1
|
Nguyen TTH, Ren J, Murdoch BJ, Lipton-Duffin J, Macleod JM, Gómez DE, van Embden J, Della Gaspera E. Doping and Annealing Conditions Strongly Influence the Water Oxidation Performance of Hematite Photoanodes. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40405502 DOI: 10.1021/acsami.5c05059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Hematite (α-Fe2O3) is one of the most promising semiconductors for solar water splitting due to its high theoretical efficiency and low cost. However, its poor electronic properties strongly limit its performance. Furthermore, the impact of composition and processing conditions on such properties, and on the water splitting efficiency, is poorly understood. Here, we unravel the role of these contributions and provide guidelines for the fabrication of efficient hematite photoanodes. Aliovalent doping with tin and fluorine is found to improve the electrical conductivity of hematite, leading to higher performance. Annealing in an inert atmosphere, which is conventionally used to create oxygen vacancies, is found not to affect undoped hematite. However, a marked effect has been observed in doped hematite, and a model describing dopant activation rather than oxygen vacancy formation has been proposed. The synergy between the presence of both dopants and the annealing conditions provides optimal electrical properties, which enable the increase of the hematite thickness, leading to enhanced light absorption and limiting the detrimental charge recombination issues observed in undoped films or even in doped films processed in excess oxygen. Our work provides a deeper understanding of the interplay among all of these processing factors, resulting in hematite photoanodes with increased performance.
Collapse
Affiliation(s)
| | - Jiawen Ren
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Billy James Murdoch
- RMIT Microscopy and Microanalysis Facility, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3000, Australia
| | - Josh Lipton-Duffin
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
| | - Jennifer M Macleod
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
| | - Daniel E Gómez
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Joel van Embden
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | | |
Collapse
|
2
|
Cui S, Song K, Liu H, Li H, Zhang Y, Ren W, Zhang R, Li K, He F, Qin Z, Hou H. Surface Nd Sites Boost Charge Transfer of Fe 2O 3 Photoanodes for Enhanced Solar Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9440-9451. [PMID: 39888341 DOI: 10.1021/acsami.4c20958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Photoelectrochemical (PEC) water splitting for hydrogen production is a promising technology for sustainable energy generation. In this work, we introduce Nd sites boost the PEC performance of Fe2O3 photoanodes through a precise gas-phase cation exchange process, which substitutes surface Fe atoms with Nd. The incorporation of Nd significantly enhances charge transfer properties, increases carrier concentration, and reduces internal resistance, leading to a substantial increase in photocurrent density from 0.44 to 0.92 mA cm-2 at 1.23 VRHE. Further enhancement of catalytic activity was achieved by depositing a NiCo(OH)x layer and a photocurrent density of 1.15 mA cm-2 at 1.23 VRHE were obtained. Theoretical calculations corroborate these experimental results, revealing that Nd doping narrows the bandgap, improves charge separation efficiency, and lowers the reaction potential barrier, thereby accelerating water oxidation kinetics. These findings underscore the effectiveness of surface cation exchange and targeted metallic element doping in overcoming the intrinsic limitations of Fe2O3, providing a viable pathway for developing high-performance PEC systems for efficient hydrogen production.
Collapse
Affiliation(s)
- Sen Cui
- Department of Physics, School of Applied Sciences, Taiyuan University of Science and Technology, Taiyuan 030024, P. R. China
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211, P. R. China
| | - Kai Song
- Department of Physics, School of Applied Sciences, Taiyuan University of Science and Technology, Taiyuan 030024, P. R. China
| | - Houjiang Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Hongyan Li
- Department of Physics, School of Applied Sciences, Taiyuan University of Science and Technology, Taiyuan 030024, P. R. China
| | - Yufei Zhang
- Department of Physics, School of Applied Sciences, Taiyuan University of Science and Technology, Taiyuan 030024, P. R. China
| | - Weijie Ren
- Department of Physics, School of Applied Sciences, Taiyuan University of Science and Technology, Taiyuan 030024, P. R. China
| | - Rui Zhang
- Department of Physics, School of Applied Sciences, Taiyuan University of Science and Technology, Taiyuan 030024, P. R. China
| | - Kun Li
- Department of Physics, School of Applied Sciences, Taiyuan University of Science and Technology, Taiyuan 030024, P. R. China
| | - Fang He
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Zhenxing Qin
- Department of Physics, School of Applied Sciences, Taiyuan University of Science and Technology, Taiyuan 030024, P. R. China
| | - Huilin Hou
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211, P. R. China
| |
Collapse
|
3
|
Cheng H, Ba K, Liu Y, Lin Y, Wang D, Xie T. Coupling multifunctional ZnCoAl-layered double hydroxides on Ti-Fe 2O 3 photoanode for efficient photoelectrochemical water oxidation. J Colloid Interface Sci 2025; 679:1117-1126. [PMID: 39418897 DOI: 10.1016/j.jcis.2024.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
The efficiency of photoelectrochemical (PEC) water splitting is hindered by the slow kinetics of the oxygen evolution reaction (OER). This study developed a composite photoanode for water oxidation by incorporating ternary LDHs (ZnCoAl-LDH) onto Ti-Fe2O3 as a cocatalyst. The ZnCoAl-LDH/Ti-Fe2O3 photoanode achieved a photocurrent density of 3.51 mA/cm2 at 1.23 V vs. RHE, which is 9.8 times higher than that of bare Ti-Fe2O3. Through a series of characterizations, the synergistic effects among the three metals were revealed. Furthermore, the addition of Zn can induce the formation of more high-valent Co, increasing the conductivity of CoAl-LDH and significantly reducing the surface charge transfer resistance. These advantages significantly enhance the injection efficiency of ZnCoAl-LDH/Ti-Fe2O3 (82 %), thereby accelerating the OER kinetics of Ti-Fe2O3. Our work introduces new approaches for selecting photoelectrochemical cocatalysts and designing high-performance photoanodes for water splitting.
Collapse
Affiliation(s)
- Haiyang Cheng
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Kaikai Ba
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yunan Liu
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yanhong Lin
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Dejun Wang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Tengfeng Xie
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
4
|
Fan X, Zhu F, Wang Z, Wang X, Zou Y, Gao B, Song L, He J, Wang T. Preparation of p-type Fe 2O 3 nanoarray and its performance as photocathode for photoelectrochemical water splitting. Front Chem 2025; 13:1526745. [PMID: 39926645 PMCID: PMC11802549 DOI: 10.3389/fchem.2025.1526745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/07/2025] [Indexed: 02/11/2025] Open
Abstract
Photoelectrochemical (PEC) water splitting has the potential to convert solar energy into chemical energy, emerging as a promising alternative to fossil fuel combustion. In PEC systems, p-type semiconductors are particularly noteworthy for their ability to directly produce hydrogen. In this work, Fe2O3 with p-type semiconductor properties grown directly on the conductive glass substrate were successfully synthesized through a simple one-step hydrothermal method. The analysis results indicate that the Fe2O3 exhibits a spindle shaped nanoarray structure and possesses a small band gap, thereby demonstrating excellent photoelectrochemical performance as a photocathode with photocurrent density of -23 μA cm-2 at 0.4 V vs. RHE. Further band structure tests reveal that its conduction band position is more negative compared to the hydrogen evolution potential, highlighting its significant potential as a photocathode material.
Collapse
Affiliation(s)
- Xiaoli Fan
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, China
| | - Fei Zhu
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, China
| | - Zeyi Wang
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, China
| | - Xi Wang
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, China
| | - Yi Zou
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, China
| | - Bin Gao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Li Song
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, China
| | - Jianping He
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Tao Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| |
Collapse
|
5
|
Fouemina JCN, Li G, She X, Yan D, Lv X, Nie K, Deng J, Xu H. Surface Self-Transforming FeTi-LDH Overlayer in Fe 2 O 3 /Fe 2 TiO 5 Photoanode for Improved Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301114. [PMID: 37282737 DOI: 10.1002/smll.202301114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/16/2023] [Indexed: 06/08/2023]
Abstract
Integrating hematite nanostructures with efficient layer double hydroxides (LDHs) is highly desirable to improve the photoelectrochemical (PEC) water oxidation performance. Here, an innovative and facile strategy is developed to fabricate the FeTi-LDH overlayer decorated Fe2 O3 /Fe2 TiO5 photoanode via a surface self-transformation induced by the co-treatment of hydrazine and NaOH at room temperature. Electrochemical measurements find that this favorable structure can not only facilitate the charge transfer/separation at the electrode/electrolyte interface but also accelerate the surface water oxidation kinetics. Consequently, the as-obtained Fe2 O3 /Fe2 TiO5 /LDH photoanode exhibits a remarkably increased photocurrent density of 3.54 mA cm-2 at 1.23 V versus reversible hydrogen electrode (RHE) accompanied by an obvious cathodic shift (≈140 mV) in the onset potential. This work opens up a new and effective pathway for the design of high-performance hematite photoanodes toward efficient PEC water oxidation.
Collapse
Affiliation(s)
| | - Guoqing Li
- Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaojie She
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, P. R. China
| | - Duan Yan
- Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaoxin Lv
- Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Kaiqi Nie
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiujun Deng
- Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hui Xu
- Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
6
|
Chang Y, Han M, Ding Y, Wei H, Zhang D, Luo H, Li X, Yan X. Interface Engineering of CoFe-LDH Modified Ti: α-Fe 2O 3 Photoanode for Enhanced Photoelectrochemical Water Oxidation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2579. [PMID: 37764609 PMCID: PMC10536217 DOI: 10.3390/nano13182579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Effectively regulating and promoting the charge separation and transfer of photoanodes is a key and challenging aspect of photoelectrochemical (PEC) water oxidation. Herein, a Ti-doped hematite photoanode with a CoFe-LDH cocatalyst loaded on the surface was prepared through a series of processes, including hydrothermal treatment, annealing and electrodeposition. The prepared CoFe-LDH/Ti:α-Fe2O3 photoanode exhibited an outstanding photocurrent density of 3.06 mA/cm2 at 1.23 VRHE, which is five times higher than that of α-Fe2O3 alone. CoFe-LDH modification and Ti doping on hematite can boost the surface charge transfer efficiency, which is mainly attributed to the interface interaction between CoFe-LDH and Ti:α-Fe2O3. Furthermore, we investigated the role of Ti doping in enhancing the PEC performance of CoFe-LDH/Ti:α-Fe2O3. A series of characterizations and theoretical calculations revealed that, in addition to improving the electronic conductivity of the bulk material, Ti doping also further enhances the interface coupling of CoFe-LDH/α-Fe2O3 and finely regulates the interfacial electronic structure. These changes promote the rapid extraction of holes from hematite and facilitate charge separation and transfer. The informative findings presented in this work provide valuable insights for the design and construction of hematite photoanodes, offering guidance for achieving excellent performance in photoelectrochemical (PEC) water oxidation.
Collapse
Affiliation(s)
- Yue Chang
- Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- National Materials Corrosion and Protection Data Center, University of Science and Technology Beijing, Beijing 100083, China
- BRI Southeast Asia Network for Corrosion and Protection (MOE), Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
| | - Minmin Han
- National Engineering Research Center for Intelligent Electrical Vehicle Power System, College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Yehui Ding
- Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Huiyun Wei
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Dawei Zhang
- Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- National Materials Corrosion and Protection Data Center, University of Science and Technology Beijing, Beijing 100083, China
- BRI Southeast Asia Network for Corrosion and Protection (MOE), Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
| | - Hong Luo
- Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- National Materials Corrosion and Protection Data Center, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaogang Li
- Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- National Materials Corrosion and Protection Data Center, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiongbo Yan
- Beijing Advanced Innovation Center Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
7
|
Lv J, Wu M, Fan M, Zhang Q, Chang Z, Wang X, Zhou Q, Wang L, Chong R, Zhang L. Insights into the multirole CoAl layered double hydroxide on boosting photoelectrochemical activity of hematite: Application to hydrogen peroxide sensing. Talanta 2023; 262:124681. [PMID: 37224575 DOI: 10.1016/j.talanta.2023.124681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/13/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
As an important compound in many industrial and biological processes, hydrogen peroxide (H2O2) would cause harmfulness to human health at high concentration level. It thus is urgent to develop highly sensitive and selective sensors for practical H2O2 detection in the fields of water monitoring, food quality control, and so on. In this work, CoAl layered double hydroxide ultrathin nanosheets decorated hematite (CoAl-LDH/α-Fe2O3) photoelectrode was successfully fabricated by a facile hydrothermal process. CoAl-LDH/α-Fe2O3 displays the relatively wide linear range from 1 to 2000 μM with a high sensitivity of 132.0 μA mM-1 cm-2 and a low detection limit of 0.04 μM (S/N ≥ 3) for PEC detection of H2O2, which is superior to other similar α-Fe2O3-based sensors in literatures. The (photo)electrochemical characterizations, such as electrochemical impedance spectroscopy, Mott-Schottky plot, cyclic voltammetry, open circuit potential and intensity modulated photocurrent spectroscopy, were used to investigate the roles of CoAl-LDH on the improved PEC response of α-Fe2O3 toward H2O2. It revealed that, CoAl-LDH could not only passivate the surface states and enlarge the band bending of α-Fe2O3, but also could act as trapping centers for holes and followed by as active sites for H2O2 oxidation, thus facilitated the charge separation and transfer. The strategy for boosting PEC response would be help for the further development of semiconductor-based PEC sensors.
Collapse
Affiliation(s)
- Jiaqi Lv
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Mingwei Wu
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Ming Fan
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Qinqin Zhang
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan Province, 475000, China
| | - Zhixian Chang
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| | - Xinshou Wang
- College of Science, Henan Kaifeng College of Science Technology and Communication, Kaifeng, 475004, China
| | - Qian Zhou
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Li Wang
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Ruifeng Chong
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| | - Ling Zhang
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
8
|
Shi T, Feng Y, Zhong Y, Ding H, Chen K, Chen D. In Situ Synthesis of Ti:Fe2O3/Cu2O p-n Junction for Highly Efficient Photogenerated Carriers Separation. INORGANICS 2023. [DOI: 10.3390/inorganics11040155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
High photoelectrochemical water oxidation efficiency can be achieved through an efficient photogenerated holes transfer pathway. Constructing a photoanode semiconductor heterojunction with close interface contact is an effective tactic to improve the efficiency of photogenerated carrier separation. Here, we reported a novel photoanode p-n junction of Ti:Fe2O3/Cu2O (n-Ti:Fe2O3 and p-Cu2O), Cu2O being obtained by in situ reduction in CuAl-LDH (layered double hydroxides). The Ti:Fe2O3/Cu2O photoanode exhibits a high photocurrent density reaching 1.35 mA/cm2 at 1.23 V vs. RHE is about 1.67 and 50 times higher than the Ti:Fe2O3 and α-Fe2O3 photoanode, respectively. The enhanced PEC activity for the n-Ti:Fe2O3/p-Cu2O photoelectrode is due to the remarkable surface charge separation efficiency (ηsurface 85%) and bulk charge separation efficiency (ηbulk 72%) formed by the p-n junction and the tight interface contact formed by in situ reduction. Moreover, as a cocatalyst, CuAl-LDH can protect the Ti:Fe2O3/Cu2O photoanode and improve its stability to a certain extent. This study provides insight into the manufacturing potential of in situ reduction layered double hydroxides semiconductor for designing highly active photoanodes in the field of photoelectrochemical water oxidation.
Collapse
Affiliation(s)
- Tie Shi
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Yanmei Feng
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Yi Zhong
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Hao Ding
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Kai Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring, Pollution Control School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Daimei Chen
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
9
|
Chong R, Wang Z, Fan M, Wang L, Chang Z, Zhang L. Hematite decorated with nanodot-like cobalt (oxy)hydroxides for boosted photoelectrochemical water oxidation. J Colloid Interface Sci 2023; 629:217-226. [PMID: 36152578 DOI: 10.1016/j.jcis.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/26/2022] [Accepted: 09/04/2022] [Indexed: 11/22/2022]
Abstract
Photoelectrochemical (PEC) water splitting has been considered as an alternative process to produce green hydrogen. However, the energy conversion efficiency of PEC systems was still limited by the inefficient photoanode. Cocatalysts decoration is regarded as an efficient strategy for improving PEC performance of photoanode. In this work, nanodot-like cobalt (oxy)hydroxides was rationally decorated on hematite to fabricate CoOOH/Fe2O3 photoanode. The resulted CoOOH/Fe2O3 exhibits a high photocurrent density of 1.92 mA cm-2 at 1.23 V vs. RHE, which is 2.6 times than that of bare Fe2O3. In addition, the onset potential displays a cathodic shift of ca. 110 mV, indicating that CoOOH can efficiently accelerate water oxidation kinetics over Fe2O3. The comprehensive PEC and electrochemical characterizations reveal that CoOOH could not only provide abundant accessible Co active sites for water oxidation, but also could passivate the surface states of Fe2O3, thus increase the carrier density and decrease the interfacial resistance. As a result, the PEC water oxidation performance over Fe2O3 was significantly boosted. This work supports that the roles of CoOOH cocatalyst is generic and such CoOOH could be used for other semiconductor-based photoanodes for outstanding PEC water splitting performance.
Collapse
Affiliation(s)
- Ruifeng Chong
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zhenzhen Wang
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Ming Fan
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Li Wang
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zhixian Chang
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Ling Zhang
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
10
|
Chai H, Gao L, Jin J. Revealing the Essential Role of Iron Phosphide and its Surface-Evolved Species in the Photoelectrochemical Water Oxidation by Gd-Doped Hematite Photoanode. CHEMSUSCHEM 2022; 15:e202201030. [PMID: 35761757 DOI: 10.1002/cssc.202201030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Phosphates are easily derived from transition metal phosphides under natural conditions, and the real roles of these two in catalytic reactions are not yet clear. Here, a multiphase FeP/Gd-Fe2 O3 shell-core structure photoanode was constructed and explored regarding the real role of FeP and its surface-reconstructed iron phosphate (Fe-Pi) in photoelectrochemical water oxidation. The FeP/Gd-Fe2 O3 photoanode exhibited an excellent photocurrent density of 2.56 mA cm-2 at 1.23 V versus the reversible hydrogen electrode, up to 4 times greater than those of the pristine α-Fe2 O3 (0.64 mA cm-2 ). Detailed studies showed that FeP could act as a photosensitizer to enhance light absorption and as a conductive layer to accelerate charge transfer. The FeP significantly enhanced the incident photon-to-current conversion efficiency of the photoanode and improved the electron transition within the photoanode. Naturally evolved Fe-Pi on the surface provided more active sites for water oxidation. They effectively passivated the surface capture state and synergistically inhibited the electron-hole recombination. Moreover, the in-situ constructed multiphase catalyst had a smaller interfacial contact resistance than the intentionally decorative cocatalyst. This work provides new insight into the understanding of the essential role of transition metal phosphides and their surface-reconstructed species in catalytic reactions.
Collapse
Affiliation(s)
- Huan Chai
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Lili Gao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jun Jin
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
11
|
Achieving surface-sealing of hematite nanoarray photoanode with controllable metal–organic frameworks shell for enhanced photoelectrochemical water oxidation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Choi MJ, Kim TL, Choi KS, Sohn W, Lee TH, Lee SA, Park H, Jeong SY, Yang JW, Lee S, Jang HW. Controlled Band Offsets in Ultrathin Hematite for Enhancing the Photoelectrochemical Water Splitting Performance of Heterostructured Photoanodes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7788-7795. [PMID: 35040620 DOI: 10.1021/acsami.1c18886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Formation of type II heterojunctions is a promising strategy to enhance the photoelectrochemical performance of water-splitting photoanodes, which has been tremendously studied. However, there have been few studies focusing on the formation of type II heterojunctions depending on the thickness of the overlayer. Here, enhanced photoelectrochemical activities of a Fe2O3 film deposited-BiVO4/WO3 heterostructure with different thicknesses of the Fe2O3 layer have been investigated. The Fe2O3 (10 nm)/BiVO4/WO3 heterojunction photoanode shows a much higher photocurrent density compared to the Fe2O3 (100 nm)/BiVO4/WO3 photoanode. The Fe2O3 (10 nm)/BiVO4/WO3 trilayer heterojunction anodes have sequential type II junctions, while a thick Fe2O3 overlayer forms an inverse type II junction between Fe2O3 and BiVO4. Furthermore, the incident-photon-to-current efficiency measured under back-illumination is higher than those measured under front-illumination, demonstrating the importance of the illumination sequence for light absorption and charge transfer and transport. This study shows that the thickness of the oxide overlayer influences the energy band alignment and can be a strategy to improve solar water splitting performance. Based on our findings, we propose a photoanode design strategy for efficient photoelectrochemical water splitting.
Collapse
Affiliation(s)
- Min-Ju Choi
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Gwanak-ro 1, Seoul 08826, Republic of Korea
| | - Taemin L Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Gwanak-ro 1, Seoul 08826, Republic of Korea
| | - Kyoung Soon Choi
- Advanced Nano Surface Research Group, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Woonbae Sohn
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Gwanak-ro 1, Seoul 08826, Republic of Korea
| | - Tae Hyung Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Gwanak-ro 1, Seoul 08826, Republic of Korea
| | - Sol A Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Gwanak-ro 1, Seoul 08826, Republic of Korea
| | - Hoonkee Park
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Gwanak-ro 1, Seoul 08826, Republic of Korea
| | - Sang Yun Jeong
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jin Wook Yang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Gwanak-ro 1, Seoul 08826, Republic of Korea
| | - Sanghan Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Gwanak-ro 1, Seoul 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea
| |
Collapse
|
13
|
Kim J, Ko K, Kwon H, Suh J, Kwon HJ, Yoo JH. Channel Scaling Dependent Photoresponse of Copper-Based Flexible Photodetectors Fabricated Using Laser-Induced Oxidation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6977-6984. [PMID: 35080847 DOI: 10.1021/acsami.1c21296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Copper (Cu) oxide compounds (CuxO), which include cupric (CuO) and cuprous (Cu2O) oxide, have been recognized as a promising p-channel material with useful photovoltaic properties and superior thermal conductivity. Typically, deposition methods or thermal oxidation can be used to obtain CuxO. However, these processes are difficult to apply to flexible substrates because plastics have a comparatively low glass transition temperature. Also, additional patterning steps are needed to fabricate applications. In this work, we fabricated a metal-semiconductor-metal photodetector using laser-induced oxidation of thin Cu films under ambient conditions. Raman spectroscopy, scanning electron microscopy-energy-dispersive X-ray spectroscopy, and atomic force microscopy were used to study the composition and morphology of our devices. Moreover, the photoresponse of this device is reported herein. We performed an in-depth analysis of the relationship between the channel size and number of carriers using scanning photocurrent microscopy. The carrier transport behaviors were identified; the photocurrent decreased as the length and width of the channel increased. Furthermore, we verified the suitability of the device as a flexible photodetector using a variety of bending tests. Our in-depth analysis of this Cu-based flexible photodetector could play an important role in understanding the mechanisms of other flexible photovoltaic applications.
Collapse
Affiliation(s)
- Junil Kim
- Department of Information and Communication Engineering, DGIST, Daegu 42988, South Korea
| | - Kyungmin Ko
- Department of Materials Science and Engineering, UNIST, Ulsan 44919, South Korea
| | - Hyeokjin Kwon
- Department of Information and Communication Engineering, DGIST, Daegu 42988, South Korea
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu 42988, South Korea
| | - Joonki Suh
- Department of Materials Science and Engineering, UNIST, Ulsan 44919, South Korea
- Graduate School of Semiconductor Materials and Devices Engineering, UNIST, Ulsan 44919, South Korea
| | - Hyuk-Jun Kwon
- Department of Information and Communication Engineering, DGIST, Daegu 42988, South Korea
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu 42988, South Korea
| | - Jae-Hyuck Yoo
- Physical and Life Sciences and NIF and Photon Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
14
|
Yang ZZ, Zhang C, Zeng GM, Tan XF, Huang DL, Zhou JW, Fang QZ, Yang KH, Wang H, Wei J, Nie K. State-of-the-art progress in the rational design of layered double hydroxide based photocatalysts for photocatalytic and photoelectrochemical H2/O2 production. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214103] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Chai H, Wang P, Wang T, Gao L, Li F, Jin J. Surface Reconstruction of Cobalt Species on Amorphous Cobalt Silicate-Coated Fluorine-Doped Hematite for Efficient Photoelectrochemical Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47572-47580. [PMID: 34607433 DOI: 10.1021/acsami.1c12597] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The slow kinetics of photoelectrochemical (PEC) water oxidation reaction is the bottleneck of PEC water splitting. Here, we report a comprehensive method to improve the PEC water oxidation performance of a hematite (α-Fe2O3) photoanode, that is, fluorine doping and an ultrathin amorphous cobalt silicate (Co-Sil) oxygen evolution reaction (OER) cocatalyst by photo-assisted electrophoretic deposition (PEPD). Detailed investigations reveal that fluorine doping can reduce the interfacial transfer resistance of charge and increase the carrier density to improve the conductivity of hematite. Also, simultaneously, the Co-Sil is used as an excellent OER cocatalyst to accelerate OER kinetics. Specifically, surface reconstruction of cobalt species occurred, and its average oxidation state increased significantly, which was more conducive to water oxidation. In addition, the presence of silicate groups could reduce the OOH* adsorption free energy. The synergistic effect of these efforts significantly reduced the onset potential and overpotential and enhanced the charge separation of the α-Fe2O3 photoanode, resulting in an excellent photocurrent density around 2.61 mA cm-2 at 1.23 V vs RHE (4.75 times higher than the primitive α-Fe2O3). This work provides a feasible strategy for the construction and development of a potential hematite photoanode.
Collapse
Affiliation(s)
- Huan Chai
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Peng Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Tong Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Lili Gao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Feng Li
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China
| | - Jun Jin
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
16
|
Wang P, Li F, Long X, Wang T, Chai H, Yang H, Li S, Ma J, Jin J. Bifunctional citrate-Ni 0.9Co 0.1(OH) x layer coated fluorine-doped hematite for simultaneous hole extraction and injection towards efficient photoelectrochemical water oxidation. NANOSCALE 2021; 13:14197-14206. [PMID: 34477701 DOI: 10.1039/d1nr03257g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Surface modification by loading a water oxidation co-catalyst (WOC) is generally considered an efficient means to optimize the sluggish surface oxygen evolution reaction (OER) of a hematite photoanode for photoelectrochemical (PEC) water oxidation. However, the surface WOC usually exerts little impact on the bulk charge separation of hematite. Herein, an ultrathin citrate-Ni0.9Co0.1(OH)x [Cit-Ni0.9Co0.1(OH)x] is conformally coated on the fluorine-doped hematite (F-Fe2O3) photoanode for PEC water oxidation to simultaneously promote the internal hole extraction and surface hole injection of the target photoanode. Besides, the conformally coated Cit-Ni0.9Co0.1(OH)x overlayer passivates the redundant surface trap states of F-Fe2O3. These factors result in a superior photocurrent density of 2.52 mA cm-2 at 1.23 V versus a reversible hydrogen electrode (V vs. RHE) for the target photoanode. Detailed investigation manifests that the hole extraction property in Cit-Ni0.9Co0.1(OH)x is mainly derived from the Ni sites, while Co incorporation endows the overlayer with more catalytic active sites. This synergistic effect between Ni and Co contributes to a rapid and continuous hole migration pathway from the bulk to the interface of the target photoanode, and then to the electrolyte for water oxidation.
Collapse
Affiliation(s)
- Peng Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gao R, Zhu J, Yan D. Transition metal-based layered double hydroxides for photo(electro)chemical water splitting: a mini review. NANOSCALE 2021; 13:13593-13603. [PMID: 34477633 DOI: 10.1039/d1nr03409j] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The conversion of solar energy into usable chemical fuels, such as hydrogen gas, via photo(electro)chemical water splitting is a promising approach for creating a carbon neutral energy ecosystem. The deployment of this technology industrially and at scale requires photoelectrodes that are highly active, cost-effective, and stable. To create these new photoelectrodes, transition metal-based electrocatalysts have been proposed as potential cocatalysts for improving the performance of water splitting catalysts. Layered double hydroxides (LDHs) are a class of clays with brucite like layers and intercalated anions. Transition metal-based LDHs are increasingly popular in the field of photo(electro)chemical water splitting due to their unique physicochemical properties. This article aims to review recent advances in transition metal-based LDHs for photo(electro)chemical water splitting. This article provides a brief overview of the research in a format approachable for the general scientific audience. Specifically, this review examines the following areas: (i) routes for synthesis of transition metal-based LDHs, (ii) recent developments in transition metal-based LDHs for photo(electro)chemical water splitting, and (iii) an overview of the structure-property relationships therein.
Collapse
Affiliation(s)
- Rui Gao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China.
| | | | | |
Collapse
|
18
|
Masoumi Z, Tayebi M, Kolaei M, Tayyebi A, Ryu H, Jang JI, Lee BK. Simultaneous Enhancement of Charge Separation and Hole Transportation in a W:α-Fe 2O 3/MoS 2 Photoanode: A Collaborative Approach of MoS 2 as a Heterojunction and W as a Metal Dopant. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39215-39229. [PMID: 34374510 DOI: 10.1021/acsami.1c08139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, a facile approach has been successfully applied to synthesize a W-doped Fe2O3/MoS2 core-shell electrode with unique nanostructure modifications for photoelectrochemical performance. A two-dimensional (2D) structure of molybdenum disulfide (MoS2) and tungsten (W)-doped hematite (W:α-Fe2O3) overcomes the drawbacks of the α-Fe2O3 and MoS2 semiconductor through simple and facile processes to improve the photoelectrochemical (PEC) performance. The highest photocurrent density of the 0.5W:α-Fe2O3/MoS2 photoanode is 1.83 mA·cm-2 at 1.23 V vs reversible hydrogen electrode (RHE) under 100 mW·cm2 illumination, which is higher than those of 0.5W:α-Fe2O3 and pure α-Fe2O3 electrodes. The overall water splitting was evaluated by measuring the H2 and O2 evolution, which after 2 h of irradiation for 0.5W:α-Fe2O3/MoS2 was determined to be 49 and 23.8 μmol.cm-2, respectively. The optimized combination of the heterojunction and metal doping on pure α-Fe2O3 (0.5W:α-Fe2O3/MoS2 photoanode) showed an incident photon-to-electron conversion efficiency (IPCE) of 37% and an applied bias photon-to-current efficiency (ABPE) of 26%, which are around 5.2 and 13 times higher than those of 0.5W:α-Fe2O3, respectively. Moreover, the facile fabrication strategy can be easily extended to design other oxide/carbon-sulfide/oxide core-shell materials for extensive applications.
Collapse
Affiliation(s)
- Zohreh Masoumi
- Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan 44610, Republic of Korea
| | - Meysam Tayebi
- Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan 44610, Republic of Korea
| | - Morteza Kolaei
- Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan 44610, Republic of Korea
| | - Ahmad Tayyebi
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Hongsun Ryu
- Department of Physics, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107 South Korea
| | - Joon I Jang
- Department of Physics, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107 South Korea
| | - Byeong-Kyu Lee
- Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan 44610, Republic of Korea
| |
Collapse
|
19
|
Katsuki T, Zahran ZN, Tanaka K, Eo T, Mohamed EA, Tsubonouchi Y, Berber MR, Yagi M. Facile Fabrication of a Highly Crystalline and Well-Interconnected Hematite Nanoparticle Photoanode for Efficient Visible-Light-Driven Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39282-39290. [PMID: 34387481 DOI: 10.1021/acsami.1c08949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Facile and scalable fabrication of α-Fe2O3 photoanodes using a precursor solution containing FeIII ions and 1-ethylimidazole (EIm) in methanol was demonstrated to afford a rigidly adhered α-Fe2O3 film with a controllable thickness on a fluorine-doped tin oxide (FTO) substrate. EIm ligation to FeIII ions in the precursor solution brought about high crystallinity of three-dimensionally well-interconnected nanoparticles of α-Fe2O3 upon sintering. This is responsible for the 13.6 times higher photocurrent density (at 1.23 V vs reference hydrogen electrode (RHE)) for photoelectrochemical (PEC) water oxidation on the α-Fe2O3 (w-α-Fe2O3) photoanode prepared with EIm compared with that (w/o-α-Fe2O3) prepared without EIm. The w-α-Fe2O3 photoanode provided the highest charge separation efficiency (ηsep) value of 27% among the state-of-the-art pristine α-Fe2O3 photoanodes, providing incident photon-to-current conversion efficiency (IPCE) of 13% at 420 nm and 1.23 V vs RHE. The superior ηsep for the w-α-Fe2O3 photoanode is attributed to the decreased recombination of the photogenerated charge carriers at the grain boundary between nanoparticles, in addition to the higher number of the catalytically active sites and the efficient bulk charge transport in the film, compared with w/o-α-Fe2O3.
Collapse
Affiliation(s)
- Tomohiro Katsuki
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata 9050-2181, Japan
| | - Zaki N Zahran
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata 9050-2181, Japan
- Faculty of Science, Tanta University, Tanta 5111, Egypt
| | - Kou Tanaka
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata 9050-2181, Japan
| | - Tatsuya Eo
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata 9050-2181, Japan
| | - Eman A Mohamed
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata 9050-2181, Japan
| | - Yuta Tsubonouchi
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata 9050-2181, Japan
| | - Mohamed R Berber
- Chemistry Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Masayuki Yagi
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata 9050-2181, Japan
| |
Collapse
|
20
|
Lu H, Tournet J, Dastafkan K, Liu Y, Ng YH, Karuturi SK, Zhao C, Yin Z. Noble-Metal-Free Multicomponent Nanointegration for Sustainable Energy Conversion. Chem Rev 2021; 121:10271-10366. [PMID: 34228446 DOI: 10.1021/acs.chemrev.0c01328] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Global energy and environmental crises are among the most pressing challenges facing humankind. To overcome these challenges, recent years have seen an upsurge of interest in the development and production of renewable chemical fuels as alternatives to the nonrenewable and high-polluting fossil fuels. Photocatalysis, photoelectrocatalysis, and electrocatalysis provide promising avenues for sustainable energy conversion. Single- and dual-component catalytic systems based on nanomaterials have been intensively studied for decades, but their intrinsic weaknesses hamper their practical applications. Multicomponent nanomaterial-based systems, consisting of three or more components with at least one component in the nanoscale, have recently emerged. The multiple components are integrated together to create synergistic effects and hence overcome the limitation for outperformance. Such higher-efficiency systems based on nanomaterials will potentially bring an additional benefit in balance-of-system costs if they exclude the use of noble metals, considering the expense and sustainability. It is therefore timely to review the research in this field, providing guidance in the development of noble-metal-free multicomponent nanointegration for sustainable energy conversion. In this work, we first recall the fundamentals of catalysis by nanomaterials, multicomponent nanointegration, and reactor configuration for water splitting, CO2 reduction, and N2 reduction. We then systematically review and discuss recent advances in multicomponent-based photocatalytic, photoelectrochemical, and electrochemical systems based on nanomaterials. On the basis of these systems, we further laterally evaluate different multicomponent integration strategies and highlight their impacts on catalytic activity, performance stability, and product selectivity. Finally, we provide conclusions and future prospects for multicomponent nanointegration. This work offers comprehensive insights into the development of cost-competitive multicomponent nanomaterial-based systems for sustainable energy-conversion technologies and assists researchers working toward addressing the global challenges in energy and the environment.
Collapse
Affiliation(s)
- Haijiao Lu
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Julie Tournet
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Kamran Dastafkan
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yun Liu
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yun Hau Ng
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Siva Krishna Karuturi
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zongyou Yin
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
21
|
Xie B, Ning X, Wei S, Liu J, Zhang J, Lu X. A co-activation strategy for enhancing the performance of hematite in photoelectrochemical water oxidation. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Zhou D, Fan K. Recent strategies to enhance the efficiency of hematite photoanodes in photoelectrochemical water splitting. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63712-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Xiao J, Peng L, Gao L, Zhong J, Huang Z, Yuan E, Srinivasapriyan V, Zhou SF, Zhan G. Improving light absorption and photoelectrochemical performance of thin-film photoelectrode with a reflective substrate. RSC Adv 2021; 11:16600-16607. [PMID: 35479178 PMCID: PMC9031256 DOI: 10.1039/d1ra02826j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/29/2021] [Indexed: 11/21/2022] Open
Abstract
The charge separation/transport efficiency is relatively high in thin-film hematite photoanodes in which the distance for charge transport is short, but simultaneously the high loss of light absorption due to transmission is confronted. To increase light absorption in thin-film Fe2O3:Ti, commercial substrates such as Cu foil, Ag foil, and a mirror are adopted acting as back-reflectors and individually integrated with the Fe2O3:Ti electrode. The promotion effect of the commercial back-reflectors on the light absorption efficiency and photoelectrochemical (PEC) performance of the hydrothermally prepared Fe2O3:Ti electrodes with a variety of film thicknesses is investigated. As a result, Ag foil and the mirror show favorable and equal efficacy while the promoting effect of Cu foil is limited. In addition, the photocurrent increment achieved by the Ag back-reflector decreases linearly along with the logarithmic of the film thickness and the optimized film thickness of the Fe2O3:Ti electrode is decreased from 520 to 290 nm. The high durability of Ag foil in the alkaline electrolyte during solar light irradiation is demonstrated. Furthermore, the reflective substrate also shows a promotion effect on the BiVO4 photoanode and CuBi2O4 photocathode, as well as the unbiased photocurrent from a tandem cell constituted by TiO2 and CuBi2O4. The charge separation/transport efficiency is relatively high in thin-film hematite photoanodes in which the distance for charge transport is short, but simultaneously the high loss of light absorption due to transmission is confronted.![]()
Collapse
Affiliation(s)
- Jingran Xiao
- College of Chemical Engineering, Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
| | - Lingling Peng
- College of Chemical Engineering, Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
| | - Le Gao
- College of Chemical Engineering, Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
| | - Jun Zhong
- College of Chemical Engineering, Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
| | - Zhongliang Huang
- College of Chemical Engineering, Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
| | - Enxian Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou Jiangsu 225002 P. R. China
| | - Vijayan Srinivasapriyan
- Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
| | - Shu-Feng Zhou
- College of Chemical Engineering, Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
| | - Guowu Zhan
- College of Chemical Engineering, Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
| |
Collapse
|
24
|
Lei B, Xu D, Wei B, Xie T, Xiao C, Jin W, Xu L. In Situ Synthesis of α-Fe 2O 3/Fe 3O 4 Heterojunction Photoanode via Fast Flame Annealing for Enhanced Charge Separation and Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4785-4795. [PMID: 33430580 DOI: 10.1021/acsami.0c19927] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hematite (α-Fe2O3) is a promising photoanode material in photoelectrochemical (PEC) water splitting. To further improve the catalytic activity, a reasonable construction of heterojunction and surface engineering can effectively improve the photoanode PEC water-splitting performance via improving bulk carrier transport and interfacial charge-transfer efficiency. As Fe3O4 has an excellent conductivity and a suitable energy band position, α-Fe2O3/Fe3O4 heterojunction can be an ideal structure to improve the activity of α-Fe2O3. However, only few studies have been reported on α-Fe2O3/Fe3O4 heterojunctions as photoanodes. In this work, a holey nanorod Fe2O3/Fe3O4 heterojunction photoanode with oxygen vacancies was fabricated using a rapid and facile flame reduction treatment. Compared with pure Fe2O3, the water oxidation performance of the Fe2O3/Fe3O4 photoanode is improved by ninefold at 1.23 VRHE. Our study revealed that the porous nanorod structure providing more active sites and oxygen vacancies as the hole transfer medium, together improve the interface charge transfer performance of the photoanode. At the same time, Fe3O4 can form a Fe2O3/Fe3O4 heterojunction to improve the carrier separation efficiency. More importantly, Fe3O4 can serve as active sites, solving the slow water oxidation kinetic problem of hematite to enhance the catalytic activity. Our work shows that when flame acts on precursors containing oxygen or hydroxide, it is easy to form compounds with different microstructures or compositions in situ.
Collapse
Affiliation(s)
- Bo Lei
- Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| | - Dandan Xu
- Department of Chemistry, Harbin Normal University, Harbin 150025, China
| | - Bo Wei
- Department of Physics, Harbin Institute of Technology, Harbin 150080, China
| | - Tengfeng Xie
- College of Chemistry, Jilin University, Changchun 130023, China
| | - Chunyu Xiao
- Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| | - Weiliang Jin
- Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| | - Lingling Xu
- Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
25
|
Li Y, Wang T, Gao B, Fan X, Gong H, Xue H, Zhang S, Huang X, He J. Efficient photocathode performance of lithium ion doped LaFeO 3 nanorod arrays in hydrogen evolution. NEW J CHEM 2021. [DOI: 10.1039/d0nj05788f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Li-doped LaFeO3 nanorod arrays are used in photoelectrochemical water reduction.
Collapse
Affiliation(s)
- Yang Li
- College of Materials Science and Technology
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies
- Nanjing University of Aeronautics and Astronautics
- 210016 Nanjing
- P. R. China
| | - Tao Wang
- College of Materials Science and Technology
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies
- Nanjing University of Aeronautics and Astronautics
- 210016 Nanjing
- P. R. China
| | - Bin Gao
- College of Materials Science and Technology
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies
- Nanjing University of Aeronautics and Astronautics
- 210016 Nanjing
- P. R. China
| | - Xiaoli Fan
- School of Materials Science and Engineering
- Nanjing Institute of Technology
- 211167 Nanjing
- P. R. China
| | - Hao Gong
- College of Materials Science and Technology
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies
- Nanjing University of Aeronautics and Astronautics
- 210016 Nanjing
- P. R. China
| | - Hairong Xue
- College of Materials Science and Technology
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies
- Nanjing University of Aeronautics and Astronautics
- 210016 Nanjing
- P. R. China
| | - Songtao Zhang
- Testing Center
- Yangzhou University
- 225009 Yangzhou
- P. R. China
| | - Xianli Huang
- College of Materials Science and Technology
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies
- Nanjing University of Aeronautics and Astronautics
- 210016 Nanjing
- P. R. China
| | - Jianping He
- College of Materials Science and Technology
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies
- Nanjing University of Aeronautics and Astronautics
- 210016 Nanjing
- P. R. China
| |
Collapse
|
26
|
Wang T, Fan X, Gao B, Jiang C, Li Y, Li P, Zhang S, Huang X, He J. Self‐Assembled Urchin‐Like CuWO
4
/WO
3
Heterojunction Nanoarrays as Photoanodes for Photoelectrochemical Water Splitting. ChemElectroChem 2020. [DOI: 10.1002/celc.202001154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tao Wang
- College of Materials Science and Technology Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Xiaoli Fan
- School of Materials Science and Engineering Nanjing Institute of Technology 211167 Nanjing PR China
| | - Bin Gao
- College of Materials Science and Technology Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Cheng Jiang
- College of Materials Science and Technology Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Yang Li
- College of Materials Science and Technology Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Peng Li
- College of Materials Science and Technology Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Songtao Zhang
- Testing Center Yangzhou University Yangzhou 225009 PR China
| | - Xianli Huang
- College of Materials Science and Technology Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Jianping He
- College of Materials Science and Technology Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| |
Collapse
|
27
|
Tao SM, Chung RJ, Lin LY. Heteroatom Doping Strategy for Establishing Hematite Homojunction as Efficient Photocatalyst for Accelerating Water Splitting. Chem Asian J 2020; 15:3853-3860. [PMID: 32955150 DOI: 10.1002/asia.202001021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/11/2020] [Indexed: 11/10/2022]
Abstract
Hematite (α-Fe2 O3 ) is one of the promising photocatalysts for water oxidation, owing to its stable, abundant and visible-light responsive features. Enhancing electrical conductivity and accelerating oxidation evolution kinetics are expected to improve photocatalytic ability of hematite toward water oxidation. In this work, strategies of doping heteroatoms and developing pn homojunction are adopted to enhance the photocatalytic ability of hematite electrodes. The Ti and Mg dopants are separately incorporated in two layers of hematite electrodes via two-step hydrothermal reaction and one-step annealing process. The effect of regrowth time for synthesizing Mg-doped hematite on the photoelectrochemical performance of Mg-doped and Ti-doped hematite (Mg-Fe2 O3 /Ti-Fe2 O3 ) electrode is studied. The size of rod-like structure and gaps in-between play important roles on the photocatalytic ability of Mg-Fe2 O3 /Ti-Fe2 O3 . The optimized Mg-Fe2 O3 /Ti-Fe2 O3 electrode is prepared by using merely 10 min for synthesizing the Mg-doped hematite top layer, which shows the highest photocurrent density of 2.83 mA/cm2 at 1.60 VRHE along with the highest carrier density of 5.89×1016 cm-3 and the smallest charge-transfer resistance. This largely improved photoelectrochemical performance is attributed to the more donor generation with heteroatom-doping and more efficient charge cascade with homojunction establishment. Other p-type metals are encouraged to dope in hematite as the second layer to couple with the n-type Ti-doped hematite for developing efficient pn homojunction and improve the photocatalytic ability of hematite in the near future.
Collapse
Affiliation(s)
- Shang-Mao Tao
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Lu-Yin Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan.,Research Center of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors, Taipei, Taiwan
| |
Collapse
|
28
|
Wang T, Long X, Wei S, Wang P, Wang C, Jin J, Hu G. Boosting Hole Transfer in the Fluorine-Doped Hematite Photoanode by Depositing Ultrathin Amorphous FeOOH/CoOOH Cocatalysts. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49705-49712. [PMID: 33104336 DOI: 10.1021/acsami.0c15568] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The charge transfer is a key issue in the development of efficient photoelectrodes. Here, we report a method using F-doping and dual-layer ultrathin amorphous FeOOH/CoOOH cocatalysts coupling to enable the inactive α-Fe2O3 photoanode to become highly vibrant for the oxygen evolution reaction (OER). Fluorine doping is revealed to increase the charge density and improve the conductivity of α-Fe2O3 for rapid charge transfer. Furthermore, ultrathin FeOOH was deposited on F-Fe2O3 to extract photogenerated holes and passivate the surface states for accelerated charge carrier transfer. Moreover, CoOOH as an excellent cocatalyst was coated onto FeOOH/F-Fe2O3 with the photoassisted electrodeposition method remarkably expediting OER kinetics through an optional pathway of holes utilized by Co species. Ultimately, the CoOOH/FeOOH/F-Fe2O3 photoanode exhibits a satisfactory photocurrent density (3.3-fold higher than pristine α-Fe2O3) and a negatively shifted onset potential of 80 mV. This work showcases an appealing maneuver to activate the water oxidation performance of the α-Fe2O3 photoanode by an integration strategy of heteroatom doping and cocatalyst coupling.
Collapse
Affiliation(s)
- Tong Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Xuefeng Long
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Shenqi Wei
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Peng Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Chenglong Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Jun Jin
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Guowen Hu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
29
|
Fluorine doped copper tungsten nanoflakes with enhanced charge separation for efficient photoelectrochemical water oxidation. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
30
|
Wei S, Wang C, Long X, Wang T, Wang P, Zhang M, Li S, Ma J, Jin J, Wu L. A oxygen vacancy-modulated homojunction structural CuBi 2O 4 photocathodes for efficient solar water reduction. NANOSCALE 2020; 12:15193-15200. [PMID: 32638787 DOI: 10.1039/d0nr04473c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The photoelectrochemical (PEC) water reduction performance of CuBi2O4 (CBO)-based photocathodes is still far from their theoretical values due to low bulk and surface charge separation efficiencies. Herein, we propose a regrowth strategy to prepare a photocathode with CBO coating on Zn-doped CBO (CBO/Zn-CBO). Furthermore, NaBH4 treatment of CBO/Zn-CBO introduced oxygen vacancies (Ov) on CBO/Zn-CBO. It was found that Zn-doping not only increases the charge carrier concentration of CBO, but also leads to appropriate band alignment to form homojunctions. This homojunction can effectively promote the separation of electron-hole pairs, thus obtaining excellent photocurrent density (0.5 mA cm-2 at 0.3 V vs. RHE) and charge separation efficiency (1.5 times than CBO). The following surface treatment induced Ov on CBO/Zn-CBO, which significantly increased the active area of the surface catalytic reaction and further enhanced the photocurrent density (0.6 mA cm-2). In the absence of cocatalysts, the electron injection efficiency of Ov/CBO/Zn-CBO was 1.47 times improved than that of CBO. This work demonstrates a homojunction photocathode with Ov modulation, which provides a new view for future photoelectrochemical water splitting.
Collapse
Affiliation(s)
- Shenqi Wei
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China.
| | - Chenglong Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China.
| | - Xuefeng Long
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China.
| | - Tong Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China.
| | - Peng Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China.
| | - Mingrui Zhang
- College of Chemical Engineering, Northwest University for Nationalities, Lanzhou, Gansu 730030, P.R. China.
| | - Shuwen Li
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China.
| | - Jiantai Ma
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China.
| | - Jun Jin
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China.
| | - Lan Wu
- College of Chemical Engineering, Northwest University for Nationalities, Lanzhou, Gansu 730030, P.R. China.
| |
Collapse
|
31
|
Wang C, Wei S, Li F, Long X, Wang T, Wang P, Li S, Ma J, Jin J. Activating a hematite nanorod photoanode via fluorine-doping and surface fluorination for enhanced oxygen evolution reaction. NANOSCALE 2020; 12:3259-3266. [PMID: 31970358 DOI: 10.1039/c9nr09502k] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Poor charge separation and sluggish oxygen evolution reaction (OER) kinetics are two typical factors that hinder the photoelectrochemical (PEC) applications of hematite. Dual modification via heteroatom doping and surface treatment is an attractive strategy to overcome the above problems. Herein, for the first time, a hematite nanorod photoanode was ameliorated via the fluorine treatment (F-treatment) of both bulk and surface, enabling simultaneous charge separation from the interior to the interface. Accordingly, the novel photoanode (FeFx/F-Fe2O3) exhibited an outstanding PEC water oxidation activity, with a 3-fold improved photocurrent density than that obtained using unmodified α-Fe2O3. More specifically, fluorine doping (F-doping) in the hematite bulk remarkably increased the concentration of charge carriers and endowed it with favorable electrical conductivity for rapid charge transfer. Further surface F-treatment on F-doped α-Fe2O3 (F-Fe2O3) enriched the F-Fe bonds on the surface, which significantly boosted the OER kinetics and thereby inhibited the detrimental charge recombination. As a consequence, the efficiencies of bulk electron-hole pair separation and surface hole injection increased by 2.8 and 1.7 times, respectively. This study points to fluorine modulation as an attractive avenue to advance the PEC performance of metal oxide-based photoelectrode materials.
Collapse
Affiliation(s)
- Chenglong Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China.
| | - Shenqi Wei
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China.
| | - Feng Li
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China.
| | - Xuefeng Long
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China.
| | - Tong Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China.
| | - Peng Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China.
| | - Shuwen Li
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China.
| | - Jiantai Ma
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China.
| | - Jun Jin
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China.
| |
Collapse
|
32
|
Singh S, Sangle AL, Wu T, Khare N, MacManus-Driscoll JL. Growth of Doped SrTiO 3 Ferroelectric Nanoporous Thin Films and Tuning of Photoelectrochemical Properties with Switchable Ferroelectric Polarization. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45683-45691. [PMID: 31710804 DOI: 10.1021/acsami.9b15317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Ferroelectric polarization is an intriguing physical phenomenon for tuning charge-transport properties and finds application in a wide range of optoelectronic devices. So far, ferroelectric materials in a planar geometry or chemically grown nanostructures have been used. However, these structural architectures possess serious disadvantages such as small surface areas and structural defects, respectively, leading to reduced performance. Herein, the growth of room-temperature ferroelectric nanoporous/nanocolumnar structure of Ag,Nb-codoped SrTiO3 (Ag/Nb:STO) using pulsed laser deposition is reported and demonstrated to have enhanced photoelectrochemical (PEC) properties using ferroelectric polarization. By manipulating the external electrical bias, ∼3-fold enhancement in the photocurrent from 40 to 130 μA·cm-2 of film area is obtained. Concurrently, the flat-band potential is decreased from -0.55 to -1.13 V, revealing a giant ferroelectric tuning of the band alignment at the semiconductor surface and enhanced charge transfer. In addition, an electrochemical impedance spectroscopy study confirmed the tuning of the charge transfer with ferroelectric polarization. Our nanoporous ferroelectric-semiconductor approach offers a new platform with great potential for achieving highly efficient PEC devices for renewable energy applications.
Collapse
Affiliation(s)
- Simrjit Singh
- School of Materials Science and Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
- Department of Physics , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| | - Abhijeet Laxman Sangle
- Department of Materials Science and Metallurgy , University of Cambridge , Cambridge CB3 0FS , United Kingdom
| | - Tom Wu
- School of Materials Science and Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Neeraj Khare
- Department of Physics , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| | - Judith L MacManus-Driscoll
- Department of Materials Science and Metallurgy , University of Cambridge , Cambridge CB3 0FS , United Kingdom
| |
Collapse
|
33
|
Boosting water oxidation performance of CuWO4 photoanode by surface modification of nickel phosphate. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.135125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Sharma MD, Mahala C, Basu M. Band gap tuning to improve the photoanodic activity of ZnInxSy for photoelectrochemical water oxidation. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01692a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Elemental doping and band gap tuning of ZnInxSy result in enhanced photoelectrochemical water splitting activity.
Collapse
|