1
|
Huang Z, Qi X, Zhang H, Liu L, Zhang Z, Yang Z, Wei J. Innovative Separator Engineering: Hydrogen Bond-Driven Layer-By-Layer Assembly for Enhanced Stability and Efficiency in Lithium Metal Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:9989-9999. [PMID: 40219975 DOI: 10.1021/acs.langmuir.5c00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Lithium metal batteries (LMBs) face critical challenges due to uncontrolled lithium dendrite growth and inhomogeneous Li+ flux, largely attributed to conventional separators' poor interfacial compatibility. To address this, we propose a hydrogen bond-driven layer-by-layer (LbL) assembly strategy for engineering functional separators using poly(vinyl alcohol) (PVA) and tannic acid (TA). The optimized PP/(TA/PVA)15 separator leverages the synergistic interplay between PVA's hydroxyl groups and TA's carbonyl moieties, forming a robust hydrogen-bonded network that simultaneously enhances lithiophilicity, regulates Li+ flux uniformity, and immobilizes anions. The interfacial design achieves exceptional electrochemical performance: Li//Li symmetric cells maintain stable operation for 800 h at 0.5 mA cm-2/0.5 mAh cm-2, while Li//LiFePO4 half cells retain 73.8% capacity after 1000 cycles at 5C (decay rate: 0.026% per cycle). The separator further exhibits high ionic conductivity (0.94 mS cm-1) and Li+ transference number (0.63), outperforming conventional polyolefin counterparts. By integrating simplicity, scalability, and eco-friendliness, this work pioneers a universal interface chemistry paradigm for next-generation LMBs, offering transformative insights into separator engineering through molecular-level hydrogen-bonding control.
Collapse
Affiliation(s)
- Zhuqing Huang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xingtao Qi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Hai Zhang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Liequan Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ze Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Zhenyu Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Junchao Wei
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- Jiangxi Provincial Key Laboratory of Oral Disease, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
| |
Collapse
|
2
|
Yang Z, Zhang Z, Liu Y, Fang Y, Li C. Synergistic Enhancement of Biaxial Stretching and Multilayer Composites in All-Solid-State Polymer Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51469-51479. [PMID: 39263963 DOI: 10.1021/acsami.4c10090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
As an important component of lithium-ion batteries, all-solid-state electrolytes should possess high ionic conductivity, excellent flexibility, and relatively high mechanical strength. All-solid-state polymer electrolytes (ASSPEs) based on polymers seem to be able to meet these requirements. However, pure ASSPEs have relatively low ionic conductivity, and the addition of inorganic fillers such as lithium salts will reduce their flexibility and mechanical strength. To address the above issues, in this paper, the solvent-free method was used to prepare a poly(vinylidenefluoride-co-hexafluoropropylene)/lithium bis(trifluoromethanesulfonyl) imide/poly(ethylene oxide) all-solid-state polymer electrolyte, which was then subjected to 4 × 4 magnification synchronous bidirectional stretching. Subsequently, it was multilayered with PEO-based composite polymer electrolytes to obtain multilayered composite polymer electrolytes (MCPEs). Bidirectional stretching provides superior in-plane and out-of-plane mechanical properties to MCPEs by inducing molecular chain orientation, which suppresses the growth of lithium dendrites. Concurrently, it facilitates the formation of the β-crystal form of PVDF-HFP, thereby weakening the ion solvation effect and reducing the lithium-ion migration energy barrier. Multilayered compounding improves the interfacial contact between MCPEs and electrodes, thereby reducing the interfacial impedance. Experiments have demonstrated that the MCPEs prepared in this paper exhibit high ionic conductivity at room temperature (1.83 × 10-4 S cm-1), low interfacial resistance (547 Ω cm-2), excellent mechanical properties (26 MPa), and excellent cycling rate performance (a capacity retention rate of 90% after 110 cycles at 0.1 C), which can meet the performance requirements of lithium-ion batteries for ASSPEs.
Collapse
Affiliation(s)
- Zhitao Yang
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhen Zhang
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yong Liu
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yiping Fang
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| | - Cheng Li
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
3
|
Guo C, Luo ZH, Zhou MX, Wu X, Shi Y, An Q, Shao JJ, Zhou G. Clay-Originated Two-Dimensional Holey Silica Separator for Dendrite-Free Lithium Metal Anode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301428. [PMID: 37127872 DOI: 10.1002/smll.202301428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Lithium metal anode is the ultimate choice to obtain next-generation high-energy-density lithium batteries, while the dendritic lithium growth owing to the unstable lithium anode/electrolyte interface largely limits its practical application. Separator is an important component in batteries and separator engineering is believed to be a tractable and effective way to address the above issue. Separators can play the role of ion redistributors to guide the transport of lithium ions and regulate the uniform electrodeposition of Li. The electrolyte wettability, thermal shrinkage resistance, and mechanical strength are of importance for separators. Here, clay-originated two-dimensional (2D) holey amorphous silica nanosheets (ASN) to develop a low-cost and eco-friendly inorganic separator is directly adopted. The ASN-based separator has higher porosity, better electrolyte wettability, much higher thermal resistance, larger lithium transference number, and ionic conductivity compared with commercial separator. The large amounts of holes and rich surface oxygen groups on the ASN guide the uniform distribution of lithium-ion flux. Consequently, the Li//Li cell with this separator shows stable lithium plating/stripping, and the corresponding Li//LiFePO4 , Li//LiCoO2, and Li//NCM523 full cells also show high capacity, excellent rate performance, and outstanding cycling stability, which is much superior to that using the commercial separator.
Collapse
Affiliation(s)
- Chong Guo
- School of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Zhi-Hong Luo
- School of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Ming-Xia Zhou
- School of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Xinru Wu
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yan Shi
- School of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Qinyou An
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiao-Jing Shao
- School of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
4
|
Su Z, Wang B, Li L, Yang G, Yu A, Li G, Zhang J. Dual Structure-Material Design of Separators toward Dendrite-Free Lithium Metal Anodes. CHEMSUSCHEM 2022; 15:e202201352. [PMID: 36000791 DOI: 10.1002/cssc.202201352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/21/2022] [Indexed: 06/15/2023]
Abstract
The practical applications of lithium metal anodes have been severely hindered by the Li dendrite issue. Herein, a dual structure-material design strategy was developed to fabricate a new type of separator using interconnected hollow porous polyacrylonitrile (PAN) nanofibers (HPPANF), which delivered controllable and dendrite-free Li depositions. The interconnected mesopores on HPPANF bridged the hollow interiors with the outside voids among the fibers, enabling outstanding electrolyte uptake capabilities for high ion conductivity, and nano-level wetted electrolyte/anode interface for uniform Li plating/stripping. In parallel, the HPPANF separator enriched with polar groups acted as an exceptional polymer-based solid-state electrolyte, providing 3D ion channels for the transport of Li ions. Benefiting from the dual structure-material design, the HPPANF separator induced uniform Li ion flux for dendrite-free Li depositions, which caused enhanced cycling stability (1300 h, 3 mA cm-2 ). This work demonstrates a new method to stabilize Li metal anodes through rational separator design.
Collapse
Affiliation(s)
- Zhengkang Su
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Biao Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Linyan Li
- Shanghai Aerospace Power Technology Co., LTD, Shanghai, 201112, P.R. China
| | - Guang Yang
- Shanghai Aerospace Power Technology Co., LTD, Shanghai, 201112, P.R. China
| | - Aishui Yu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Collaborative Innovation Center of Chemistry for Energy Materials, Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Guang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jingjing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
5
|
Wang Y, Guo M, Fu H, Wu Z, Zhang Y, Chao G, Chen S, Zhang L, Liu T. Thermotolerant separator of cross-linked polyimide fibers with narrowed pore size for lithium-ion batteries. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Zhang S, Luo J, Du M, Hui H, Sun Z. Safety and cycling stability enhancement of cellulose paper-based lithium-ion battery separator by aramid nanofibers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Wang J, Liu Y, Cai Q, Dong A, Yang D, Zhao D. Hierarchically Porous Silica Membrane as Separator for High-Performance Lithium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107957. [PMID: 34741777 DOI: 10.1002/adma.202107957] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Commercial polymeric separators in lithium-ion batteries (LIBs) typically suffer from limited porosity, low electrolyte wettability, and poor thermal and mechanical stability, which can degrade the battery performance especially at high current densities. Here, the design of hierarchically porous, ultralight silica membranes as separator for high-performance LIBs is reported through the assembly of hollow mesoporous silica (HMS) particles on the cathode surface. The rich mesopores and large cavity of individual HMS particles provide low-tortuosity pathways for ionic transport, while simultaneously serving as electrolyte reservoir to further boost the electrochemical kinetics. Moreover, benefiting from their inorganic and hierarchically porous nature, such HMS separators display better electrolyte affinity, thermal stability, and mechanical strength than commercial polypropylene (PP) separators. As a demonstration, LIBs with a LiFePO4 cathode coated with HMS separators exhibit exceptional rate capability and cycling stability, outperforming LIBs with PP and Al2 O3 -modified PP separators as well as separators made of solid silica particles.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Yupu Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Qingfu Cai
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Angang Dong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Dong Yang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Dongyuan Zhao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| |
Collapse
|
8
|
Li H, Wang H, Xu Z, Wang K, Ge M, Gan L, Zhang Y, Tang Y, Chen S. Thermal-Responsive and Fire-Resistant Materials for High-Safety Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103679. [PMID: 34580989 DOI: 10.1002/smll.202103679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/14/2021] [Indexed: 06/13/2023]
Abstract
As one of the most efficient electrochemical energy storage devices, the energy density of lithium-ion batteries (LIBs) has been extensively improved in the past several decades. However, with increased energy density, the safety risk of LIBs becomes higher too. The frequently occurred battery accidents worldwide remind us that safeness is a crucial requirement for LIBs, especially in environments with high safety concerns like airplanes and military platforms. It is generally recognized that the catastrophic thermal runaway (TR) event is the major cause of LIBs related accidents. Tremendous efforts have been devoted to coping with the TR concerns in LIBs, and thus enhance battery safety. This review first gives an introduction to the fundamentals of LIBs and the origins of safety issues. Then, the authors summarize the recent advances to improve the safety of LIBs with a unique focus on thermal-responsive and fire-resistant materials. Finally, a perspective is proposed to guide future research directions in this field. It is anticipated this review will stimulate inspiration and arouse extensive studies on further improvement in battery safety.
Collapse
Affiliation(s)
- Heng Li
- Institute of Applied Physics and Materials Engineering, Joint Key Laboratory of the Ministry of Education, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, 999078, P. R. China
| | - Huibo Wang
- Institute of Applied Physics and Materials Engineering, Joint Key Laboratory of the Ministry of Education, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, 999078, P. R. China
| | - Zhu Xu
- Institute of Applied Physics and Materials Engineering, Joint Key Laboratory of the Ministry of Education, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, 999078, P. R. China
| | - Kexuan Wang
- Institute of Applied Physics and Materials Engineering, Joint Key Laboratory of the Ministry of Education, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, 999078, P. R. China
| | - Mingzheng Ge
- Institute of Applied Physics and Materials Engineering, Joint Key Laboratory of the Ministry of Education, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, 999078, P. R. China
| | - Lin Gan
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, 400715, China
| | - Yanyan Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yuxin Tang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Shi Chen
- Institute of Applied Physics and Materials Engineering, Joint Key Laboratory of the Ministry of Education, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, 999078, P. R. China
| |
Collapse
|
9
|
Chen L, Yue FS, Zhao YM, Wang SS, Li YC, Li G, Ge XC. Surface tailoring of polypropylene separators for lithium-ion batteries via N-hydroxyphthalimide catalysis. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Su M, Huang G, Wang S, Wang Y, Wang H. High safety separators for rechargeable lithium batteries. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1011-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Hu J, Wang W, Zhu X, Liu S, Wang Y, Xu Y, Zhou S, He X, Xue Z. Composite polymer electrolytes reinforced by hollow silica nanotubes for lithium metal batteries. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118697] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Tan L, Li Z, Shi R, Quan F, Wang B, Ma X, Ji Q, Tian X, Xia Y. Preparation and Properties of an Alginate-Based Fiber Separator for Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38175-38182. [PMID: 32803956 DOI: 10.1021/acsami.0c10630] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The membrane is one of the key inner parts of lithium-ion batteries, which determines the interfacial structure and internal resistance, ultimately affecting the capacity, cycling, and safety performance of the cell. In this article, an alginate-based fiber composite membrane was successfully fabricated from cellulose and calcium alginate with flame-retardant properties via a traditional papermaking process. In the membrane, the calcium alginate plays a bridging role and the cellulose acts as a filler. After 100 cycles, lithium-ion batteries by the alginate-based fiber separator exhibited better capacity retention ratios (approximately 90%) compared with those of commercial PP separators. Furthermore, the alginate-based fiber separator demonstrated fine thermal stability and electrochemical properties, showing a stable charge-discharge capability and no hot melt shrinkage at higher temperatures, which is a breakthrough in improving the safety of the cell. This research affords a new way for the large-scale fabrication of safe lithium-ion battery separators.
Collapse
Affiliation(s)
- Liwen Tan
- School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Zhenxing Li
- School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Ran Shi
- School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Fengyu Quan
- School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Bingbing Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Xiaomei Ma
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Quan Ji
- School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Xing Tian
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Yanzhi Xia
- School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| |
Collapse
|