1
|
Qin R, Yuan Q, Yu J, Hu J, Zhang W, Wang Y, Cao Y, Ma Q, Li S, Li G, Wang D. WO 3/Ru@CeO 2 Bilayer Gas Sensor for ppb-Level Xylene Detection Based on a Catalytic-Sensitive Synergistic Mechanism. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16920-16931. [PMID: 40035480 DOI: 10.1021/acsami.4c23012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Volatile aromatic hydrocarbons present a significant threat to both the environment and human health. However, due to the low reactivity of toxic gases containing benzene rings and insufficient selectivity of existing sensors, real-time monitoring of benzene series (BTEX) gases remains a challenge. The development of catalytically sensitive synergistic bilayer sensors offers a promising strategy to overcome this challenge. A series of Ru@CeO2 nanosheets with different Ru doping levels were synthesized by using a simple solvothermal and further calcination method. Interestingly, the incorporation of Ru effectively modulates the morphology of Ce-BDC from nanorods to porous nanosheets. The WO3/Ru@CeO2 bilayer sensor is constructed by using WO3 nanofibers as the lower sensitive layer and Ru@CeO2 as the upper catalytic layer. At the operating temperature of 160 °C, the response value (Ra/Rg) of the WO3/Ru@CeO2 bilayer sensor to 5 ppm xylene is 37.04, which is obviously better than that of the WO3 nanofiber sensor. In addition, the sensor also reacted significantly to low concentrations of xylene, as low as 1 ppb. Additionally, the combination of online mass spectrometry and density functional theory was employed to validate the enhanced sensing performance arising from the synergistic mechanism between the catalytic and sensing materials. Hence, the work presents a new material for detecting ppb level BTEX through an effective bilayer structure design and material selection.
Collapse
Affiliation(s)
- Ruijie Qin
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Quan Yuan
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Jiejie Yu
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Jinwu Hu
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Wenhui Zhang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Jiangsu 224051, China
| | - Yinsheng Wang
- PhiChem Corporation, Baoshan District, Shanghai 201908, China
| | - Yanfen Cao
- Jining Institute of Quality & Metrology Inspection, Shandong 272000, China
| | - Qingxiang Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Shengjuan Li
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Guisheng Li
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Ding Wang
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
| |
Collapse
|
2
|
Xu Y, Li P, Liu Y, Man Y, Wang C, Li J, Sun G, Ju Q, Fang Z. Constructing Synergistically Catalytic Lewis Acidic-Basic Sites for Boosting Reactivity of a Flexible Coordination Polymer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10710-10721. [PMID: 39912754 DOI: 10.1021/acsami.4c20744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Targeted construction of Lewis acidic-basic sites in the skeleton of coordination polymers (CPs) can greatly enhance their catalytic efficiency due to the synergistic effect of acidic and basic sites. However, research on validating the coexistence of Lewis acidic-basic sites for boosting the catalytic activity of CPs toward the Knoevenagel condensation (KC) reaction, widely applied in the synthesis of high-added-value intermediates and products under mild conditions, is missing so far. Based on the above consideration, we have artificially constructed Lewis acidic-basic sites and introduced vacancy in the framework of a new flexible cerium CP {Ce-CP: [Ce3+Ce4+(obb2-)3(OH)(H2O)(DMF)]∞} (DMF: N,N-dimethylformamide) via applying the functional ligand 4,4'-oxidibenzoate (obb2-) with the bridging O atom as the Lewis basic site and removing the coordinating solvent molecules and counterions to form cerium coordination unsaturated sites (Ce-CUSs) as Lewis acidic sites. Interestingly, Ce-CP exhibits reversible structural transformation associated with a desolvation and resolvation process. The Lewis acidic and basic sites in the resulting Ce-CP (LAB-Ce-CP) have been confirmed by CO2 temperature-programmed desorption (TPD) and NH3 combined with pyrrole-TPD (NH3-Py-TPD) for the first time. Benefiting from the coexistence of Lewis acidic and basic sites as well as the flexibility of the framework, LAB-Ce-CP shows high activity and excellent recyclability toward KC reactions. Moreover, we have found that (1) the activation temperature of Ce-CP plays a critical role in its porosity, exposure of Lewis acidic-basic sites, and thus reactivity; (2) the stronger electron-withdrawing ability of the substituent groups in benzaldehyde derivatives and the smaller size of the reactants lead to the higher yield of product and turnover number (TON) value when the disparity of electron-withdrawing and electron-donating abilities between the substituent groups in benzaldehyde derivatives is not significant. Hence, this work has exploited a new strategy for designing excellent heterogeneous catalysts with constructed active sites of synergistic catalysis capability toward KC reactions.
Collapse
Affiliation(s)
- Yixiu Xu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Peiyuan Li
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Yuanyuan Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Yi Man
- SINOPEC (Beijing) Research Institute of Chemical Industry Co. Ltd, Beijing 100013, China
| | - Chan Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Jia Li
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Gengzhi Sun
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Qiang Ju
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Zhenlan Fang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| |
Collapse
|
3
|
He C, Jiang L, Shi X, Zhuo Y, Yuan R, Yang X. Photo-induced multiple charge transfer resonance of Ce-MOF for SERS detection of nucleic acid. Anal Chim Acta 2025; 1339:343604. [PMID: 39832872 DOI: 10.1016/j.aca.2024.343604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Sensitive and accurate detection of important cancer markers MicroRNAs (miRNAs) is critical to prevent and treat disease. Among many detection techniques, surface-enhanced Raman scattering(SERS) has attracted much attention due to its advantages such as narrow spectral peak, low interference and non-destructive detection. Interestingly, non-noble metal SERS substrates show good prospects due to their outstanding spectral reproducibility and biocompatibility. However, the low SERS sensitivity of non-noble metal substrates also limited their detection performance. Therefore, it is crucial to design a non-noble metal substrate with high SERS sensitivity for nucleic acid detection. RESULTS In this study, we found that the photo induction (30 min) of Ce-MOF has high SERS performance (abbreviated as Ce-MOF30). It is due to that photo-induction can regulate the energy level of the Ce-MOF and break the benzene-C bonds to introduce a defect energy level, which provides additional charge transfer channels. The Ce-MOF30 substrates can achieve an enhancement factor (EF) of 6.71 × 106 for Methylene blue (MB), about 7-fold higher than pristine Ce-MOF, which is the best Ce-based SERS substrate so far. Finally, a SERS detection platform was fabricated by combining the Mg2+ assisted dual signal amplification for miRNA 141 assay, and the detection limit was 1.72 fM. SIGNIFICANCE This work proposed a simple photo-induction strategy to enhance SERS performance, which supplied a new detection platform for detection of nucleic acid and further expand the application of non-noble metal substrate in SERS field.
Collapse
Affiliation(s)
- Chaoqin He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Lingling Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Xichen Shi
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Xia Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China.
| |
Collapse
|
4
|
Sun X, Liu J, Yang R, Gu H, Chen B, Wang C, Jiang B. Surface plasmon resonance effect cooperated with Z-scheme heterostructure for enhancing photocatalytic nitrogen reduction to ammonia. J Colloid Interface Sci 2025; 678:67-75. [PMID: 39241448 DOI: 10.1016/j.jcis.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
The photocatalytic efficiency can be improved by constructing a Z-scheme heterojunction, but hindered by the only half utilization efficiency of photogenerated carriers. Thus, a novel material, UiO-66-NH2@TAPB-BTCA-COP-Ag (U6N@COP-Ag), with surface plasmon resonance (SPR) effect synergistic Z-scheme heterostructure has been prepared by depositing Ag nanoparticles (Ag NPs) on TAPB-BTCA-COP (COP)-coated UiO-66-NH2. The deposited Ag NPs expand the range of light absorption and introduce more photogenerated electrons in the composite. The SPR effect of noble metal compensates for the limited utilization of the Z-scheme heterojunction photogenerated carriers and the increased density of semiconductor carriers at the reducing end, which is more conducive to the redox reaction of the catalyst. Without sacrificial agents, U6N@COP-Ag shows great photocatalytic nitrogen reduction conversion efficiency with the rate of NH4+ in ammonia water at 167.63μmol g-1h-1, which is 6.6 and 2.8 times that of the original UiO-66-NH2 and COP, respectively. In-situ XPS and Kelvin probe technology verify that UiO-66-NH2 and Ag nanoparticles provide more photogenerated electrons to COP. The cleavage and conversion of N2 to NH4+ on U6N@COP-Ag was confirmed by the enhancement of NH bonds and NH4+ characteristic absorption peaks in the in-situ diffuse reflectance infrared Fourier transform spectroscopy (in-situ DRIFTS). This work presents a great method to improve the Z-scheme heterojunction photogenerated carrier utilization and the density of semiconductor carriers at the reducing end by the noble metal SPR effect, which is more conducive to enhance the redox reaction of the catalyst.
Collapse
Affiliation(s)
- Xuemeng Sun
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, Heilongjiang, China
| | - Jianan Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, Heilongjiang, China.
| | - Rong Yang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, Heilongjiang, China
| | - Huiquan Gu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, Heilongjiang, China; Postdoctoral Workstation of Zhejiang Fomay Technology Co., Ltd, Linhai 317099, Zhejiang, China.
| | - Boyuan Chen
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, Heilongjiang, China
| | - Cheng Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, Heilongjiang, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, Guangdong, China.
| | - Baojiang Jiang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, Heilongjiang, China.
| |
Collapse
|
5
|
Liu C, Chen Q, Chen Y, Yu JC, Wu J, Wu L. Ti 3+-mediated MIL-125(Ti) by metal substitution for boosting photocatalytic N 2 fixation. J Colloid Interface Sci 2025; 678:616-626. [PMID: 39216389 DOI: 10.1016/j.jcis.2024.08.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Photocatalysis, which uses sunlight, N2 and H2O to produce NH3, is a more sustainable approach to N2 fixation than the Haber-Bosch process. However, its efficiency is severely limited by the difficulty of activating NN bonds. This work presents metal (M = Cu, Fe, V)-substituted MIL-125(Ti) (MIL-(MTi)) for photocatalytic N2 fixation without using any sacrificial agents. Structural characterizations reveal that the active sites including oxygen vacancies (OV) and Ti3+ species are formed by the resulting crystal distortion due to the partial substitution of Ti4+ by other metal ions (Cu+, Fe2+, V3+) in MIL-125(Ti). MIL-(CuTi) possesses a larger number of OV and Ti3+ compared to MIL-(FeTi) and MIL-(VTi) due to the larger valence difference between Cu+ and Ti4+. These active sites not only promote the adsorption and activation of N2 and H2O, but also facilitate the photogenerated charge mobility. Photogenerated holes oxidize H2O to produce O2 and H+. Photogenerated electrons reduce N2 activated on Ti3+ sites by combining with H+ to form NH4+. Therefore, MIL-(CuTi) shows the highest NH4+ production rate 46.5 µmol·h-1·g-1, which is much higher than that (1.2 µmol·h-1·g-1) of the pristine MIL-125(Ti). This work provides a new insight into rational design for artificial N2 fixation systems by the construction of the active site.
Collapse
Affiliation(s)
- Cheng Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Qi Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Yueling Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jimmy C Yu
- Department of Chemistry, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Jionghua Wu
- Institute of Micro-Nano Devices and Solar Cells, College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Ling Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
6
|
Zhao T, Jin B. A label-free electrochemical biosensor based on a bimetallic organic framework for the detection of carbohydrate antigen 19-9. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6173-6182. [PMID: 39189647 DOI: 10.1039/d4ay01432d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Carbohydrate antigen 19-9 (CA19-9) is an important marker for pancreatic cancer, ovarian cancer and other tumors, and its rapid and stable detection is the basis for early diagnosis and treatment. In this paper, a label-free electrochemical immunosensor for the sensitive detection of CA19-9 has been developed. First, the synthesis of two novel core-shell bimetallic nanomaterials, namely Ce-MOF-on-Fe-MOF and Fe-MOF-on-Ce-MOF, was accomplished using the MOF-on-MOF approach. The poor electrical conductivity of MOF materials was addressed by incorporating polyethylenimide (PEI) functionalized rGO with Ce-MOF-on-Fe-MOF and Fe-MOF-on-Ce-MOF nanomaterials. Simultaneously, toluidine blue (Tb) was employed as a redox probe and physically adsorbed onto the synthesized materials, resulting in the formation of two nanomaterials: rGO@Ce-MOF-on-Fe-MOF@Tb and rGO@Fe-MOF-on-Ce-MOF@Tb. The fundamental characterization reveals that the sensing performance of the rGO@Ce-MOF-on-Fe-MOF@TB-based immune sensor surpasses that of the rGO@Fe-MOF-on-Ce-MOF@TB-based immune sensor, which is attributed to the fact that, unlike the interlayer-constrained structure of Fe-MOF-on-Ce-MOF, in Ce-MOF-on-Fe-MOF, Ce-MOF penetrates into Fe-MOF to form a heterogeneous structure due to the relatively large pore size of Fe-MOF, which better combines the excellent biocompatibility and strong anchoring effect of Fe MOFs on antibodies, as well as the high electrochemical activity and conductivity of Ce-MOF, to enhance sensing performance. The proposed label-free immunosensor based on rGO@Ce-MOF-on-Fe-MOF@Tb has a wide linear range (1-100 000 mU mL-1), a low detection limit (0.34 mU mL-1), good stability, reproducibility, and repeatability, and satisfactory applicability, which provides a potential platform for clinical applications.
Collapse
Affiliation(s)
- Tongxiao Zhao
- Department of Chemistry, Anhui University, Hefei 230601, China.
| | - Baokang Jin
- Department of Chemistry, Anhui University, Hefei 230601, China.
| |
Collapse
|
7
|
Sun C, Zhu S, Qu J, Zhu Z, Chen Y, Tu X, Cai W, Yu Z, Liu Y, Zhang S, Zheng H. Efficient photocatalytic nitrogen fixation via oxygen vacancies in Zr-MOFs at ambient conditions. J Colloid Interface Sci 2024; 669:75-82. [PMID: 38705114 DOI: 10.1016/j.jcis.2024.04.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Photocatalytic nitrogen fixation is seen to be a potential technology for nitrogen reduction due to its eco-friendliness, low energy consumption, and environmental protection. In this study, photocatalysts with abundant oxygen vacancies (Zr-naphthalene dicarboxylic acid (Zr-NDC) and Zr-phthalic acid (Zr-BDC)) were designed using 1,4-naphthalene dicarboxylic acid (H2NDC) and 1,4-phthalic acid (H2BDC) as ligands. Since the structure of H2NDC includes one extra benzene ring than H2BDC, the charge density differential of the organic ligand is probably altered. The hypothesis is proved by density function theory (DFT) calculation. The abundant oxygen vacancies of the catalyst offer numerous active sites for nitrogen fixation. Concurrently, the process of ligand-metal charge transfer facilitates photo-electron transfer, creating an active center for nitrogen reduction. Additionally, the functionalization of ligand amplifies another pathway for charge transfer, broadening the light absorption range of Metal-organic framework (MOF) and increasing its capacity for nitrogen reduction. In contrast to H2BDC, the benzene ring added in H2NDC structure acts as an electron energy storage tank with a stronger electron density difference favorable for photogenerated electron-hole separation resulting in higher photocatalytic activity in Zr-NDC. The experimental results show that the nitrogen fixation efficiency of Zr-NDC is 163.7 µmol g-1h-1, which is significantly better than that of Zr-BDC (29.3 µmol g-1h-1). This work utilizes cost-effective and non-toxic ingredients to design highly efficient photocatalysts, thereby significantly contributing to the practical implementation of green chemistry principles.
Collapse
Affiliation(s)
- Can Sun
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Shouxin Zhu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Jingyi Qu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Zhexiao Zhu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Yutong Chen
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xuewei Tu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Wenya Cai
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Zhiqin Yu
- Hangzhou Synbest Biotech Co., Ltd, Hangzhou 311121, PR China
| | - Yibin Liu
- Hangzhou Synbest Biotech Co., Ltd, Hangzhou 311121, PR China
| | - Shijie Zhang
- Hangzhou Synbest Biotech Co., Ltd, Hangzhou 311121, PR China.
| | - Hui Zheng
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
8
|
Žibert T, Likozar B, Huš M. Modelling Photocatalytic N 2 Reduction to Ammonia: Where We Stand and Where We Are Going. CHEMSUSCHEM 2024; 17:e202301730. [PMID: 38523408 DOI: 10.1002/cssc.202301730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Artificial ammonia synthesis via the Haber-Bosch process is environmentally problematic due to the high energy consumption and corresponding CO2 ${_2 }$ emissions, produced during the reaction and before hand in hydrogen production upon methane steam reforming. Photocatalytic nitrogen fixation as a greener alternative to the conventional Haber-Bosch process enables us to perform nitrogen reduction reaction (NRR) under mild conditions, harnessing light as the energy source. Herein, we systematically review first-principles calculations used to determine the electronic/optical properties of photocatalysts, N2 adsorption and to expound possible NRR mechanisms. The most commonly studied photocatalysts for nitrogen fixation are usually modified with dopants, defects, co-catalysts and Z-scheme heterojunctions to prevent charge carrier recombination, improve charge separation efficiency and adjust a band gap to for utilizing a broader light spectrum. Most studies at the atomistic level of modeling are grounded upon density functional theory (DFT) calculations, wholly foregoing excitation effects paramount in photocatalysis. Hence, there is a dire need to consider methods beyond DFT to study the excited state properties more accurately. Furthermore, a few studies have been examined, which include higher level kinetics and macroscale simulations. Ultimately, we show there is still ample room for improvement with regard to first principles calculations and their integration in multiscale models.
Collapse
Affiliation(s)
- Taja Žibert
- National Institute of Chemistry, Department of Catalysis and Chemical Reaction Engineering, Hajdrihova 19, SI-1001, Ljubljana, Slovenia
- University of Nova Gorica, Vipavska 13, 5000, Nova Gorica, Slovenia
| | - Blaž Likozar
- National Institute of Chemistry, Department of Catalysis and Chemical Reaction Engineering, Hajdrihova 19, SI-1001, Ljubljana, Slovenia
| | - Matej Huš
- National Institute of Chemistry, Department of Catalysis and Chemical Reaction Engineering, Hajdrihova 19, SI-1001, Ljubljana, Slovenia
- University of Nova Gorica, Vipavska 13, 5000, Nova Gorica, Slovenia
- Institute for the Protection of Cultural Heritage, Poljanska 40, SI-1000, Ljubljana, Slovenia
- Association for Technical Culture (ZOTKS), Zaloška 65, SI, 1001, Ljubljana, Slovenia
| |
Collapse
|
9
|
Zelenka T, Baláž M, Férová M, Diko P, Bednarčík J, Királyová A, Zauška Ľ, Bureš R, Sharda P, Király N, Badač A, Vyhlídalová J, Želinská M, Almáši M. The influence of HKUST-1 and MOF-76 hand grinding/mechanical activation on stability, particle size, textural properties and carbon dioxide sorption. Sci Rep 2024; 14:15386. [PMID: 38965298 PMCID: PMC11224341 DOI: 10.1038/s41598-024-66432-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024] Open
Abstract
In this study, we explore the mechanical treatment of two metal-organic frameworks (MOFs), HKUST-1 and MOF-76, applying various milling methods to assess their impact on stability, porosity, and CO2 adsorption capacity. The effects of different mechanical grinding techniques, such as high-energy ball milling and hand grinding, on these MOFs were compared. The impact of milling time, milling speed and ball size during high-energy ball milling was assessed via the Design of Experiments methodology, namely using a 33 Taguchi orthogonal array. The results highlight a marked improvement in CO2 adsorption capacity for HKUST-1 through hand milling, increasing from an initial 25.70 wt.% (5.84 mmol g-1) to 41.37 wt.% (9.40 mmol g-1), marking a significant 38% increase. In contrast, high-energy ball milling seems to worsen this property, diminishing the CO2 adsorption abilities of the materials. Notably, MOF-76 shows resistance to hand grinding, closely resembling the original sample's performance. Hand grinding also proved to be well reproducible. These findings clarify the complex effects of mechanical milling on MOF materials, emphasising the necessity of choosing the proper processing techniques to enhance their stability, texture, and performance in CO2 capture and storage applications.
Collapse
Affiliation(s)
- Tomáš Zelenka
- Department of Chemistry, Faculty of Science, University of Ostrava, 30. Dubna 22, 702 00, Ostrava, Czech Republic
| | - Matej Baláž
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01, Košice, Slovak Republic
| | - Marta Férová
- Department of Chemistry, Faculty of Science, University of Ostrava, 30. Dubna 22, 702 00, Ostrava, Czech Republic
| | - Pavel Diko
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01, Košice, Slovak Republic
| | - Jozef Bednarčík
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01, Košice, Slovak Republic
| | - Alexandra Királyová
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, 041 01, Košice, Slovak Republic
| | - Ľuboš Zauška
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, 041 01, Košice, Slovak Republic
| | - Radovan Bureš
- Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 040 01, Košice, Slovak Republic
| | - Pooja Sharda
- Department of Physics, School of Applied Science, Suresh Gyan Vihar University, Jaipur, I-302017, India
| | - Nikolas Király
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, 041 01, Košice, Slovak Republic
| | - Aleš Badač
- Department of Chemistry, Faculty of Science, University of Ostrava, 30. Dubna 22, 702 00, Ostrava, Czech Republic
| | - Jana Vyhlídalová
- Department of Chemistry, Faculty of Science, University of Ostrava, 30. Dubna 22, 702 00, Ostrava, Czech Republic
| | - Milica Želinská
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, 041 01, Košice, Slovak Republic
| | - Miroslav Almáši
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, 041 01, Košice, Slovak Republic.
| |
Collapse
|
10
|
Dileep NP, Patel J, Pushkar Y. Evaluation of Ce-MOFs as Photoanode Materials for the Water Oxidation Reaction: The Effect of Doping with [Ru(bpy)(dcbpy)(H 2O) 2] 2+ Catalyst. Inorg Chem 2024; 63:8050-8058. [PMID: 38662572 DOI: 10.1021/acs.inorgchem.3c04632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Artificial photosynthesis stands out as a highly effective method for harnessing sunlight to produce clean and renewable energy. The light-absorbing properties, chemical stability, and high redox activity of Ce-based metal-organic frameworks (MOFs) make them attractive materials for visible-light-driven water splitting. Currently, Ce-based MOFs remain a relatively underexplored system for photocatalytic water oxidation in acidic media. In this study, we synthesized a Ce-MOF with different linkers (1,4-benzenedicarboxylic acid, tetrafluoroterephthalic acid, 2-nitroterephthalic acid, 2,2'-bipyridine-5,5'-dicarboxylic acid, and 4,4'-biphenyldicarboxylic acid), which exhibit light-absorbing capability. Ce-based MOFs doped with [Ru(bpy)(dcbpy)(H2O)2]2+ (MOF-1 and MOF-2) water oxidation catalyst showed an enhanced photoelectrocatalytic current of ∼10-4 A·cm-2 at pH = 1, which is comparable with the [Ru(bpy)(dcbpy)(H2O)2]2+-doped MIL-126 Fe-based MOF. We also demonstrated the long-term durability of Ru-doped Ce-MOFs for photoelectrocatalytic water oxidation under acidic conditions. The as-synthesized MOFs were analyzed with powder X-ray diffraction (PXRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), UV-visible diffuse reflectance spectroscopy, scanning electron microscopy (SEM), and electric conductivity measurements. This study contributes to the development of cost-effective materials for sustainable photocatalytic water splitting processes.
Collapse
Affiliation(s)
- Naduvile Purayil Dileep
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jully Patel
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
11
|
Zuo C, Su Q, Yu L. Research Progress in Composite Materials for Photocatalytic Nitrogen Fixation. Molecules 2023; 28:7277. [PMID: 37959696 PMCID: PMC10650292 DOI: 10.3390/molecules28217277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Ammonia is an essential component of modern chemical products and the building unit of natural life molecules. The Haber-Bosch (H-B) process is mainly used in the ammonia synthesis process in the industry. In this process, nitrogen and hydrogen react to produce ammonia with metal catalysts under high temperatures and pressure. However, the H-B process consumes a lot of energy and simultaneously emits greenhouse gases. In the "double carbon" effect, to promote the combination of photocatalytic technology and artificial nitrogen fixation, the development of green synthetic reactions has been widely discussed. Using an inexhaustible supply of sunlight as a power source, researchers have used photocatalysts to reduce nitrogen to ammonia, which is energy-dense and easy to store and transport. This process completes the conversion from light energy to chemical energy. At the same time, it achieves zero carbon emissions, reducing energy consumption and environmental pollution in industrial ammonia synthesis from the source. The application of photocatalytic technology in the nitrogen cycle has become one of the research hotspots in the new energy field. This article provides a classification of and an introduction to nitrogen-fixing photocatalysts reported in recent years and prospects the future development trends in this field.
Collapse
Affiliation(s)
| | | | - Lei Yu
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261061, China; (C.Z.); (Q.S.)
| |
Collapse
|
12
|
Fan C, Dong W, Saira Y, Tang Y, Fu G, Lee JM. Rare-Earth-Modified Metal-Organic Frameworks and Derivatives for Photo/Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302738. [PMID: 37291982 DOI: 10.1002/smll.202302738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Metal-organic frameworks (MOFs) and their derivatives have attracted much attention in the field of photo/electrocatalysis owing to their ultrahigh porosity, tunable properties, and superior coordination ability. Regulating the valence electronic structure and coordination environment of MOFs is an effective way to enhance their intrinsic catalytic performance. Rare earth (RE) elements with 4f orbital occupancy provide an opportunity to evoke electron rearrangement, accelerate charged carrier transport, and synergize the surface adsorption of catalysts. Therefore, the integration of RE with MOFs makes it possible to optimize their electronic structure and coordination environment, resulting in enhanced catalytic performance. In this review, progress in current research on the use of RE-modified MOFs and their derivatives for photo/electrocatalysis is summarized and discussed. First, the theoretical advantages of RE in MOF modification are introduced, with a focus on the roles of 4f orbital occupancy and RE ion organic coordination ligands. Then, the application of RE-modified MOFs and their derivatives in photo/electrocatalysis is systematically discussed. Finally, research challenges, future opportunities, and prospects for RE-MOFs are also discussed.
Collapse
Affiliation(s)
- Chuang Fan
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wenrou Dong
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yousaf Saira
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technology University, Singapore, 637459, Singapore
| |
Collapse
|
13
|
Garg A, Almáši M, Saini R, Paul DR, Sharma A, Jain A, Jain IP. A highly stable terbium(III) metal-organic framework MOF-76(Tb) for hydrogen storage and humidity sensing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98548-98562. [PMID: 35688971 DOI: 10.1007/s11356-022-21290-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
The present study described the synthesis and characterization of MOF-76(Tb) for hydrogen storage and humidity sensing applications. The structure and morphology of as-synthesized material were studied using powder X-ray diffraction, scanning, and transmission electron microscopy. The crystal structure of MOF-76(Tb) consists of terbium(III) and benzene-1,3,5-tricarboxylate(-III) ions, one coordinated aqua ligand and one crystallization N,N´-dimethylformamide molecule. The polymeric framework of MOF-76(Tb) contains 1D sinusoidally shaped channels with sizes of 6.6 × 6.6 Å propagating along c crystallographic axis. The thermogravimetric analysis of the prepared material exhibited thermal stability up to 600 °C. At 77 K and pressure up to 20 bar; 0.6 wt.% hydrogen storage capacity for MOF-76(Tb) was observed. Finally, the humidity sensing measurements (water adsorption experiments) were performed, and the results indicate that MOF-76(Tb) is not a suitable material for moisture sensing applications.
Collapse
Affiliation(s)
- Akash Garg
- Department of Physics, School of Applied Science, Suresh Gyan Vihar University, Jaipur, 302017, India
| | - Miroslav Almáši
- Department of Inorganic Chemistry, Faculty of Science, P. J. Safarik University, Moyzesova 11, 041 54, Kosice, Slovak Republic
| | - Robin Saini
- Department of Physics and Astrophysics, School of Basic Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Devina Rattan Paul
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Anshu Sharma
- Department of Physics, School of Engineering & Technology, Central University of Haryana, Mahendergarh, 123031, India.
| | - Ankur Jain
- Department of Physics, School of Applied Science, Suresh Gyan Vihar University, Jaipur, 302017, India
- Centre for Renewable Energy & Storage, Suresh Gyan Vihar University, Jaipur, 302017, India
| | - Indra Prabh Jain
- Center for Non-Conventional Energy Resources, University of Rajasthan, Jaipur, 302004, India
| |
Collapse
|
14
|
Wang KY, Zhang J, Hsu YC, Lin H, Han Z, Pang J, Yang Z, Liang RR, Shi W, Zhou HC. Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chem Rev 2023; 123:5347-5420. [PMID: 37043332 PMCID: PMC10853941 DOI: 10.1021/acs.chemrev.2c00879] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Indexed: 04/13/2023]
Abstract
Enzymatic catalysis has fueled considerable interest from chemists due to its high efficiency and selectivity. However, the structural complexity and vulnerability hamper the application potentials of enzymes. Driven by the practical demand for chemical conversion, there is a long-sought quest for bioinspired catalysts reproducing and even surpassing the functions of natural enzymes. As nanoporous materials with high surface areas and crystallinity, metal-organic frameworks (MOFs) represent an exquisite case of how natural enzymes and their active sites are integrated into porous solids, affording bioinspired heterogeneous catalysts with superior stability and customizable structures. In this review, we comprehensively summarize the advances of bioinspired MOFs for catalysis, discuss the design principle of various MOF-based catalysts, such as MOF-enzyme composites and MOFs embedded with active sites, and explore the utility of these catalysts in different reactions. The advantages of MOFs as enzyme mimetics are also highlighted, including confinement, templating effects, and functionality, in comparison with homogeneous supramolecular catalysts. A perspective is provided to discuss potential solutions addressing current challenges in MOF catalysis.
Collapse
Affiliation(s)
- Kun-Yu Wang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiaqi Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Chuan Hsu
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hengyu Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zongsu Han
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiandong Pang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- School
of Materials Science and Engineering, Tianjin Key Laboratory of Metal
and Molecule-Based Material Chemistry, Nankai
University, Tianjin 300350, China
| | - Zhentao Yang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rong-Ran Liang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wei Shi
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
15
|
Ding W, Li X, Su S, Liu Z, Cao Y, Meng L, Yuan S, Wei W, Luo M. Cationic vacancy engineering of p-TiO 2 for enhanced photocatalytic nitrogen fixation. NANOSCALE 2023; 15:4014-4021. [PMID: 36727644 DOI: 10.1039/d2nr06821d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Defect engineering is one of the effective strategies to regulate and control catalyst properties. Constructing appropriate catalytically active centers effectively tunes the electronic and surface properties of the catalyst to achieve further enrichment of photogenerated electrons, enhances the electronic feedback of the catalytically active center to the anti-bonding orbitals of the nitrogen molecule, and enhances N2 adsorption while weakening the NN bond. In this study, titanium vacancy (VTi)-rich undoped anatase p-TiO2 was successfully synthesized to investigate the effect of its metal vacancies on photocatalytic nitrogen reduction reaction (NRR) performance. The cation vacancies of VTi-rich p-TiO2 lead to local charge defects that enhance carrier separation and transport while trapping electrons to activate N2, allowing effective reduction of the excited electrons to NH3. This work provides a viable strategy for driving the efficiency of photocatalytic nitrogen fixation processes by altering the structural properties of semiconductors through cationic vacancies, offering new opportunities and challenges for the design and preparation of titanium dioxide-based materials.
Collapse
Affiliation(s)
- Wenming Ding
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.
| | - Xiaoman Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.
| | - Senda Su
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.
| | - Zhenyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.
| | - Yue Cao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.
| | - Linghu Meng
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.
| | - Shengbo Yuan
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.
| | - Wenhui Wei
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.
| | - Min Luo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.
| |
Collapse
|
16
|
Han X, Yang S, Schröder M. Metal-Organic Framework Materials for Production and Distribution of Ammonia. J Am Chem Soc 2023; 145:1998-2012. [PMID: 36689628 PMCID: PMC9896564 DOI: 10.1021/jacs.2c06216] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The efficient production of ammonia (NH3) from dinitrogen (N2) and water (H2O) using renewable energy is an important step on the roadmap to the ammonia economy. The productivity of this conversion hinges on the design and development of new active catalysts. In the wide scope of materials that have been examined as catalysts for the photo- and electro-driven reduction of N2 to NH3, functional metal-organic framework (MOF) catalysts exhibit unique properties and appealing features. By elucidating their structural and spectroscopic properties and linking this to the observed activity of MOF-based catalysts, valuable information can be gathered to inspire new generations of advanced catalysts to produce green NH3. NH3 is also a surrogate for the hydrogen (H2) economy, and the potential application of MOFs for the practical and effective capture, safe storage, and transport of NH3 is also discussed. This Perspective analyzes the contribution that MOFs can make toward the ammonia economy.
Collapse
|
17
|
Ahmed Malik WM, Afaq S, Mahmood A, Niu L, Yousaf ur Rehman M, Ibrahim M, Mohyuddin A, Qureshi AM, Ashiq MN, Chughtai AH. A facile synthesis of CeO2 from the GO@Ce-MOF precursor and its efficient performance in the oxygen evolution reaction. Front Chem 2022; 10:996560. [PMID: 36277339 PMCID: PMC9585184 DOI: 10.3389/fchem.2022.996560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Electrochemical water splitting has enticed fascinating consideration as a key conduit for the advancement of renewable energy systems. Fabricating adequate electrocatalysts for water splitting is fervently preferred to curtail their overpotentials and hasten practical utilizations. In this work, a series of Ce-MOF, GO@Ce-MOF, calcinated Ce-MOF, and calcinated GO@Ce-MOF were synthesized and used as high-proficient electrocatalysts for the oxygen evolution reaction. The physicochemical characteristics of the prepared samples were measured by diverse analytical techniques including SEM, HRTEM, FTIR, BET, XPS, XRD, and EDX. All materials underwent cyclic voltammetry tests and were evaluated by electrochemical impedance spectroscopy and oxygen evolution reaction. Ce-MOF, GO@Ce-MOF, calcinated Ce-MOF, and calcinated GO@Ce-MOF have remarkable properties such as enhanced specific surface area, improved catalytic performance, and outstanding permanency in the alkaline solution (KOH). These factors upsurge ECSA and intensify the OER performance of the prepared materials. More exposed surface active-sites present in calcinated GO@Ce-MOF could be the logic for superior electrocatalytic activity. Chronoamperometry of the catalyst for 15°h divulges long-term stability of Ce-MOF during OER. Impedance measurements indicate higher conductivity of synthesized catalysts, facilitating the charge transfer reaction during electrochemical water splitting. This study will open up a new itinerary for conspiring highly ordered MOF-based surface active resources for distinct electrochemical energy applications.
Collapse
Affiliation(s)
- Wasif Mahmood Ahmed Malik
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
- Department of Chemistry, Emerson University, Multan, Pakistan
| | - Sheereen Afaq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Azhar Mahmood
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Li Niu
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | | | - Muhammad Ibrahim
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Abrar Mohyuddin
- Department of Chemistry, Emerson University, Multan, Pakistan
| | - Ashfaq Mahmood Qureshi
- Department of Chemistry, Government Sadiq College Women University, Bahawalpur, Pakistan
| | - Muhammad Naeem Ashiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
- *Correspondence: Muhammad Naeem Ashiq, ; Adeel Hussain Chughtai,
| | - Adeel Hussain Chughtai
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
- *Correspondence: Muhammad Naeem Ashiq, ; Adeel Hussain Chughtai,
| |
Collapse
|
18
|
Achievements and Perspectives in Metal–Organic Framework-Based Materials for Photocatalytic Nitrogen Reduction. Catalysts 2022. [DOI: 10.3390/catal12091005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Metal–organic frameworks (MOFs) are coordination polymers with high porosity that are constructed from molecular engineering. Constructing MOFs as photocatalysts for the reduction of nitrogen to ammonia is a newly emerging but fast-growing field, owing to MOFs’ large pore volumes, adjustable pore sizes, controllable structures, wide light harvesting ranges, and high densities of exposed catalytic sites. They are also growing in popularity because of the pristine MOFs that can easily be transformed into advanced composites and derivatives, with enhanced catalytic performance. In this review, we firstly summarized and compared the ammonia detection methods and the synthetic methods of MOF-based materials. Then we highlighted the recent achievements in state-of-the-art MOF-based materials for photocatalytic nitrogen fixation. Finally, the summary and perspectives of MOF-based materials for photocatalytic nitrogen fixation were presented. This review aims to provide up-to-date developments in MOF-based materials for nitrogen fixation that are beneficial to researchers who are interested or involved in this field.
Collapse
|
19
|
Song X, Yu S, Zhao L, Guo Y, Ren X, Ma H, Wang S, Luo C, Li Y, Wei Q. Efficient ABEI-Dissolved O 2-Ce(III, IV)-MOF Ternary Electrochemiluminescent System Combined with Self-Assembled Microfluidic Chips for Bioanalysis. Anal Chem 2022; 94:9363-9371. [PMID: 35723440 DOI: 10.1021/acs.analchem.2c01199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A signal-amplified electrochemiluminescent (ECL) sensor chip was developed for sensitive analysis of procalcitonin (PCT). Herein, we first prepared a self-enhanced luminophore, which enhanced ECL responses through intramolecular reactions. Second, Au-Pd bimetallic nanocrystals and mixed-valence Ce-based metal-organic frameworks (MOFs) were introduced as co-reaction promoters to facilitate the reduction of dissolved O2. Based on the synergistic catalysis of Au and Pd, the spontaneous cyclic reaction of Ce(III)/Ce(IV), and the high electrochemical active surface area of Ce(III, IV) MOF, a large number of superoxide anion radicals (O2•-) and hydroxyl radicals (OH•) were produced. Therefore, the luminescence efficiency of N-(aminobutyl)-N-(ethylisoluminol)-dissolved O2 (ABEI-O2) systems were greatly improved, providing a new prospect for the application of dissolved O2 in ECL analysis. In addition, the affinity peptide ligands were used for the directional connection of antibodies to provide protection for the bioactivity of the proposed sensor. Finally, the microfluidic technology was applied to ECL analysis to integrate the three-electrode detection system into the self-assembled microfluidic chip, which realized the automation and portability of the detection process. The developed sensor showed high sensitivity for PCT detection with a detection limit of 3.46 fg/mL, which possessed positive significance for the clinical diagnosis of sepsis.
Collapse
Affiliation(s)
- Xianzhen Song
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Siqi Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Lu Zhao
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Yujian Guo
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Shoufeng Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Chuannan Luo
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Yuyang Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China.,Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
20
|
Wang W, Yue J, Chu Y, Ma Z, He X, Zhao H, Duan J. Co-doped amorphous MoSx supported on CuO/CM (Cu mesh) with enhanced photocatalytic activity for ammonia synthesis. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Wang Q, Cao Y, Li J, Li J, Shang W, Peng N, Chen T, Liao Q, Wen Y. Construction of Hydrophobic Lauric Acid Film on Aluminum Alloy and Its Corrosion Resistance Mechanism. SURF INTERFACE ANAL 2022. [DOI: 10.1002/sia.7126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qi Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Yijun Cao
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Jiaojiao Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Jiaping Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Wei Shang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Ning Peng
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Tianfeng Chen
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Qun Liao
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Yuqing Wen
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| |
Collapse
|
22
|
Guo B, Cheng X, Tang Y, Guo W, Deng S, Wu L, Fu X. Dehydrated UiO-66(SH) 2 : The Zr-O Cluster and Its Photocatalytic Role Mimicking the Biological Nitrogen Fixation. Angew Chem Int Ed Engl 2022; 61:e202117244. [PMID: 35083838 DOI: 10.1002/anie.202117244] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 12/20/2022]
Abstract
This work reports the dehydrated Zr-based MOF UiO-66(SH)2 as a visible-light-driven photocatalyst to mimic the biological N2 fixation process. The 15 N2 and other control experiments demonstrated that the new photocatalyst is highly efficient in converting N2 to ammonia. In-situ TGA, XPS, and EXAFS as well as first-principles simulations were used to demonstrate the role of the thermal treatment and the changes of the local structures around Zr due to the dehydration. It was shown that the dehydration opened a gate for the entry of N2 molecules into the [Zr6 O6 ] cluster where the strong N≡N bond was broken stepwise by μ-N-Zr type interactions driven by the photoelectrons aided by the protonation. This mechanism was discussed in comparison with the Lowe-Thorneley mechanism proposed for the MoFe nitrogenase, and with emphasis on the [Zr6 O6 ] cluster effect and the leading role of photoelectrons over the protonation. The results shed new light on understanding the catalytic mechanism of biological N2 fixation and open a new way to fix N2 under mild conditions.
Collapse
Affiliation(s)
- Binbin Guo
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350116, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Xiyue Cheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Yu Tang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Wei Guo
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Shuiquan Deng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Ling Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350116, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Xianzhi Fu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
23
|
Zhang Z, Li F, Li G, Li R, Wang Y, Wang Y, Zhang X, Zhang L, Li F, Liu J, Fan C. Cu-doped MIL-101(Fe) with enhanced photocatalytic nitrogen fixation performance. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
24
|
Guo B, Cheng X, Tang Y, Guo W, Deng S, Wu L, Fu X. Dehydrated UiO‐66(SH)
2
: The Zr−O Cluster and Its Photocatalytic Role Mimicking the Biological Nitrogen Fixation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Binbin Guo
- State Key Laboratory of Photocatalysis on Energy and Environment Fuzhou University Fuzhou Fujian 350116 China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P.R. China
| | - Xiyue Cheng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P.R. China
| | - Yu Tang
- State Key Laboratory of Photocatalysis on Energy and Environment Fuzhou University Fuzhou Fujian 350116 China
| | - Wei Guo
- State Key Laboratory of Photocatalysis on Energy and Environment Fuzhou University Fuzhou Fujian 350116 China
| | - Shuiquan Deng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P.R. China
| | - Ling Wu
- State Key Laboratory of Photocatalysis on Energy and Environment Fuzhou University Fuzhou Fujian 350116 China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P.R. China
| | - Xianzhi Fu
- State Key Laboratory of Photocatalysis on Energy and Environment Fuzhou University Fuzhou Fujian 350116 China
| |
Collapse
|
25
|
Gong C, Li Z, Liu G, Wang R, Pu S. A sensitive fluorescence "turn on" nanosensor for glutathione detection based on Ce-MOF and gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120362. [PMID: 34509887 DOI: 10.1016/j.saa.2021.120362] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Glutathione (GSH) as an essential biothiol maintains redox homeostasis in human body, the aberrant level of it has been related to various diseases. In this work, we constructed a facile and environment-friendly strategy by using Ce based metal-organic frameworks and gold nanoparticles (AuNPs) for detection of GSH. The fluorescence intensity of the Ce-MOF was quenched by AuNPs, which is ascribed to the existence of fluorescence resonance energy transfer (FRET) and electrostatic interaction between Ce-MOFs and AuNPS. Because of the formation of Au-SH between AuNPs and GSH, the addition GSH induced the Ce-MOF/AuNPs and prevented the occurrence of FRET and electrostatic interaction between Ce-MOFs and AuNPS, which futher recovered the fluorescence of Ce-MOF. Under the optimized conditions, this "turn-on" sensing process revealed a high selectivity toward GSH and displayed good linearity in range of 0.2-32.5 μM with low detection limit of 58 nM. In addition, the practicability of the strategy was testified through analyzing GSH in real human serum samples.
Collapse
Affiliation(s)
- Congcong Gong
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Zhijian Li
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Renjie Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China; YuZhang Normal University, Nanchang 330013, PR China.
| |
Collapse
|
26
|
Ji G, Zhao L, Wei J, Cai J, He C, Du Z, Cai W, Duan C. A Metal–Organic Framework as a Multiphoton Excitation Regulator for the Activation of Inert C(sp
3
)−H Bonds and Oxygen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guanfeng Ji
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Jianwei Wei
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Junkai Cai
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Cheng He
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Zenggang Du
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Wei Cai
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| |
Collapse
|
27
|
Qi P, Gao X, Wang J, Liu H, He D, Zhang Q. A minireview on catalysts for photocatalytic N 2 fixation to synthesize ammonia. RSC Adv 2022; 12:1244-1257. [PMID: 35425192 PMCID: PMC8979037 DOI: 10.1039/d1ra08002d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/16/2021] [Indexed: 11/21/2022] Open
Abstract
Ammonia (NH3) is an important feedstock in chemical industry. Nowadays NH3 is mainly produced via the industrialized Haber-Bosch process, which requires substantial energy input, since it operates at high temperatures (400-650 °C) and high pressures (20-40 Mpa). From the energy conservation point of view, it is of great significance to explore an alternative avenue to synthesize NH3, which is in line with the concept of sustainable development. Very recently, photocatalytic N2 fixation (PNF) has been discovered as a safe and green approach to synthesize NH3, as it utilizes the inexhaustible solar energy and the abundant N2 in nature to synthesize NH3 under mild conditions. A highly efficient catalyst is the core of PNF. Up to now, extensive studies have been conducted to design efficient catalysts for PNF. Summarizing the catalysts reported for PNF and unraveling their reaction mechanisms could provide guidance for the design of better catalysts. In this review, we will illustrate the development of catalysts for PNF, including semiconductors, plasmonic metal-based catalysts, iron-based catalysts, ruthenium-based catalysts and several other catalysts, point out the remaining challenges and outline the future opportunities, with the aim to contribute to the development of PNF.
Collapse
Affiliation(s)
- Ping Qi
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| | - Xiaoxu Gao
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| | - Jian Wang
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| | - Huimin Liu
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| | - Dehua He
- Innovative Catalysis Program, Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
| | - Qijian Zhang
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| |
Collapse
|
28
|
Ren H, Tan J, Zhao Z, Shi Y, Xin X, Yang D, Jiang Z. Multi-stepwise electron transfer via MOF-based nanocomposites for photocatalytic ammonia synthesis. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01086k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photocatalytic ammonia (NH3) synthesis can realize the reaction of nitrogen (N2) and water by using solar energy as the sole driving force under mild conditions, however, the inferior electron transfer...
Collapse
|
29
|
An K, Tan J, Yang D, Ren H, Zhao Z, Chen Y, Wang W, Xin X, Shi Y, Jiang Z. Modular Assembly of Electron Transfer Pathway in Bimetallic MOF for Photocatalytic Ammonia Synthesis. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02294f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is a long-term pursuit to implement the green and sustainable photocatalytic production of ammonia via the conversion of water and nitrogen under mild conditions. Due to the rapid recombination...
Collapse
|
30
|
Hu K, Huang Z, Zeng L, Zhang Z, Mei L, Chai Z, Shi W. Recent Advances in MOF‐Based Materials for Photocatalytic Nitrogen Fixation. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Kongqiu Hu
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Zhiwei Huang
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Engineering Laboratory of Advanced Energy Materials Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
| | - Liwen Zeng
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Zhihui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University Changzhou 213164 China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Zhifang Chai
- Engineering Laboratory of Advanced Energy Materials Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
31
|
Ji G, Zhao L, Wei J, Cai J, He C, Du Z, Cai W, Duan C. A Metal-Organic Framework as a Multiphoton Excitation Regulator for the Activation of Inert C(sp 3 )-H Bonds and Oxygen. Angew Chem Int Ed Engl 2021; 61:e202114490. [PMID: 34747102 DOI: 10.1002/anie.202114490] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/07/2022]
Abstract
The activation and oxidization of inert C(sp3 )-H bonds into value-added chemicals affords attractively economic and ecological benefits as well as central challenge in modern chemistry. Inspired by the natural enzymatic transformation, herein, we report a new multiphoton excitation approach to activate the inert C(sp3 )-H bonds and oxygen by integrating the photoinduced electron transfer (PET), ligand-to-metal charge transfer (LMCT) and hydrogen atom transfer (HAT) events together into one metal-organic framework. The well-modified nicotinamide adenine dinucleotide (NAD+ ) mimics oxidized CeIII -OEt moieties to generate CeIV -OEt chromophore and its reduced state mimics NAD. via PET. The in situ formed CeIV -OEt moiety triggers a LMCT excitation to form the alkoxy radical EtO. , abstracts a hydrogen atom from the C(sp3 )-H bond, accompanying the recovery of CeIII -OEt and the formation of alkyl radicals. The formed NAD. activates oxygen to regenerate the NAD+ for next recycle, wherein, the activated oxygen species interacts with the intermediates for the oxidization functionalization, paving a catalytic avenue for developing scalable and sustainable synthetic strategy.
Collapse
Affiliation(s)
- Guanfeng Ji
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jianwei Wei
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Junkai Cai
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Zenggang Du
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Wei Cai
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
32
|
Vizuet JP, Lewis AL, McCandless GT, Balkus KJ. Holmium-based metal-organic frameworks using the BDC linker. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Kolobov N, Goesten MG, Gascon J. Metal–Organic Frameworks: Molecules or Semiconductors in Photocatalysis? Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nikita Kolobov
- King Abdullah University of Science and Technology KAUST Catalysis Center Advanced Catalytic Materials Thuwal 23955 Saudi Arabia
| | - Maarten G. Goesten
- Aarhus University Department of Chemistry Langelandsgade 140 8000 Aarhus Denmark
| | - Jorge Gascon
- King Abdullah University of Science and Technology KAUST Catalysis Center Advanced Catalytic Materials Thuwal 23955 Saudi Arabia
| |
Collapse
|
34
|
Ziegenbalg D, Zander J, Marschall R. Photocatalytic Nitrogen Reduction: Challenging Materials with Reaction Engineering. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dirk Ziegenbalg
- Institute of Chemical Engineering Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Judith Zander
- Department of Chemistry University of Bayreuth Universitätsstrasse 30 95447 Bayreuth Germany
| | - Roland Marschall
- Department of Chemistry University of Bayreuth Universitätsstrasse 30 95447 Bayreuth Germany
| |
Collapse
|
35
|
Kolobov N, Goesten MG, Gascon J. Metal-Organic Frameworks: Molecules or Semiconductors in Photocatalysis? Angew Chem Int Ed Engl 2021; 60:26038-26052. [PMID: 34213064 DOI: 10.1002/anie.202106342] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Indexed: 11/11/2022]
Abstract
In the realm of solids, metal-organic frameworks (MOFs) offer unique possibilities for the rational engineering of tailored physical properties. These derive from the modular, molecular make-up of MOFs, which allows for the selection and modification of the organic and inorganic building units that construct them. The adaptable properties make MOFs interesting materials for photocatalysis, an area of increasing significance. But the molecular and porous nature of MOFs leaves the field, in some areas, juxtapositioned between semiconductor physics and homogeneous photocatalysis. While descriptors from both fields are applied in tandem, the gap between theory and experiment has widened in some areas, and arguably needs fixing. Here we review where MOFs have been shown to be similar to conventional semiconductors in photocatalysis, and where they have been shown to be more like infinite molecules in solution. We do this from the perspective of band theory, which in the context of photocatalysis, covers both the molecular and nonmolecular principles of relevance.
Collapse
Affiliation(s)
- Nikita Kolobov
- King Abdullah University of Science and Technology, KAUST Catalysis Center, Advanced Catalytic Materials, Thuwal, 23955, Saudi Arabia
| | - Maarten G Goesten
- Aarhus University, Department of Chemistry, Langelandsgade 140., 800, Aarhus, Denmark
| | - Jorge Gascon
- King Abdullah University of Science and Technology, KAUST Catalysis Center, Advanced Catalytic Materials, Thuwal, 23955, Saudi Arabia
| |
Collapse
|
36
|
Mansingh S, Das KK, Sultana S, Parida K. Recent advances in wireless photofixation of dinitrogen to ammonia under the ambient condition: A review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100402] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
37
|
Gong C, Li Z, Liu G, Pu S. Ratiometric fluorescent sensing for phosphate based on Eu/Ce/UiO-66-(COOH) 2 nanoprobe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119493. [PMID: 33556795 DOI: 10.1016/j.saa.2021.119493] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/26/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
The sensing of phosphate anion (PO43-) is an important subject for human health and environmental monitoring. Herein, a unique ratiometric fluorescent nanoprobe based on postsynthetic modification of metal-organic frameworks (MOF) UiO-66-(COOH)2 with Eu3+ and Ce3+ ions toward PO43- was proposed (designated as Eu/Ce/Uio-66-(COOH)2). The Eu/Ce/Uio-66-(COOH)2 nanoprobe exhibits three emission peaks at 377 nm, 509 nm, and 621 nm with the single excitation wavelength at 250 nm, respectively. The strong coordinating interaction between Ce3+ and O atoms in the PO43- group can result in the fluorescence quenching at 377 nm, while the fluorescence of 621 nm almost remains unchanged. Such a useful phenomenon is exploited for the construction of a ratiometric fluorescence platform for the detection of PO43-. The assay exhibited a good linear response in the 0.3-20 μM concentration range with the detection limit of 0.247 μM. In addition, this ratiometric fluorescent sensing method not only can be applied to read out PO43- concentration in real water samples, but also shows higher sensitivity, easier preparation and sensing procedures than other detection strategies.
Collapse
Affiliation(s)
- Congcong Gong
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Zhijian Li
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China.
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China; YuZhang Normal University, Nanchang 330013, PR China.
| |
Collapse
|
38
|
Hao W, Jin B, Huang T, Zhang J, Shen J, Rufang P. Lanthanide-nitrogen-rich supramolecular complexes (La Ce Pr): Synthesis, structure, and catalysis for ammonium perchlorate. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Li Z, Liu G, Fan C, Pu S. Ratiometric fluorescence for sensitive detection of phosphate species based on mixed lanthanide metal organic framework. Anal Bioanal Chem 2021; 413:3281-3290. [PMID: 33693975 DOI: 10.1007/s00216-021-03264-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 12/31/2022]
Abstract
Phosphate (PO43-) plays a major role in aquatic ecosystems and biosystems. Developing a highly sensitive and selective ratiometric fluorescence probe for detection of PO43- is of great significance to the ecological environment and human health. In this work, a novel dual lanthanide metal organic framework was synthesized via hydrothermal reaction based on Tb3+ and Ce3+ as the center metal ions and terephthalic acid as the organic ligand (designated as Tb-Ce-MOFs). The fluorescence of Tb-Ce-MOFs shows emission at 375 nm. In the presence of PO43-, with increased concentration of PO43-, the fluorescence intensity of Tb-Ce-MOFs at 500 nm and 550 nm increased, while the intensity at 375 nm was reduced. Hence, ratiometric fluorescence detecting of PO43- can be achieved by measuring the ratio of fluorescence at 550 nm (FL550) to 375 nm (FL375) in the fluorescent spectra of the Tb-Ce-MOFs. In this sensing approach, the Tb-Ce-MOFs probe exhibits highly sensitive and selective for detection of PO43-. The limit of detection is calculated to be 28 nM and the detection range is 0.1 to 10 μM. In addition, the Tb-Ce-MOFs were used in the detection of PO43- in real samples. We design and synthesize a mixed lanthanide metal organic framework fluorescence probe (Tb-Ce-MOFs) for ratiometric fluorescence for the detection of PO43- based on Tb3+ and Ce3+ as the center metal ions and terephthalic acid as the organic ligand.
Collapse
Affiliation(s)
- Zhijian Li
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China.
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China.
- YuZhang Normal University, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
40
|
Huang R, Li X, Gao W, Zhang X, Liang S, Luo M. Recent advances in photocatalytic nitrogen fixation: from active sites to ammonia quantification methods. RSC Adv 2021; 11:14844-14861. [PMID: 35423978 PMCID: PMC8697998 DOI: 10.1039/d0ra10439f] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
Photocatalytic nitrogen fixation has become a hot topic in recent years due to its mild and sustainable advantages. While modifying the photocatalyst to enhance its electron separation, light absorption and nitrogen reduction abilities, the role of the active sites in the catalytic reaction cannot be ignored because the N[triple bond, length as m-dash]N nitrogen bond is too strong to activate. This review summarizes the recent research on nitrogen fixation, focusing on the active sites for N2 on the catalyst surface, classifying common active sites, explaining the main role and additional role of the active sites in catalytic reactions, and discussing the methods to increase the number of active sites and their activation ability. Finally, the outlook for future research is presented. It is hoped this review could help researchers understand more about the activation of the nitrogen molecules and lead more efforts into research on nitrogen fixation photocatalysts.
Collapse
Affiliation(s)
- Rong Huang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan Ningxia 750021 China
- Ningxia Key Laboratory for Photovoltaic Materials, Ningxia University Yinchuan Ningxia 750021 China
| | - Xiaoman Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan Ningxia 750021 China
| | - Wanguo Gao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan Ningxia 750021 China
| | - Xu Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan Ningxia 750021 China
| | - Sen Liang
- Ningxia Key Laboratory for Photovoltaic Materials, Ningxia University Yinchuan Ningxia 750021 China
| | - Min Luo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan Ningxia 750021 China
| |
Collapse
|
41
|
Hu Z, Wang Y, Zhao D. The chemistry and applications of hafnium and cerium(iv) metal-organic frameworks. Chem Soc Rev 2021; 50:4629-4683. [PMID: 33616126 DOI: 10.1039/d0cs00920b] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The coordination connection of organic linkers to the metal clusters leads to the formation of metal-organic frameworks (MOFs), where the metal clusters and ligands are spatially entangled in a periodic manner. The immense availability of tuneable ligands of different length and functionalities gives rise to robust molecular porosity ranging from several angstroms to nanometres. Among the large family of MOFs, hafnium (Hf) based MOFs have been demonstrated to be highly promising for practical applications due to their unique and outstanding characteristics such as chemical, thermal, and mechanical stability, and acidic nature. Since the report of UiO-66(Hf) and DUT-51(Hf) in 2012, less than 200 Hf-MOFs (ca. 50 types of structures) have been reported. Besides, tetravalent cerium [Ce(iv)] has been proven to be capable of forming similar topological MOF structures to Zr and Hf since its first discovery in 2015. So far, ca. 40 Ce(iv) MOFs with 60% having UiO-66-type structure have been reported. This review will offer a holistic summary of the chemistry, uniqueness, synthesis, and applications of Hf/Ce(iv)-MOFs with a focus on presenting the development in the Hf/Ce(iv)-clusters, topologies, ligand structures, synthetic strategies, and practical applications of Hf/Ce(iv)-MOFs. In the end, we will present the research outlook for the development of Hf/Ce(iv)-MOFs in the future, including fundamental design of Hf/Ce(iv)-clusters, defect engineering, and various applications including membrane development, diversified types of catalytic reactions, irradiation absorption in nuclear waste treatment, water production and wastewater treatment, etc. We will also present the emerging computational approaches coupled with machine-learning algorithms that can be applied in screening Hf and Ce(iv) based MOF structures and identifying the best-performing MOFs for tailor-made applications in future practice.
Collapse
Affiliation(s)
- Zhigang Hu
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | | | | |
Collapse
|
42
|
Luo F, Feng X, Li Y, Zheng G, Zhou A, Xie P, Wang Z, Tao T, Long X, Wan J. Magnetic amino-functionalized lanthanum metal-organic framework for selective phosphate removal from water. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125906] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Hao W, Huang T, Jin B, Zhang J, Shen J, Peng R. Rare-earth, nitrogen-rich, oxygen heterocyclic supramolecular compounds (Nd, Sm, and Eu): Synthesis, structure, and catalysis for ammonium perchlorate. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2021.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Hu K, Qiu P, Zeng L, Hu S, Mei L, An S, Huang Z, Kong X, Lan J, Yu J, Zhang Z, Xu Z, Gibson JK, Chai Z, Bu Y, Shi W. Solar‐Driven Nitrogen Fixation Catalyzed by Stable Radical‐Containing MOFs: Improved Efficiency Induced by a Structural Transformation. Angew Chem Int Ed Engl 2020; 59:20666-20671. [DOI: 10.1002/anie.202009630] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Kong‐Qiu Hu
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Peng‐Xiang Qiu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC) Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET) School of Environmental Science and Engineering Nanjing University of Information Science and Technology Nanjing 210044 China
| | - Li‐Wen Zeng
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Shu‐Xian Hu
- Department of Physics University of Science and Technology Beijing Beijing 100083 China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Shu‐Wen An
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Zhi‐Wei Huang
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Xiang‐He Kong
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Jian‐Hui Lan
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Ji‐Pan Yu
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Zhi‐Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University Changzhou 213164 China
| | - Zhong‐Fei Xu
- Department of Physics University of Science and Technology Beijing Beijing 100083 China
| | - John K. Gibson
- Chemical Sciences Division Lawrence Berkeley National Laboratory (LBNL) Berkeley California 94720 USA
| | - Zhi‐Fang Chai
- Engineering Laboratory of Advanced Energy Materials Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo 315201 China
| | - Yun‐Fei Bu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC) Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET) School of Environmental Science and Engineering Nanjing University of Information Science and Technology Nanjing 210044 China
| | - Wei‐Qun Shi
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
45
|
Hu K, Qiu P, Zeng L, Hu S, Mei L, An S, Huang Z, Kong X, Lan J, Yu J, Zhang Z, Xu Z, Gibson JK, Chai Z, Bu Y, Shi W. Solar‐Driven Nitrogen Fixation Catalyzed by Stable Radical‐Containing MOFs: Improved Efficiency Induced by a Structural Transformation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Kong‐Qiu Hu
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Peng‐Xiang Qiu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC) Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET) School of Environmental Science and Engineering Nanjing University of Information Science and Technology Nanjing 210044 China
| | - Li‐Wen Zeng
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Shu‐Xian Hu
- Department of Physics University of Science and Technology Beijing Beijing 100083 China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Shu‐Wen An
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Zhi‐Wei Huang
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Xiang‐He Kong
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Jian‐Hui Lan
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Ji‐Pan Yu
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Zhi‐Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University Changzhou 213164 China
| | - Zhong‐Fei Xu
- Department of Physics University of Science and Technology Beijing Beijing 100083 China
| | - John K. Gibson
- Chemical Sciences Division Lawrence Berkeley National Laboratory (LBNL) Berkeley California 94720 USA
| | - Zhi‐Fang Chai
- Engineering Laboratory of Advanced Energy Materials Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo 315201 China
| | - Yun‐Fei Bu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC) Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET) School of Environmental Science and Engineering Nanjing University of Information Science and Technology Nanjing 210044 China
| | - Wei‐Qun Shi
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
46
|
Sun X, Yuan K, Zhang Y. Advances and prospects of rare earth metal-organic frameworks in catalytic applications. J RARE EARTH 2020. [DOI: 10.1016/j.jre.2020.01.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Zhu Y, Qiu F, Rong J, Zhang T, Mao K, Yang D. Covalent laccase immobilization on the surface of poly(vinylidene fluoride) polymer membrane for enhanced biocatalytic removal of dyes pollutants from aqueous environment. Colloids Surf B Biointerfaces 2020; 191:111025. [DOI: 10.1016/j.colsurfb.2020.111025] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022]
|