X, Li K. Facile and Controllable Synthesis of the Renal-Clearable "Luminous Pearls" for in Vivo Afterglow/Magnetic Resonance Imaging. ACS NANO 2022; 16:462-472. [PMID: 34919374 DOI: 10.1021/acsnano.1c07243] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To date, the strategic exploration of a synthetic approach to afford persistent luminescent nanoparticles (PLNPs) integrated with precisely controlled size/monodispersity and renal-clearable capability remains extremely challenging. Herein, we report a facile synthetic process with an elucidated mechanism to fine-tune the size for acquiring renal-clearable PLNPs, using mesoporous silica nanoparticles (MSNs) as a template. This strategy relies on the controlled crystallization of the precursor ions in the pore channels of MSNs at a high temperature, leading to the formation of monodispersed PLNPs with an average diameter as small as 2.5 nm after complete removal of MSN templates. The as-prepared ultrasmall PLNPs coated with polyethylene glycol exhibit uniform size, excellent water-dispersibility, good persistent luminescence, and high T1 relaxivity (17.6 mM-1·S-1), ensuring their suitability for afterglow/magnetic resonance dual-modality imaging and subsequent in vivo renal clearance. Thus, our study provides a strategy to inspire the controlled synthesis of diverse PLNPs by using MSN templates, simultaneously addressing the critical issues of precise adjustment of size and body clearance for versatile biomedical applications.
Collapse
Affiliation(s)
- Jun Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qizhen Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hui Zhao
- Department of MRI Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Wentong Yue
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kaiwen Zhang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kai Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
13
|
Wang X, Yuan W, Xu M, Su X, Li F. Visualization of Acute Inflammation through a Macrophage-Camouflaged Afterglow Nanocomplex. ACS APPLIED MATERIALS & INTERFACES 2022; 14:259-267. [PMID: 34957836 DOI: 10.1021/acsami.1c19388] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Acute inflammation is a basic innate, immediate, and stereotyped immune response to injury, which is characterized by rapid recruitment of immune cells to the vasculature and extravasation into the damaged parenchyma. Visualization of acute inflammation plays an important role in monitoring the disease course and understanding pathogenesis, which lacks specific targeted and observing tools in vivo. Here, we report a Trojan horse strategy of a macrophage-camouflaged afterglow nanocomplex (UCANPs@RAW) to specifically visualize acute inflammation. Due to the advantages of optical antibackground interference elimination, as well as particular immune homing and long-term tracking capacity, UCANPs@RAW demonstrates an excellent acute inflammatory recognition ability. In an arthritis model, previously intravenously injected UCANPs@RAW could directionally migrate from the liver to the inflammation site as soon as 3 h after the model was induced, which could be continuously lighted for at least 36 h with the highest imaging signal-to-background ratio (SBR) as 382 at the time point of 9 h. Additionally, UCANPs@RAW is observed to penetrate the blood-brain barrier and image the deep brain inflamed region covered by the thick skull in an acute brain inflammation model with an SBRmax of 258, which is based on the strong recruiting ability of macrophages to immune response. In view of this smart nanocomplex, our strategy holds great potential for inflammatory detection and treatments.
Collapse
Affiliation(s)
- Xiu Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Wei Yuan
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Ming Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Xianlong Su
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Fuyou Li
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| |
Collapse
|
14
|
Responsive nanoplatform for persistent luminescence "turn-on" imaging and "on-demand" synergistic therapy of bacterial infection. J Colloid Interface Sci 2021; 610:687-697. [PMID: 34863538 DOI: 10.1016/j.jcis.2021.11.125] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/21/2021] [Indexed: 11/22/2022]
Abstract
Multifunctional nanotheranostic platforms are emerging for the treatment of bacterial infections. Uncontrollable drug release and poor response in target location leads to inefficient therapy and failure to offer timely antibacterial monitoring. Here, we report a multifunctional nanoplatform that can be triggered by the bacterial microenvironment for effective bacterial killing and high-sensitive persistent luminescence (PL) "turn-on" imaging. Hyaluronic acid (HA) is grafted on the surface of mesoporous silica-coated persistent luminescence nanoparticles (PLNPs@MSN) loaded with cinnamaldehyde (CA). Further in situ growth of MnO2 shells gives PLNPs@MSN@CA-HA-MnO2 (PMC-HA-MnO2). MnO2 shell of PMC-HA-MnO2 can be reduced to Mn2+ by the H2O2 in the bacterial microenvironment to trigger persistent luminescence (PL) "turn-on" imaging along with chemodynamic therapy (CDT). Meanwhile, HA can response to bacterially secreted hyaluronidase to make the packaged CA release controllable and "on-demand". Consequently, PMC-HA-MnO2 enables effective response to bacterial-infected region, ensuring high-sensitive "turn-on" imaging, synergistic CDT, accurate targeting and "on-demand" CA release to give great antibacterial effect. This nanoplatform has great potential for the diagnosis and treatment of multidrug-resistant bacterial infection with high specificity and efficiency.
Collapse
|
15
|
Zhang X, Lei T, Du H. Prospect of cell penetrating peptides in stem cell tracking. Stem Cell Res Ther 2021; 12:457. [PMID: 34391472 PMCID: PMC8364034 DOI: 10.1186/s13287-021-02522-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/12/2021] [Indexed: 01/19/2023] Open
Abstract
Stem cell therapy has shown great efficacy in many diseases. However, the treatment mechanism is still unclear, which is a big obstacle for promoting clinical research. Therefore, it is particularly important to track transplanted stem cells in vivo, find out the distribution and condition of the stem cells, and furthermore reveal the treatment mechanism. Many tracking methods have been developed, including magnetic resonance imaging (MRI), fluorescence imaging, and ultrasound imaging (UI). Among them, MRI and UI techniques have been used in clinical. In stem cell tracking, a major drawback of these technologies is that the imaging signal is not strong enough, mainly due to the low cell penetration efficiency of imaging particles. Cell penetrating peptides (CPPs) have been widely used for cargo delivery due to its high efficacy, good safety properties, and wide delivery of various cargoes. However, there are few reports on the application of CPPs in current stem cell tracking methods. In this review, we systematically introduced the mechanism of CPPs into cell membranes and their advantages in stem cell tracking, discussed the clinical applications and limitations of CPPs, and finally we summarized several commonly used CPPs and their specific applications in stem cell tracking. Although it is not an innovation of tracer materials, CPPs as a powerful tool have broad prospects in stem cell tracking. ![]()
Collapse
Affiliation(s)
- Xiaoshuang Zhang
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tong Lei
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongwu Du
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China. .,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
16
|
Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021; 121:9243-9358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research related to the development and application of luminescent nanoparticles (LNPs) for chemical and biological analysis and imaging is flourishing. Novel materials and new applications continue to be reported after two decades of research. This review provides a comprehensive and heuristic overview of this field. It is targeted to both newcomers and experts who are interested in a critical assessment of LNP materials, their properties, strengths and weaknesses, and prospective applications. Numerous LNP materials are cataloged by fundamental descriptions of their chemical identities and physical morphology, quantitative photoluminescence (PL) properties, PL mechanisms, and surface chemistry. These materials include various semiconductor quantum dots, carbon nanotubes, graphene derivatives, carbon dots, nanodiamonds, luminescent metal nanoclusters, lanthanide-doped upconversion nanoparticles and downshifting nanoparticles, triplet-triplet annihilation nanoparticles, persistent-luminescence nanoparticles, conjugated polymer nanoparticles and semiconducting polymer dots, multi-nanoparticle assemblies, and doped and labeled nanoparticles, including but not limited to those based on polymers and silica. As an exercise in the critical assessment of LNP properties, these materials are ranked by several application-related functional criteria. Additional sections highlight recent examples of advances in chemical and biological analysis, point-of-care diagnostics, and cellular, tissue, and in vivo imaging and theranostics. These examples are drawn from the recent literature and organized by both LNP material and the particular properties that are leveraged to an advantage. Finally, a perspective on what comes next for the field is offered.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rehan Higgins
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - William J Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Zhujun Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rupsa Gupta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelsi Lix
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hyungki Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
17
|
Li X, Jian M, Sun Y, Zhu Q, Wang Z. The Peptide Functionalized Inorganic Nanoparticles for Cancer-Related Bioanalytical and Biomedical Applications. Molecules 2021; 26:3228. [PMID: 34072160 PMCID: PMC8198790 DOI: 10.3390/molecules26113228] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023] Open
Abstract
In order to improve their bioapplications, inorganic nanoparticles (NPs) are usually functionalized with specific biomolecules. Peptides with short amino acid sequences have attracted great attention in the NP functionalization since they are easy to be synthesized on a large scale by the automatic synthesizer and can integrate various functionalities including specific biorecognition and therapeutic function into one sequence. Conjugation of peptides with NPs can generate novel theranostic/drug delivery nanosystems with active tumor targeting ability and efficient nanosensing platforms for sensitive detection of various analytes, such as heavy metallic ions and biomarkers. Massive studies demonstrate that applications of the peptide-NP bioconjugates can help to achieve the precise diagnosis and therapy of diseases. In particular, the peptide-NP bioconjugates show tremendous potential for development of effective anti-tumor nanomedicines. This review provides an overview of the effects of properties of peptide functionalized NPs on precise diagnostics and therapy of cancers through summarizing the recent publications on the applications of peptide-NP bioconjugates for biomarkers (antigens and enzymes) and carcinogens (e.g., heavy metallic ions) detection, drug delivery, and imaging-guided therapy. The current challenges and future prospects of the subject are also discussed.
Collapse
Affiliation(s)
- Xiaotong Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Minghong Jian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yanhong Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qunyan Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
18
|
Cheng TM, Li R, Kao YCJ, Hsu CH, Chu HL, Lu KY, Changou CA, Chang CC, Chang LH, Tsai ML, Mi FL. Synthesis and characterization of Gd-DTPA/fucoidan/peptide complex nanoparticle and in vitro magnetic resonance imaging of inflamed endothelial cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111064. [DOI: 10.1016/j.msec.2020.111064] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/25/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
|
19
|
Chen LJ, Zhao X, Liu YY, Yan XP. Macrophage membrane coated persistent luminescence nanoparticle@MOF-derived mesoporous carbon core-shell nanocomposites for autofluorescence-free imaging-guided chemotherapy. J Mater Chem B 2020; 8:8071-8083. [PMID: 32785386 DOI: 10.1039/d0tb01272f] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Efficient drug nanocarriers with high drug loading capacity and luminescent ability are in high demand for biomedical applications. Here we show a facile and bio-friendly synthesis of macrophage membrane coated persistent luminescence nanoparticle (PLNP)@metal-organic framework (MOF)-derived mesoporous carbon (MC) core-shell nanocomposites (PLMCs) for autofluorescence-free imaging-guided chemotherapy. MOF UiO-66 is used as both the precursor and the template, and is controllably coated on the surface of the PLNP to form a PLNP@UiO-66 core-shell composite. Subsequent calcination enables the transformation of PLNP@UiO-66 to PLMC due to the pyrolysis of the UiO-66 shell. PLMC with a small particle size of 70 nm, a tunable large pore size from ∼4.8 to ∼16.2 nm in the shell and near-infrared persistent luminescence in the core was prepared by controlling the calcination conditions. The prepared PLMC showed an enhanced drug loading capacity for three model drugs (doxycycline hydrochloride, acetylsalicylic acid, and paclitaxel) compared with PLNP@UiO-66. Further coating of the macrophage membrane on the surface of PLMC results in MPLMC with enhanced cloaking ability for evading the mononuclear phagocyte system. The drug-loaded MPLMC is promising for autofluorescence-free persistent luminescence imaging-guided drug delivery and tumor therapy.
Collapse
Affiliation(s)
- Li-Jian Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | | | | | | |
Collapse
|
20
|
Wu S, Qiao Z, Li Y, Hu S, Ma Y, Wei S, Zhang L. Persistent Luminescence Nanoplatform with Fenton-like Catalytic Activity for Tumor Multimodal Imaging and Photoenhanced Combination Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25572-25580. [PMID: 32412741 DOI: 10.1021/acsami.0c04438] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Reactive oxygen species-mediated tumor chemodynamic therapy and photodynamic therapy have captured extensive attention in practical cancer combination therapies. However, the severe treatment conditions and the hypoxic microenvironment of solid tumors significantly limit the efficacy of these therapies. This work demonstrates the design and fabrication of a multifunctional persistent luminescence nanoplatform (PHFI, refers to PLNP-HSA-Fe3+-IR780) for cancer multimodal imaging and effective photoenhanced combination therapy. The near-infrared-emitted persistent luminescence nanoparticles (PLNP) was modified with human serum albumin (HSA) combined with an IR780 probe and Fe3+. The synthesized PHFI possesses high longitudinal relaxivity, obvious photoacoustic contrast signals, and long-lasting persistent luminescence, indicating that PHFI can be used for cancer magnetic resonance imaging, photoacoustic imaging, and persistent luminescence multimodal imaging. PHFI shows intrinsic photoenhanced Fenton-like catalytic activities as well as photodynamic and photothermal effects and thereby can effectively overcome severe treatment conditions for killing tumor cells. It is worth noting that PHFI serving as a rechargeable internal light source for photoenhanced combination therapy was first disclosed. We believe that our work shows the great potential of PHFI for cancer theranostics and will advance the development of PLNP-based nanoplatforms in tumor catalytic therapy.
Collapse
Affiliation(s)
- Shuqi Wu
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zihan Qiao
- Honor College, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yang Li
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Sunpei Hu
- Honor College, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuan Ma
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Siyi Wei
- Department of Cardiology, Shaanxi Provincial Crops Hospital, Chinese People's Armed Police Forces, Xi'an 710054, China
| | - Lianbing Zhang
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
21
|
Wu S, Li Y, Ding W, Xu L, Ma Y, Zhang L. Recent Advances of Persistent Luminescence Nanoparticles in Bioapplications. NANO-MICRO LETTERS 2020; 12:70. [PMID: 34138268 PMCID: PMC7770784 DOI: 10.1007/s40820-020-0404-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/02/2020] [Indexed: 05/21/2023]
Abstract
Persistent luminescence phosphors are a novel group of promising luminescent materials with afterglow properties after the stoppage of excitation. In the past decade, persistent luminescence nanoparticles (PLNPs) with intriguing optical properties have attracted a wide range of attention in various areas. Especially in recent years, the development and applications in biomedical fields have been widely explored. Owing to the efficient elimination of the autofluorescence interferences from biotissues and the ultra-long near-infrared afterglow emission, many researches have focused on the manipulation of PLNPs in biosensing, cell tracking, bioimaging and cancer therapy. These achievements stimulated the growing interest in designing new types of PLNPs with desired superior characteristics and multiple functions. In this review, we summarize the works on synthesis methods, bioapplications, biomembrane modification and biosafety of PLNPs and highlight the recent advances in biosensing, imaging and imaging-guided therapy. We further discuss the new types of PLNPs as a newly emerged class of functional biomaterials for multiple applications. Finally, the remaining problems and challenges are discussed with suggestions and prospects for potential future directions in the biomedical applications.
Collapse
Affiliation(s)
- Shuqi Wu
- School of Life Sciences, Key Laboratory of Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yang Li
- School of Life Sciences, Key Laboratory of Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Weihang Ding
- School of Life Sciences, Key Laboratory of Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Letong Xu
- School of Life Sciences, Key Laboratory of Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yuan Ma
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Lianbing Zhang
- School of Life Sciences, Key Laboratory of Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| |
Collapse
|
22
|
Zhao H, Liu C, Gu Z, Dong L, Li F, Yao C, Yang D. Persistent Luminescent Nanoparticles Containing Hydrogels for Targeted, Sustained, and Autofluorescence-Free Tumor Metastasis Imaging. NANO LETTERS 2020; 20:252-260. [PMID: 31793303 DOI: 10.1021/acs.nanolett.9b03755] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Metastasis is the primary cause of cancer morbidity and mortality. To obtain an effective diagnosis and treatment, precise imaging of tumor metastasis is required. Here we prepared persistent luminescent nanoparticles (PLNPs) containing a hydrogel (PL-gel) for targeted, sustained, and autofluorescence-free tumor metastasis imaging. PLNPs offered renewable long-lasting near-infrared (NIR) emitting without in situ radiation, favoring deep tissue penetration imaging without background interference. PLNPs were conjugated with 4-carboxyphenyl boronic acid (CPBA) to yield PLNPs-CPBA, which specifically recognized metastatic breast cancer cells (MBA-MD-231 cells) and enabled receptor-mediated endocytosis for specific cancer cell labeling. The PLNPs-CPBA-labeled cancer cells enabled sensitive imaging performance and high viability without influencing the migration and invasiveness of cancer cells for long-term tracking. PLNPs-CPBA were further encapsulated inside alginate to generate PL-gel for sustained PLNPs-CPBA release and tumor cell labeling, and the PL-gel showed enhanced renewable persistent luminescence compared to the PLNPs-CPBA suspension. The metastasis in the mouse breast cancer model was continuously tracked by persistent luminescence imaging, showing that PL-gel achieved noninvasive and highly selective imaging of tumor metastasis without background interference. Our PL-gel could be rationally designed to specifically target other types of cancer cells and thus provide a powerful and generic platform for the study of tumor metastasis.
Collapse
Affiliation(s)
- Huaixin Zhao
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
| | - Chunxia Liu
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Luxi Dong
- State Key Laboratory of Medicinal Chemical Biology , Nankai University , Tianjin 300350 , P. R. China
| | - Feng Li
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
| | - Chi Yao
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
| | - Dayong Yang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
| |
Collapse
|
23
|
Xia Y, Bao H, Huang J, Li X, Yu C, Zhang Z, Wang H. Near-infrared-persistent luminescence/bioluminescence imaging tracking of transplanted mesenchymal stem cells in pulmonary fibrosis. Biomater Sci 2020; 8:3095-3105. [DOI: 10.1039/d0bm00063a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A dual-labeling strategy integrating near-infrared-persistent luminescence and RfLuc-based bioluminescence imaging techniques has been developed to track the transplanted stem cells, deepening the understanding of the role played by stem cells in PF treatment.
Collapse
Affiliation(s)
- Yuyang Xia
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- P. R. China
- CAS Key Laboratory of Nano-Bio Interface
| | - Hongying Bao
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-bionics
- Chinese Academy of Sciences
- Suzhou 15123
| | - Jie Huang
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-bionics
- Chinese Academy of Sciences
- Suzhou 15123
| | - Xiaodi Li
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-bionics
- Chinese Academy of Sciences
- Suzhou 15123
| | - Chenggong Yu
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-bionics
- Chinese Academy of Sciences
- Suzhou 15123
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-bionics
- Chinese Academy of Sciences
- Suzhou 15123
| | - Haishui Wang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- P. R. China
| |
Collapse
|