1
|
Yang G, Liu J, Yang Y, Bin Z, You J. Unveiling the Centrosymmetric Effect in the Design of Narrowband Fluorescent Emitters: From Single to Double Difluoroboron Cores. J Am Chem Soc 2025; 147:1251-1261. [PMID: 39721058 DOI: 10.1021/jacs.4c15233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Narrowband fluorescent emitters are receiving significant attention due to the great potential for creating ultrahigh-definition organic light-emitting diode displays (UHD-OLED). Unveiling innovative mechanisms to design new high-performance narrowband fluorescent emitters is a concerted endeavor in both academic and industrial circles. Theoretical calculations reveal that the centrosymmetric dianilido-bipyridine boron difluoride framework (cs-DAPBF2) exhibits significantly reduced structural relaxation compared to previously reported asymmetric structures with monofluoroboron cores, creating new opportunities for the development of narrowband fluorescent emitters. In this work, we present a dual chelation-assisted C-H/C-H homocoupling strategy to efficiently synthesize the 3,3'-amino-2,2'-bipyridine skeleton, enabling the straightforward construction of a series of symmetric cs-DAPBF2-based fluorescent emitters. Through molecular optimization, we have developed a high-performance narrowband green fluorescent emitter, cs-DMeAPBF2-MP, which demonstrates a narrow full width at half-maximum (fwhm) of 20 nm, a high photoluminescence quantum yield (ΦPL) of 98%, a large molar absorptivity (ε) of 2.10 × 104 M-1 cm-1, and a high horizontal dipole ratio (Θ//) of 77%. These properties make cs-DMeAPBF2-MP a promising candidate for fabricating high-efficiency, narrowband green organic light-emitting diodes (OLEDs) with minimal efficiency roll-off. This study represents the first successful application of the DAPBF2 architecture in the design of narrowband fluorescent emitters for high-performance OLEDs.
Collapse
Affiliation(s)
- Ge Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Junjie Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Yudong Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Zhengyang Bin
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| |
Collapse
|
2
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024; 124:13736-14110. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
3
|
Kothavale S, Kim SC, Cheong K, Zeng S, Wang Y, Lee JY. Solution-Processed Pure Red TADF Organic Light-Emitting Diodes With High External Quantum Efficiency and Saturated Red Emission Color. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208602. [PMID: 36653735 DOI: 10.1002/adma.202208602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/29/2022] [Indexed: 06/17/2023]
Abstract
In spite of recent research progress in red thermally activated delayed fluorescence (TADF) emitters, highly efficient solution-processable pure red TADF emitters are rarely reported. Most of the red TADF emitters reported to date are designed using a rigid acceptor unit which renders them insoluble and unsuitable for solution-processed organic light-emitting diodes (OLEDs). To resolve this issue, a novel TADF emitter, 6,7-bis(4-(bis(4-(tert-butyl)phenyl)amino)phenyl)-2,3-bis(4-(tert-butyl)phenyl)quinoxaline-5,8-dicarbonitrile (tBuTPA-CNQx) is designed and synthesized. The highly twisted donor-acceptor architecture and appropriate highest occupied molecular orbital/lowest unoccupied molecular orbital distribution lead to a very small singlet-triplet energy gap of 0.07 eV, high photoluminescence quantum yield of 92%, and short delayed fluorescence lifetime of 52.4 µs. The peripheral t-butyl phenyl decorated quinoxaline acceptor unit and t-butyl protected triphenylamine donor unit are proven to be useful building blocks to improve solubility and minimize the intermolecular interaction. The solution-processed OLED based on tBuTPA-CNQx achieves a high external quantum efficiency (EQE) of 16.7% with a pure red emission peak at 662 nm, which is one of the highest EQE values reported till date in the solution-processed pure red TADF OLEDs. Additionally, vacuum-processable OLED based on tBuTPA-CNQx exhibits a high EQE of 22.2% and negligible efficiency roll-off.
Collapse
Affiliation(s)
- Shantaram Kothavale
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Seung Chan Kim
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Kiun Cheong
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Songkun Zeng
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Yafei Wang
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| |
Collapse
|
4
|
Tao P, Lv Z, Zhao FQ, Zheng XK, Jiang H, Li W, Deng Y, Liu S, Xie G, Wong WY, Zhao Q. One-Pot Synthesis of Acetylacetonate-Based Isomeric Phosphorescent Cyclometalated Iridium(III) Complexes via Random Cyclometalation: A Strategy for Excited-State Manipulation. Inorg Chem 2023; 62:1202-1209. [PMID: 36622043 DOI: 10.1021/acs.inorgchem.2c03597] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The excited-state manipulation of the phosphorescent iridium(III) complexes plays a vital role in their photofunctional applications. The development of the molecular design strategy promotes the creative findings of novel iridium(III) complexes. The current molecular design strategies for iridium(III) complexes mainly depend on the selective cyclometalation of the ligands with the iridium(III) ion, which is governed by the steric hindrance of the ligand during the cyclometalation. Herein, a new molecular design strategy (i.e., random cyclometalation strategy) is proposed for the effective excited-state manipulation of phosphorescent cyclometalated iridium(III) complexes. Two series of new and separable methoxyl-functionalized isomeric iridium(III) complexes are accessed by a one-pot synthesis via random cyclometalation, resulting in a dramatic tuning of the phosphorescence peak wavelength (∼57 nm) and electrochemical properties attributed to the high sensitivity of their excited states to the position of the methoxyl group. These iridium(III) complexes show intense phosphorescence ranging from the yellow (567 nm) to the deep-red (634 nm) color with high photoluminescence quantum yields of up to 0.99. Two deep-red emissive iridium(III) complexes with short decay lifetimes are further utilized as triplet emitters to afford efficient solution-processed electroluminescence with reduced efficiency roll-offs.
Collapse
Affiliation(s)
- Peng Tao
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.,Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Zhuang Lv
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, P. R. China
| | - Fang-Qing Zhao
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| | - Xiao-Kang Zheng
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.,Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - He Jiang
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Wentao Li
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Yongjing Deng
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| | - Guohua Xie
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| |
Collapse
|
5
|
Zhao X, Zhu L, Li Q, Yin H, Shi Y. The Interplay between ESIPT and TADF for the 2,2'-Bipyridine-3,3'-diol: A Theoretical Reconsideration. Int J Mol Sci 2022; 23:ijms232213969. [PMID: 36430447 PMCID: PMC9696045 DOI: 10.3390/ijms232213969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Organic molecules with excited-state intramolecular proton transfer (ESIPT) and thermally activated delayed fluorescence (TADF) properties have great potential for realizing efficient organic light-emitting diodes (OLEDs). Furthermore, 2,2'-bipyridine-3,3'-diol (BP(OH)2) is a typical molecule with ESIPT and TADF properties. Previously, the double ESIPT state was proved to be a luminescent state, and the T2 state plays a dominant role in TADF for the molecule. Nevertheless, whether BP(OH)2 undergoes a double or single ESIPT process is controversial. Since different ESIPT channels will bring different TADF mechanisms, the previously proposed TADF mechanism based on the double ESIPT structure for BP(OH)2 needs to be reconsidered. Herein, reduced density gradient, potential energy surface, IR spectra and exited-state hydrogen-bond dynamics computations confirm that BP(OH)2 undergoes the barrierless single ESIPT process rather than the double ESIPT process with a barrier. Moreover, based on the single ESIPT structure, we calculated spin-orbit coupling matrix elements, nonradiative rates and electron-hole distributions. These results disclose that the T3 state plays a predominant role in TADF. Our investigation provides a better understanding on the TADF mechanism in hydrogen-bonded molecular systems and the interaction between ESIPT and TADF, which further provides a reference for developing efficient OLEDs.
Collapse
|
6
|
Xue P, Wang X, Wang W, Zhang J, Wang Z, Jin J, Zheng C, Li P, Xie G, Chen R. Solution-Processable Chiral Boron Complexes for Circularly Polarized Red Thermally Activated Delayed Fluorescent Devices. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47826-47834. [PMID: 34587742 DOI: 10.1021/acsami.1c13564] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Circularly polarized luminescence (CPL) molecules, especially those with thermally activated delayed fluorescence (TADF) properties, have attracted considerable attention due to their great potential for chiroptical organic light emitting diode (OLED) devices. Here we developed a new pair of TADF emitters with CPL based on boron complexes using chiral donor (cD) binaphthalene, acceptor (A) biphenyl boron β-diketonate, and donor (D) biphenylamine in a cD-A-D architecture. With this design, both efficient intramolecular charge transfer (ICT) and chiral ICT for high-performance CPL were established, leading to high dissymmetry factors (|glum|) up to 2.2 × 10-3 in solution and significantly red-shifted emission around 600 nm for red TADF with a quantum yield over 15% in doped films. More impressively, with these chiral TADF emitters, solution-processed red circularly polarized OLEDs (CP-OLEDs) exhibit external quantum efficiencies (EQEs) up to 2.0% and efficient circularly polarized electroluminescence with dissymmetry factors of 2.6 × 10-3, which are among the best performances of the reported solution-processed orange-red and red TADF CP-OLEDs. These results illustrate the great success of the cD-A-D strategy in designing high-performance CPL TADF emitters with axially chiral boron complexes, providing important clues to understand efficient chiral transfer for large |glum| values and high device performance of CP-OLEDs.
Collapse
Affiliation(s)
- Peiran Xue
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nan-jing 210023, China
| | - Xin Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nan-jing 210023, China
| | - Wuji Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nan-jing 210023, China
| | - Jingyu Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nan-jing 210023, China
| | - Zijie Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nan-jing 210023, China
| | - Jibiao Jin
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nan-jing 210023, China
| | - Chao Zheng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nan-jing 210023, China
| | - Ping Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nan-jing 210023, China
| | - Guohua Xie
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelec-tronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nan-jing 210023, China
| |
Collapse
|
7
|
Benzoylphenyltriazine as a new acceptor of donor–acceptor type thermally-activated delayed-fluorescent emitters. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Liu H, Ando N, Yamaguchi S, Naumov P, Zhang H. Excited-state conformation capture by supramolecular chains towards triplet-involved organic emitters. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Solution-processed multi-resonance organic light-emitting diodes with high efficiency and narrowband emission. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Liu H, Xue J, Wang S, Wu F, Zhao Y, Shen Z. Thermal switches between delayed fluorescence and persistent phosphorescence based on a keto-BODIPY electron acceptor. Org Biomol Chem 2021; 19:2030-2037. [PMID: 33595046 DOI: 10.1039/d0ob02390f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new type of twisted donor-acceptor molecular material 3a and 3b containing carbazole as an electron donor and keto-BODIPY bearing keto-isoindolinyl and pyridyl subunits as an acceptor has been prepared and characterized. Chemical modifications at the meso-position of keto-BODIPY with a nitrogen atom and a cyano group enhance the electron withdrawing ability and cause the emission color change from blue to yellow and red. Steady-state absorption and emission spectra of the two compounds show a strong intramolecular charge transfer (ICT) character. Time-resolved emission spectra and transient decay curves of 3a and 3b show efficient delayed fluorescence with a lifetime of 12.64 μs for 3a and 16.59 μs for 3b at room temperature, whereas persistent phosphorescence with a lifetime of 576.65 ms for 3a and 273.76 ms for 3b was obviously detected at 77 K. These photophysical behaviors have been fully revealed via X-ray diffraction analysis and theoretical calculations, and thus attributed to the hybridized local and charge-transfer (HLCT) states and increased spin-orbital coupling (SOC) strength by mixed n → π* and π → π* transitions involving heteroatom lone pairs and the π-conjugated skeleton, respectively.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, P. R. China.
| | - Jiaying Xue
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, P. R. China.
| | - Sisi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, P. R. China.
| | - Fan Wu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, P. R. China.
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, P. R. China.
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, P. R. China.
| |
Collapse
|
11
|
Alkoxy encapsulation of carbazole-based thermally activated delayed fluorescent dendrimers for highly efficient solution-processed organic light-emitting diodes. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.06.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Zhang Y, Ma Y, Zhang K, Song Y, Lin L, Wang CK, Fan J. Solid-state effect on luminescent properties of thermally activated delayed fluorescence molecule with aggregation induced emission: A theoretical perspective. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118634. [PMID: 32610217 DOI: 10.1016/j.saa.2020.118634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Solid-state effect plays an important role in defining the nature of excited states for thermally activated delayed fluorescence (TADF) molecules and further affects their luminescence properties. Theoretical investigation of photophysical properties with explicit consideration of intermolecular interactions in solid phase, is highly desired. In this work, the luminescent properties of new TADF molecule SBF-BP-DMAC with aggregation induced emission (AIE) feature are theoretically studied both in solution and solid phase. Solvent environment effect in Tetrahydrofuran (THF) is simulated by polarizable continuum model (PCM) and solid-state effect is considered by the combined quantum mechanics and molecular mechanics (QM/MM) method. By combing thermal vibration correlation function (TVCF) theory with first principles calculation, excited state energy consumption process is investigated. Our results show that the calculated prompt fluorescence efficiency, delayed fluorescence efficiency and total fluorescence efficiency in THF is 3.0%, 0.4‰ and 3.0% respectively, and corresponding value increases to 14.4%, 31.5% and 45.9% for molecule in solid phase, this verifies the AIE feature. To detect the inner mechanisms, the geometrical structures, Huang-Rhys (HR) factors and reorganization energies as well as excited state transition properties are analyzed. Decreased HR factor and reorganization energy are found in solid phase, this is caused by the restricted torsion motion of DMAC unit in rigid environment. Thus, non-radiative energy consumption process is suppressed and enhanced fluorescence efficiency is found in the solid phase. Moreover, the smaller energy gap between S1 and T1 in the solid state than that in THF, is more conducive for reverse intersystem crossing process and further improves the efficiency. This work provides reasonable explanation for the experimental measurements and reveals the inner perspectives for AIE and TADF mechanisms, which is advantageous to develop new non-doped OLEDs with advanced feature.
Collapse
Affiliation(s)
- Yuchen Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yuying Ma
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Kai Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yuzhi Song
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Lili Lin
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Chuan-Kui Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (South China University of Technology), Guangzhou 510640, China.
| |
Collapse
|
13
|
Xia Y, Zhang M, Ren S, Song J, Ye J, Humphrey MG, Zheng C, Wang K, Zhang X. 6,12-Dihydro-6,12-diboradibenzo[def,mno]chrysene: A Doubly Boron-Doped Polycyclic Aromatic Hydrocarbon for Organic Light Emitting Diodes by a One-Pot Synthesis. Org Lett 2020; 22:7942-7946. [PMID: 33021796 DOI: 10.1021/acs.orglett.0c02846] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One-pot synthesis of a new doubly boron-doped polycyclic aromatic hydrocarbon of 6,12-dimesityl-6,12-dihydro-6,12-diboradibenzo[def,mno]chrysene (MDBDBC) was reported. MDBDBC features a rigid planar electron-deficient core structure and demonstrates good chemical and thermal stabilities. A low-lying LUMO of -3.53 eV, a low locally excited triplet energy of 1.92 eV, as well as green electroluminescence with maximum EQE of 4.9% were found for MDBDBC, suggesting its potential as an n-type unit for future organic light emitting diode applications.
Collapse
Affiliation(s)
- Youfu Xia
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R. China.,School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Ming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P.R. China.,School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P.R. China
| | - Simeng Ren
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Junling Song
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Jun Ye
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R. China.,School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Mark G Humphrey
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Caijun Zheng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P.R. China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P.R. China
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
14
|
Zhou X, Huang M, Zeng X, Zhong C, Xie G, Gong S, Cao X, Yang C. Sky-blue thermally activated delayed fluorescence polymers with π-interrupted polymer mainchain via Friedel-Crafts polycondensation. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Mikysek T, Nikolaou P, Kafexholli M, Šimůnek P, Váňa J, Marková A, Vala M, Valenti G. Photophysical and Electrochemiluminescence of Coumarin‐Based Oxazaborines. ChemElectroChem 2020. [DOI: 10.1002/celc.201902102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tomáš Mikysek
- Department of Analytical Chemistry Faculty of Chemical Technology University of Pardubice Studentská 573 CZ-53210 Pardubice Czech Republic
| | - Pavlos Nikolaou
- Department of Chemistry “G. Ciamician” University of Bologna Via Selmi 2 40126 Bologna Italy
| | - Mirjeta Kafexholli
- Institute of Organic Chemistry and Technology Faculty of Chemical Technology University of Pardubice Studentská 573 CZ-53210 Pardubice Czech Republic
| | - Petr Šimůnek
- Institute of Organic Chemistry and Technology Faculty of Chemical Technology University of Pardubice Studentská 573 CZ-53210 Pardubice Czech Republic
| | - Jiří Váňa
- Institute of Organic Chemistry and Technology Faculty of Chemical Technology University of Pardubice Studentská 573 CZ-53210 Pardubice Czech Republic
| | - Aneta Marková
- Brno University of Technology, Faculty of Chemistry Materials Research Centre Purkyňova 118 612 00 Brno Czech Republic
| | - Martin Vala
- Brno University of Technology, Faculty of Chemistry Materials Research Centre Purkyňova 118 612 00 Brno Czech Republic
| | - Giovanni Valenti
- Department of Chemistry “G. Ciamician” University of Bologna Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
16
|
Yuan W, Yang H, Zhang M, Hu D, Wan S, Li Z, Shi C, Sun N, Tao Y, Huang W. Molecular engineering on all ortho-linked carbazole/oxadiazole hybrids toward highly-efficient thermally activated delayed fluorescence materials in OLEDs. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|