1
|
Liu Y, Meng Z, Miao S, Huang H, Ren J, Han Y, Wu S. Ethanol-responsive structural colors with multi-level information encryption based on the patterned three-layer inverse opal photonic crystal. J Colloid Interface Sci 2025; 677:99-107. [PMID: 39083896 DOI: 10.1016/j.jcis.2024.07.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Stimulus-responsive inverse opal photonic crystals (IOPCs) with tunable structural colors show significant promise in information security. To improve upon the traditional bilayer structure with limited color information and single decoding mode, this work developed an ethanol-responsive structure with multi-level information encryption ability by inserting a functional layer into two shielding layers (red Layer A with a photonic stop band (PSB) at 640 nm and green Layer C with a PSB at 530 nm). The functional layer was composed of colorless Layer B, a quick response (QR) code pattern made of TiO2 nanoparticles, and a dense polymer. Due to the isolation of distinct layers, different reflectance values, and different PSB positions of the three-layer IOPC, the structural color of Layer B could only be "turned on" by wetting the entire structure when its PSB redshifted from 360 nm to 460 nm. Specifically, when either side was individually wetted, the PSB of Layer A or C redshifted to 825 nm or 685 nm, and the color of the QR code was dominated by the unwetted red or green layer. After the entire structure had been soaked, the blue QR code was decoded. Meanwhile, when the detecting angle increased from 5° to 60°, the PSBs of Layers B and C in the wetted three-layer IOPC blueshifted from 460 nm to 365 nm and from 685 nm to 540 nm, respectively, which resulted in a cascade decoding process with a single- or mixed-color output. This structure provides a good foundation for multi-level information encryption.
Collapse
Affiliation(s)
- Yukun Liu
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Zhipeng Meng
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
| | - Senlin Miao
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Haofei Huang
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
| | - Jie Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| | - Yaqun Han
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China.
| |
Collapse
|
2
|
Hu T, Zhang S, Qi Y. Unclonable Encryption-Verification Strategy Based on Bilayer Shape Memory Photonic Crystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405243. [PMID: 39291889 DOI: 10.1002/smll.202405243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/03/2024] [Indexed: 09/19/2024]
Abstract
The ability to reversibly exhibit structural color patterns has positioned photonic crystals (PCs) at the forefront of anti-counterfeiting. However, the security offered by the mere reversible display is susceptible to illicit alteration and disclosure. Herein, inspired by the electronic message captcha, bilayer photonic crystal (BPC) systems with integrated decryption and verification modules, are realized by combining inverse opal (IO) and double inverse opal (DIO) with polyacrylate polymers. When the informationized BPC is immersed in ethanol or water, the DIO layer displayed encrypted information due to the solvent-induced ordered rearrangement of polystyrene (PS) microspheres. The verification step is established based on the different structural colors of the IO layer pattern, which result from the deformation or recovery of the macroporous skeleton induced by solvent evaporation. Moreover, through the evaporation-induced random self-assembly of PS@SiO2 and SiO2 microspheres, unclonable structurally colored identifying codes are created in the IO layer, ensuring the uniqueness upon the verification. The decrypted code in the DIO layer is valid only when the IO layer displays the pattern with the predetermined structural color; otherwise, it is a pseudo-code. This structural color-based "decryption-verification" approach offers innovative anti-counterfeiting applications in nanophotonics.
Collapse
Affiliation(s)
- Tong Hu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Yong Qi
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
3
|
Meng Z, Liu Y, Huang H, Wu S. Flexible self-supporting photonic crystals: Fabrications and responsive structural colors. Adv Colloid Interface Sci 2024; 333:103272. [PMID: 39216399 DOI: 10.1016/j.cis.2024.103272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/24/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
Photonic crystals (PCs) play an increasingly significant role in anti-counterfeiting, sensors, displays, and other fields due to their tunable structural colors produced by light manipulation of photonic stop bands. Flexible self-supporting photonic crystals (FSPCs) eliminate the requirement for conventional structures to rely on the existence of hard substrates, as well as the problem of poor mechanical qualities caused by the stiffness of the building blocks. Meanwhile, diverse production techniques and materials provide FSPCs with varied stimulus-responsive color-changing capacities, thus they have received an abundance of focus. This review summarizes the preparation strategies and variable structural colors of FSPCs. First, a series of preparation strategies by integrating polymers with PCs are summarized, including assembly of colloidal spheres on flexible substrates, polymer packaging, polymer-based direct assembly, nanoimprinting, and 3D printing. Subsequently, variable structural colors of FSPCs with different stimulations, such as viewing angle, chemical stimulation (solvents, ions, pH, biomolecules, etc.), temperature, mechanical/magnetic stress, and light, are described in detail. Finally, the outlook and challenges regarding FSPCs are presented, and several potential directions for their fabrication and application are discussed. It's believed that FSPCs will be a valuable platform for advancing the practical implementation of optical metamaterials.
Collapse
Affiliation(s)
- Zhipeng Meng
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yukun Liu
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Haofei Huang
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China..
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China..
| |
Collapse
|
4
|
Li W, Zhang C, Wang Y. Evaporative self-assembly in colloidal droplets: Emergence of ordered structures from complex fluids. Adv Colloid Interface Sci 2024; 333:103286. [PMID: 39232473 DOI: 10.1016/j.cis.2024.103286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/14/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Colloidal droplet evaporation is an intriguing and intricate phenomenon that has captured the interest of scientists across diverse disciplines, including physical chemistry, fluid dynamics, and soft matter science, over the past two decades. Despite being a non-equilibrium system with inherent challenges posed by coffee ring formation and Marangoni effects, which hinder the precise control of deposition patterns, evaporative self-assembly presents a convenient and cost-effective approach for generating arrays of well-ordered structures and functional patterns with wide-ranging applications in inkjet printing, photonic crystals, and biochemical assays. In the realm of printed electronics and photonics, effectively mitigating coffee rings while achieving uniformity and orderliness has emerged as a critical factor in realising the next generation of large-area, low-cost, flexible devices that are exceptionally sensitive and high-performance. This review highlights the evaporative self-assembly process in colloidal droplets with a focus on the intricate mechanical environment, self-assembly at diverse interfaces, and potential applications of these assembling ordered structures.
Collapse
Affiliation(s)
- Weibin Li
- National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, 100190 Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, 100049 Beijing, China.
| | - Chen Zhang
- National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, 100190 Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yuren Wang
- National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, 100190 Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
5
|
Wang Z, Zhang S, Tang B. Large-Area Rewritable Paper Based on Polyurethane Inverse Photonic Glass with Durable High-Resolution Information Storage and Structural Stability. ACS NANO 2024; 18:186-198. [PMID: 38126306 DOI: 10.1021/acsnano.3c05325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
To alleviate the negative effects of resource waste and environmental pollution caused by the excessive use of paper, technologies for rewritable paper have received widespread attention and in-depth research. Despite the growing interest in rewritable paper, meeting the requirements of large-scale preparation, long-lasting information storage time, high reversibility, and good environmental stability remains a huge challenge for this technology. This study developed a solvent-responsive copolymerized polyurethane-based rewritable paper with an inverse photonic glass structure (co-PUIPG paper). Comprehensive writing modes, including handwriting, spraying, and printing, were realized by using the swelling effect of different solvents and the local force field formed by capillary force to control the deformation degree of the inverse photonic glass structure. Co-PUIPG paper can persistently store high-resolution information and has a green and environmentally friendly "write-erase" method. Meanwhile, it exhibits good rewritability, as well as high mechanical strength and exceptional resistance to environmental factors, such as friction, high temperature, and sunlight. Because the spraying method can prepare templates quickly and extensively and polyurethane materials are economical, co-PUIPG rewritable paper possesses great potential as a substitute for commercial fiber paper and its industrialization is full of great possibilities.
Collapse
Affiliation(s)
- Zhenzhi Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, People's Republic of China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, People's Republic of China
| | - Bingtao Tang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, People's Republic of China
| |
Collapse
|
6
|
Chen X, Wang Z, Tang M, He Z, Yu M, Yu T, Cai J, Emer H, Ma J, Wang Y. Reusable Shape‐Memory Photonic Crystal Paper for Pin‐Printing and High‐Resolution Press Printing. ADVANCED ENGINEERING MATERIALS 2023; 25. [DOI: 10.1002/adem.202300753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 11/28/2024]
Abstract
Rewritable photonic crystal (PC) paper has the potential to significantly reduce the consumption of forest resources in the printing industry, while also being environmentally friendly and efficient. However, traditional PC papers based on solvent or photothermal responses can lead to diffusion, which can hinder printing accuracy. In this study, a novel rewritable PC paper compatible with pin‐printing is presented based on a pressure‐responsive shape‐memory PC paper. High‐resolution printing can be realized by both computer‐programmed 3D‐printed seals and pin‐printing techniques. The information written on this PC rewritable paper can be erased by water, enabling the paper to be rewritten and reused at least 8 times without any change in performance. Furthermore, the information stored on the PC paper is stable and can be stored in ordinary environments for at least 6 months without fading. The PC paper has the capability of multicolor printing with a precision finer than 100 μm and has potential in office papers, smart price tags, and anti‐counterfeiting labels.
Collapse
Affiliation(s)
- Xianmei Chen
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 P. R. China
| | - Zhihao Wang
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 P. R. China
| | - Mingshuo Tang
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 P. R. China
| | - Zhiwei He
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 P. R. China
| | - Miao Yu
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 P. R. China
| | - Tianran Yu
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 P. R. China
| | - Jian Cai
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 P. R. China
| | - Hanayxam Emer
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 P. R. China
| | - Jun Ma
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 P. R. China
| | - Yunlong Wang
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 P. R. China
| |
Collapse
|
7
|
Zhang X, Xu C, Gong X. Rewritable Structurally Colored Paper Based on Hollow SiO 2-Polyurethane Composite Photonic Crystal Film. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44589-44595. [PMID: 37698278 DOI: 10.1021/acsami.3c11989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Rewritable paper, which can be used multiple times as an effective solution for sustainable development and lessen the heavy environment pollution, has received widespread attention. A photonic crystal with dye-free character and tunable structure color has attracted significant interest in this area. Generally, handwriting on the photonic crystal structure containing a responsive polymer or hydrogel ingredient was based on the change of lattice spacing. It is necessary to enrich the diversities of color adjustment mechanism for further application. Herein, a flexible rewritable photonic crystal structurally colored paper with excellent mechanical strength based on the hollow SiO2 (h-SiO2) particle and polyurethane was developed. Owning to the varied optical response of h-SiO2 photonic crystal film in different solvents, handwriting on this paper was realized by applying polarity solvents such as EG as colorless ink directly, which could also be erased by resoaking the film in water. Writing and erasing on this paper were totally reversible. The color adjustment mechanism and the realization of handwriting on this paper are totally different from those of the previous reported photonic crystal-based rewritable paper. The combination of quick handwriting and flexibility is significant for potential application as rewritable paper.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang 621000, China
| | - Chonglin Xu
- Department of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang 621000, China
| | - Xiu Gong
- Department of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang 621000, China
| |
Collapse
|
8
|
Song L, Qi Y, Zhang S. Permanent irreversible structural color based on core-shell chemically bonded SiO 2@P(St-BA) particles. Chem Commun (Camb) 2023. [PMID: 37464889 DOI: 10.1039/d3cc02375c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Novel core-shell chemically bonded SiO2@P(St-BA) particles were designed and self-assembled to prepare photonic crystals. Due to the irreversible collapse of polymer shells during hot-pressing, SiO2@P(St-BA) particles could provide new ideas for high-stability and bright red-shifted structural color patterns.
Collapse
Affiliation(s)
- Liujun Song
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China.
| | - Yong Qi
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China.
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
9
|
Yu S, Shao Y, Qiu Q, Cheng Y, Qing R, Wang CF, Chen S, Xu C. Photo-and thermo-regulation by photonic crystals for extended longevity of C. elegans. Mech Ageing Dev 2023; 212:111819. [PMID: 37120065 DOI: 10.1016/j.mad.2023.111819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/03/2023] [Accepted: 04/25/2023] [Indexed: 05/01/2023]
Abstract
Methods allowing light energy to be modulated in a controllable fashion are potentially important for finding the correlation between light-related environmental factors and aging-related lifespan. Here, we report photo- and thermo-regulation based on photonic crystals (PCs) for extended longevity of C. elegans. We show that PCs can function as a regulator of visible spectrum to tune photonic energy received by C.elegans. We provide direct evidence that lifespan depends on photonic energy, and the use of PCs reflecting blue light (440-537nm) gives 8.3% increasement in lifespan. We demonstrate that the exposure to modulated light alleviates photo-oxidative stress and unfolded-protein response. We realize reflective passive cooling temperature using PCs, and favorable low temperature could be created for worms to extend lifespan. This work offers a new path based on PCs to resist negative effects light and temperature for longevity, provides an available platform for studying the role of light in aging.
Collapse
Affiliation(s)
- Shuzhen Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yating Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Qineng Qiu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yu Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Renkun Qing
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Cai-Feng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China.
| | - Chen Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
10
|
Shin JH, Park JY, Han SH, Lee YH, Sun J, Choi SS. Color-Tuning Mechanism of Electrically Stretchable Photonic Organogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202897. [PMID: 35798315 PMCID: PMC9443443 DOI: 10.1002/advs.202202897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 06/15/2023]
Abstract
In contrast to nano-processed rigid photonic crystals with fixed structures, soft photonic organic hydrogel beads with dielectric nanostructures possess advanced capabilities, such as stimuli-responsive deformation and photonic wavelength color changes. Recenlty, advanced from well-investigated mechanochromic method, an electromechanical stress approach is used to demonstrate electrically induced mechanical color shifts in soft organic photonic hydrogel beads. To better understand the electrically stretchable color change functionality in such soft organic photonic hydrogel systems, the electromechanical wavelength-tuning mechanism is comprehensively investigated in this study. By employing controllable electroactive dielectric elastomeric actuators, the discoloration wavelength-tuning process of an electrically stretchable photonic organogel is carefully examined. Based on the experimental in-situ response of electrically stretchable nano-spherical polystyrene hydrogel beads, the color change mechanism is meticulously analyzed. Further, changes in the nanostructure of the symmetrically and electrically stretchable organogel are analytically investigated through simulations of its hexagonal close-packed (HCP) lattice model. Detailed photonic wavelength control factors, such as the refractive index of dielectric materials, lattice diffraction, and bead distance in an organogel lattice, are theoretically studied. Herein, the switcing mechanism of electrically stretchable mechanochromic photonic organogels with photonic stopband-tuning features are suggested for the first time.
Collapse
Affiliation(s)
- Jun Hyuk Shin
- Department of Electrical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam GuPohangGyeongbuk37673Republic of Korea
| | - Ji Yoon Park
- Department of Electrical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam GuPohangGyeongbuk37673Republic of Korea
| | - Sang Hyun Han
- Department of Electrical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam GuPohangGyeongbuk37673Republic of Korea
| | - Yun Hyeok Lee
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Jeong‐Yun Sun
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
- Research Institute of Advanced MaterialsSeoul National UniversitySeoul08826Korea
| | - Su Seok Choi
- Department of Electrical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam GuPohangGyeongbuk37673Republic of Korea
| |
Collapse
|
11
|
Yang D, Hu Y, Ma D, Ge J, Huang S. Reconfigurable Mechanochromic Patterns into Chameleon-Inspired Photonic Papers. Research (Wash D C) 2022; 2022:9838071. [PMID: 35958107 PMCID: PMC9343078 DOI: 10.34133/2022/9838071] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/29/2022] [Indexed: 12/12/2022] Open
Abstract
Photonic crystal (PC) patterns have shown wide applications in optical devices, information encryption, anticounterfeiting, etc. Unfortunately, it is still a great challenge to reconfigure the PC patterns once fabricated. Herein, a new strategy is presented to reconfigure self-recordable PC patterns by printing local patterns into the chameleon-inspired PC papers using the phase change material (PCM) as ink and then erasing the patterns in ethanol. Multicolor and high-resolution (25 and 75 μm for dot and lines, respectively) patterns can be efficiently and repeatedly reconfigured. In addition, the photonic patterns based on the PC paper and PCM combinations are gifted with mechanochromic characteristics and can show programmable and reversible color change under pressure. The high melting point of the ink, nonclosely packed structures of the PC paper, and the similar solubility parameter of PC paper, PCM, and ethanol are the keys for all these characteristics. This work offers a simple, flexible, efficient way to reconfigure PC patterns with mechanochromic properties and could open up exciting applications for novel hand-operation-based anticounterfeiting and optical devices.
Collapse
Affiliation(s)
- Dongpeng Yang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, China
| | - Yang Hu
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, China
| | - Dekun Ma
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Jianping Ge
- School of Chemistry and Molecular Engineering Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| | - Shaoming Huang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
12
|
Li X, Meng Y, Zhou Z, Song J, Bian F, Guo W, Wang H, Xu Z. Reconfigurable Inverse Opal Structure Film for a Rewritable and Double-Sided Photonic Crystal Paper. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53235-53241. [PMID: 34704728 DOI: 10.1021/acsami.1c16302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A rewritable photonic crystal (PC) paper as an environmentally friendly and low-resource-consuming material for information storage and spreading has gradually become a research hotspot. In this work, a novel rewritable PC paper with inkless writing and double-sided rewritability properties was developed. A double-sided epoxy resin PC paper exhibiting an inverse opal structure and a bright structural color was fabricated using the sacrificial template method. Carbon black was doped into the material to increase color saturation and purity while preventing light transmission and protecting the double-sided structural color from interference. The force of sliding friction and deformation triggered by capillary pressure as well as swelling-triggered recovery of the inverse opal structure led to an easy rewriting of the PC paper. The PC paper exhibited excellent rewritability even after 50 runs of the rewriting process. Given the inkless and double-sided rewriting, this study provides a new method for the preparation of rewritable PC papers.
Collapse
Affiliation(s)
- Xinhua Li
- The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, Hebei, China
| | - Yinan Meng
- The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, Hebei, China
| | - Zhenyu Zhou
- The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, Hebei, China
| | - Jiatian Song
- The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, Hebei, China
| | - Fei Bian
- The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, Hebei, China
| | - Wanchun Guo
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, Hebei, China
| | - Haiyan Wang
- State Key Laboratory of Metastable Material Science and Technology, Yanshan University, Qinhuangdao 066004, Hebei, China
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, Hebei, China
| | - Zhaopeng Xu
- The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, Hebei, China
- State Key Laboratory of Metastable Material Science and Technology, Yanshan University, Qinhuangdao 066004, Hebei, China
| |
Collapse
|
13
|
Liu W, Wang C, Liu B, Zhou J, Wu Z. Novel nano heterogeneous structure hydrogels with mechanically robust, extensive stretching and highly swelling. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Fang Y, Fei W, Shen X, Guo J, Wang C. Magneto-sensitive photonic crystal ink for quick printing of smart devices with structural colors. MATERIALS HORIZONS 2021; 8:2079-2087. [PMID: 34846485 DOI: 10.1039/d1mh00577d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this paper, we report a facile strategy to combine magneto-responsive photonic crystal (MRPC) ink with 3D printing technology. The building blocks of MRPC are based on Fe3O4 magnetic nanoparticle clusters (MNCs) with uniform and tunable size. The MNC dispersion is able to change its photonic band gap from red to blue as the external magnetic field strength is increased. The magneto-responsive photonic crystal ink can be readily obtained by taking advantage of an ethylene glycol (EG)-in-oil emulsion with a reinforced silicone rubber prepolymer as the outer phase. Using the well-designed formula, the MNC dispersion can be well-preserved inside the emulsion droplets of the ink, maintaining its original contactless magnetic field response. As a proof of concept, custom quick response code and butterfly patterns were successfully printed and showed vivid and tunable color as a function of the external magnetic field strength with good repeatability.
Collapse
Affiliation(s)
- Yiquan Fang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China.
| | | | | | | | | |
Collapse
|
15
|
Core/shell colloidal nanoparticles based multifunctional and robust photonic paper via drop-casting self-assembly for reversible mechanochromic and writing. J Colloid Interface Sci 2021; 603:834-843. [PMID: 34237601 DOI: 10.1016/j.jcis.2021.06.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/14/2021] [Accepted: 06/20/2021] [Indexed: 11/21/2022]
Abstract
Photonic crystals film that possesses periodic dielectric structure have shown great prospect in developing environmentally friendly paper alternatives due to the unique properties of dye free and non-photobleaching, but their practical application is limited by the weak interaction between colloidal particles. Although some progress has been obtained, it is still a challenge to develop photonic paper with the desired mechanical and optical properties. Herein, multifunctional hard core/soft shell nanoparticles with controlled size are fabricated by semi-continuous seed emulsion polymerization method. Compared with convention colloidal particles, these core/shell nanoparticles can facile self-assemble into large-scale dense ordered structure film via dried at room temperature due to the relatively low glass transition temperature (Tg) of the shell layers. The facile fabrication route enables the continuous high-through put production of the photonic papers. The as-formed papers not only possess the capacity to solvent (water/ethanol) rewritable and multicolor painting, but also can rapidly reversible mechanochromic. Moreover, due to the good compatibility of core/shell interface, these photonic films possess excellent mechanical properties, demonstrating that this multifunctional film makes the fabrication of novel robust rewritable papers possible and enables visual monitoring of deformation degree.
Collapse
|
16
|
Zhou C, Qi Y, Zhang S, Niu W, Wu S, Ma W, Tang B. Lotus Seedpod Inspiration: Particle-Nested Double-Inverse Opal Films with Fast and Reversible Structural Color Switching for Information Security. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26384-26393. [PMID: 34038074 DOI: 10.1021/acsami.1c05178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The integration of novel structures into colloidal crystals provides the possibility of constructing stimuli-responsive photonic materials. However, in most opal and inverse opal structures, replacing the interior air with an infiltrated liquid will cause partial refractive index matching, resulting in the reduction or even disappearance of the photonic band gap. Herein, inspired by the lotus seedpod, an innovative particle-nested double-inverse opal film with fast and reversible structural color switching (≈1 s) is first fabricated by introducing polystyrene (PS) spheres into an inverted opal backbone. Importantly, refractive index matching can be effectively avoided due to the existence of internal PS spheres, and optical switching from diffusive to photonic behavior is achieved by a liquid with low surface tension for the response. Furthermore, a reversible ethanol stimuli-response bilayer double-inverse opal film with multistate switching for information encryption is proposed by combining optical scattering and diffraction. The scattered light from the top layer caused by the randomly distributed and weakly scattering PS spheres within the pores makes the pattern at the bottom invisible. Simultaneously, the display and discoloration of the pattern can be realized instantaneously by ethanol response. Thus, this new preparation strategy exhibits great potential in the security fields.
Collapse
Affiliation(s)
- Changtong Zhou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yong Qi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wenbin Niu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wei Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Bingtao Tang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
17
|
Fabrication of industrial-level polymer photonic crystal films at ambient temperature Based on uniform core/shell colloidal particles. J Colloid Interface Sci 2021; 584:145-153. [DOI: 10.1016/j.jcis.2020.09.084] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 11/23/2022]
|
18
|
Yoo GY, Lee S, Ko M, Kim H, Lee KN, Kim W, Do YR. Diphylleia grayi-Inspired Intelligent Hydrochromic Adhesive Film. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49982-49991. [PMID: 33079523 DOI: 10.1021/acsami.0c13185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Diphylleia grayi-inspired hydrochromic nano/microstructured films have received much attention for its promising smart hydrochromic applications owing to their simple and low-cost but energy-effective strategy. A new type of water-switchable glazing film patterned with various nano/micro air-hole inverse opal arrays is introduced by selectively removing nano/microsphere polystyrene arrays embedded in the surface of polydimethylsiloxane (PDMS) films. Using the significant contrast ratio of the bleaching and the scattering states, we have optimized the switching properties of Mie scattered patterns. As a result, we obtained a single inverse opal layer-embedded PDMS adhesive film with hexagonally close-packed 1 μm air-hole arrays as an optimum scattered film. The differences of diffusive transmittance and optical haze values between the dry and the wet states of the best scattered film reached 44.93% (ΔTD.T = 59.11-14.18%) and 54.88% (ΔH = 69.42-14.54%), respectively. In addition, using the best-optimized inverse opal layer-embedded PDMS film, we fabricated a perfectly imitated Diphylleia grayi structure for camouflage application and an intelligent hydrochromic window device. The dynamic water modulation of the scattered opaque and nonscattered transparent state of the inverse opal-patterned PDMS adhesive film can provide an advanced platform structure in the area of hydrochromic technology for smart windows, camouflage, and clear umbrellas for rainy days.
Collapse
Affiliation(s)
- Gang Yeol Yoo
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - SeungJe Lee
- Department of Chemistry, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea
| | - Minji Ko
- Department of Chemistry, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea
| | - Hyunjin Kim
- Department of Chemistry, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea
| | - Keyong Nam Lee
- Department of Chemistry, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea
| | - Woong Kim
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Young Rag Do
- Department of Chemistry, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea
| |
Collapse
|
19
|
Yu XQ, Zhu Z, Wu X, Li G, Cheng R, Qing RK, Li Q, Chen S. Robust hydrophobic veova10-based colloidal photonic crystals towards fluorescence enhancement of quantum dots. NANOSCALE 2020; 12:19953-19962. [PMID: 32996527 DOI: 10.1039/d0nr04676k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydrophobic photonic crystals (PCs) has been increasingly appreciated as a promising functional material due to their distinct surface characteristic of structural color and hydrophobicity. However, it remains a challenge to fabricate hydrophobic PCs via a one-step process. Inspired by the development of high-performance waterborne coatings, we propose an easy-to-perform and high-efficiency strategy to construct hydrophobic building blocks (diameter of 221, 247, 276 and 305 nm), where the umbelli-form hydrophobic long chain (veova10 Cn > 9) was loaded onto polystyrene (PS) colloidal particles in situ. Taking advantage of the hydrophobic driving force between the colloidal particles, large-scale colloidal photonic crystals (CPCs) film with crack-free morphology was obtained efficiently. The derived CPCs exhibit robust mechanical stability, prominent hydrophobicity and excellent optical properties. In addition, the colloidal latex holds great potential toward PCs coatings on a variety of substrates (glass, plastic and steel) with excellent adhesiveness. Furthermore, we contrive to construct angle-independent structural color films and supraballs, and explore their application in quantum dots (QDs) fluorescence enhancement, which achieved an enhancement effect by more than eight times. From the standpoint of practical applications, we achieved the flexible high-brightness wearable light-emitting diode (LED) displays. This work will lay a foundation for the development of high-efficiency PCs building blocks, and indicate the direction for the meaningful application of CPCs.
Collapse
Affiliation(s)
- Xiao-Qing Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Qi Y, Niu W, Zhang S, Zhang Z, Wu S, Ma W. Rotational Periodicity Display of the Tunable Wettability Pattern in a Photoswitch Based on a Response Bilayer Photonic Crystal. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9664-9672. [PMID: 32011113 DOI: 10.1021/acsami.9b21947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although the forward diffraction of the three-dimensional (3D) photonic crystal is easily applied to a photoswitch, backward diffraction rainbows are rarely reported. The first rotational photoswitch based on a bilayer 3D photonic crystal with backward diffractions similar to those of two-dimensional photonic crystals was fabricated by vertically combining different thicknesses of nanoparticle templates. When rotating the bilayer photonic crystal, the opening or closing of the rotational photoswitch shows periodic reproducibility values of 30 and 60°. Different periods are regulated by the thickness and scattering effect of the top layer. Moreover, invisible patterns can be encoded and erased by changing the wettability via pH. Because of the decreasing of the refractive index differentials, it will be revealed rapidly when immersed in water. The revealed pattern can be periodically turned on and off by rotating the bilayer photonic crystal. It has great application prospects in optical prism, warning board, anti-counterfeiting, steganography, watermarking, and complex information coding.
Collapse
Affiliation(s)
- Yong Qi
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , P.O. Box 89, West Campus, 2 Linggong Road , Dalian 116024 , China
| | - Wenbin Niu
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , P.O. Box 89, West Campus, 2 Linggong Road , Dalian 116024 , China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , P.O. Box 89, West Campus, 2 Linggong Road , Dalian 116024 , China
| | - Zhongjian Zhang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , P.O. Box 89, West Campus, 2 Linggong Road , Dalian 116024 , China
| | - Suli Wu
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , P.O. Box 89, West Campus, 2 Linggong Road , Dalian 116024 , China
| | - Wei Ma
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , P.O. Box 89, West Campus, 2 Linggong Road , Dalian 116024 , China
| |
Collapse
|
21
|
Wu X, Hong R, Meng J, Cheng R, Zhu Z, Wu G, Li Q, Wang CF, Chen S. Hydrophobic Poly(tert-butyl acrylate) Photonic Crystals towards Robust Energy-Saving Performance. Angew Chem Int Ed Engl 2019; 58:13556-13564. [PMID: 31364237 DOI: 10.1002/anie.201907464] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/25/2019] [Indexed: 01/23/2023]
Abstract
Photonic crystals (PCs) have been widely applied in optical, energy, and biological fields owing to their periodic crystal structure. However, the major challenges are easy cracking and poor structural color, seriously hindering their practical applications. Now, hydrophobic poly(tert-butyl acrylate) (P(t-BA)) PCs have been developed with relatively lower glass transition temperature (Tg ), large crack-free area, excellent hydrophobic properties, and brilliant structure color. This method based on hydrophobic groups (tertiary butyl groups) provides a reference for designing new kinds of PCs via the monomers with relatively lower Tg . Moreover, the P(t-BA) PCs film were applied as the photoluminescence (PL) enhanced film to enhance the PL intensity of CdSe@ZnS QDs by 10-fold in a liquid-crystal display (LCD) device. The new-type hydrophobic force assembled PCs may open an innovative avenue toward new-generation energy-saving devices.
Collapse
Affiliation(s)
- Xingjiang Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University (former: Nanjing University of Technology), Nanjing, 210009, P. R. China
| | - Ri Hong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University (former: Nanjing University of Technology), Nanjing, 210009, P. R. China
| | - Jinku Meng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University (former: Nanjing University of Technology), Nanjing, 210009, P. R. China
| | - Rui Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University (former: Nanjing University of Technology), Nanjing, 210009, P. R. China
| | - Zhijie Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University (former: Nanjing University of Technology), Nanjing, 210009, P. R. China
| | - Guan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University (former: Nanjing University of Technology), Nanjing, 210009, P. R. China
| | - Qing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University (former: Nanjing University of Technology), Nanjing, 210009, P. R. China
| | - Cai-Feng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University (former: Nanjing University of Technology), Nanjing, 210009, P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University (former: Nanjing University of Technology), Nanjing, 210009, P. R. China
| |
Collapse
|
22
|
Hydrophobic Poly(
tert
‐butyl acrylate) Photonic Crystals towards Robust Energy‐Saving Performance. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907464] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|