1
|
Astorino C, De Nardo E, Lettieri S, Ferraro G, Pirri CF, Bocchini S. Advancements in Gas Separation for Energy Applications: Exploring the Potential of Polymer Membranes with Intrinsic Microporosity (PIM). MEMBRANES 2023; 13:903. [PMID: 38132907 PMCID: PMC10744731 DOI: 10.3390/membranes13120903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Membrane-based Polymers of Intrinsic Microporosity (PIMs) are promising candidates for energy-efficient industrial gas separations, especially for the separation of carbon dioxide over methane (CO2/CH4) and carbon dioxide over nitrogen (CO2/N2) for natural gas/biogas upgrading and carbon capture from flue gases, respectively. Compared to other separation techniques, membrane separations offer potential energy and cost savings. Ultra-permeable PIM-based polymers are currently leading the trade-off between permeability and selectivity for gas separations, particularly in CO2/CH4 and CO2/N2. These membranes show a significant improvement in performance and fall within a linear correlation on benchmark Robeson plots, which are parallel to, but significantly above, the CO2/CH4 and CO2/N2 Robeson upper bounds. This improvement is expected to enhance the credibility of polymer membranes for CO2 separations and stimulate further research in polymer science and applied engineering to develop membrane systems for these CO2 separations, which are critical to energy and environmental sustainability. This review aims to highlight the state-of-the-art strategies employed to enhance gas separation performances in PIM-based membranes while also mitigating aging effects. These strategies include chemical post-modification, crosslinking, UV and thermal treatment of PIM, as well as the incorporation of nanofillers in the polymeric matrix.
Collapse
Affiliation(s)
- Carmela Astorino
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144 Torino, Italy; (C.A.); (E.D.N.); (C.F.P.)
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Eugenio De Nardo
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144 Torino, Italy; (C.A.); (E.D.N.); (C.F.P.)
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Stefania Lettieri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Giuseppe Ferraro
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Candido Fabrizio Pirri
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144 Torino, Italy; (C.A.); (E.D.N.); (C.F.P.)
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Sergio Bocchini
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144 Torino, Italy; (C.A.); (E.D.N.); (C.F.P.)
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| |
Collapse
|
2
|
Wongwilawan S, Nguyen TS, Nguyen TPN, Alhaji A, Lim W, Hong Y, Park JS, Atilhan M, Kim BJ, Eddaoudi M, Yavuz CT. Non-solvent post-modifications with volatile reagents for remarkably porous ketone functionalized polymers of intrinsic microporosity. Nat Commun 2023; 14:2096. [PMID: 37055400 PMCID: PMC10102017 DOI: 10.1038/s41467-023-37743-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/29/2023] [Indexed: 04/15/2023] Open
Abstract
Chemical modifications of porous materials almost always result in loss of structural integrity, porosity, solubility, or stability. Previous attempts, so far, have not allowed any promising trend to unravel, perhaps because of the complexity of porous network frameworks. But the soluble porous polymers, the polymers of intrinsic microporosity, provide an excellent platform to develop a universal strategy for effective modification of functional groups for current demands in advanced applications. Here, we report complete transformation of PIM-1 nitriles into four previously inaccessible functional groups - ketones, alcohols, imines, and hydrazones - in a single step using volatile reagents and through a counter-intuitive non-solvent approach that enables surface area preservation. The modifications are simple, scalable, reproducible, and give record surface areas for modified PIM-1s despite at times having to pass up to two consecutive post-synthetic transformations. This unconventional dual-mode strategy offers valuable directions for chemical modification of porous materials.
Collapse
Affiliation(s)
- Sirinapa Wongwilawan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- PTT Global Chemical Public Company Limited, Bangkok, 10900, Thailand
| | - Thien S Nguyen
- Oxide & Organic Nanomaterials for Energy & Environment Laboratory, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
- Advanced Membranes & Porous Materials Center, PSE, KAUST, Thuwal, 23955, Saudi Arabia
- KAUST Catalysis Center, PSE, KAUST, Thuwal, 23955, Saudi Arabia
| | - Thi Phuong Nga Nguyen
- Oxide & Organic Nanomaterials for Energy & Environment Laboratory, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Abdulhadi Alhaji
- Advanced Membranes & Porous Materials Center, PSE, KAUST, Thuwal, 23955, Saudi Arabia
| | - Wonki Lim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yeongran Hong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jin Su Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Mert Atilhan
- Department of Chemical and Paper Engineering, Western Michigan University, Kalamazoo, MI, 49008-5462, USA
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Mohamed Eddaoudi
- Advanced Membranes & Porous Materials Center, PSE, KAUST, Thuwal, 23955, Saudi Arabia
| | - Cafer T Yavuz
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- Oxide & Organic Nanomaterials for Energy & Environment Laboratory, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.
- Advanced Membranes & Porous Materials Center, PSE, KAUST, Thuwal, 23955, Saudi Arabia.
- KAUST Catalysis Center, PSE, KAUST, Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
3
|
Song KS, Fritz PW, Coskun A. Porous organic polymers for CO 2 capture, separation and conversion. Chem Soc Rev 2022; 51:9831-9852. [PMID: 36374129 PMCID: PMC9703447 DOI: 10.1039/d2cs00727d] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 08/15/2023]
Abstract
Porous organic polymers (POPs) have long been considered as prime candidates for carbon dioxide (CO2) capture, separation, and conversion. Especially their permanent porosity, structural tunability, stability and relatively low cost are key factors in such considerations. Whereas heteratom-rich microporous networks as well as their amine impregnation/functionalization have been actively exploited to boost the CO2 affinity of POPs, recently, the focus has shifted to engineering the pore environment, resulting in a new generation of highly microporous POPs rich in heteroatoms and featuring abundant catalytic sites for the capture and conversion of CO2 into value-added products. In this review, we aim to provide key insights into structure-property relationships governing the separation, capture and conversion of CO2 using POPs and highlight recent advances in the field.
Collapse
Affiliation(s)
- Kyung Seob Song
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| | - Patrick W Fritz
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| | - Ali Coskun
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
4
|
Wang G, Chen Y, Pan C, Chen H, Ding S, Chen X. Rapid synthesis of self-standing covalent organic frameworks membrane via polyethylene glycol-assisted space-confined strategy. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Li R, Alomari S, Islamoglu T, Farha OK, Fernando S, Thagard SM, Holsen TM, Wriedt M. Systematic Study on the Removal of Per- and Polyfluoroalkyl Substances from Contaminated Groundwater Using Metal-Organic Frameworks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15162-15171. [PMID: 34714637 DOI: 10.1021/acs.est.1c03974] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Harmful per- and polyfluoroalkyl substances (PFAS) are ubiquitously detected in aquatic environments, but their remediation remains challenging. Metal-organic frameworks (MOFs) have been recently identified as an advanced material class for the efficient removal of PFAS, but little is known about the fundamentals of the PFAS@MOF adsorption process. To address this knowledge gap, we evaluated the performance of 3 different MOFs for the removal of 8 PFAS classes from aqueous film-forming foam-impacted groundwater samples obtained from 11 U.S. Air Force installations. Due to their different pore sizes/shapes and the identity of metal node, MOFs NU-1000, UiO-66, and ZIF-8 were selected to investigate the role of MOF structures, PFAS properties, and water matrix on the PFAS@MOF adsorption process. We observed that PFAS@MOF adsorption is (i) dominated by electrostatic and acid-base interactions for anionic and non-ionic PFAS, respectively, (ii) preferred for long- over short-chain PFAS, (iii) strongly dependent on the nature of PFAS head group functionality, and (iv) compromised in the presence of ionic and neutral co-contaminants by competing for ion-exchange sites and PFAS binding. With this study, we elucidate the PFAS@MOF adsorption mechanism from complex water sources to guide the design of more efficient MOFs for the treatment of PFAS-contaminated water bodies.
Collapse
Affiliation(s)
- Rui Li
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, United States
- Center for Air and Aquatic Resources Engineering & Science, Clarkson University, Potsdam, New York 13699, United States
| | - Shefa Alomari
- Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| | - Timur Islamoglu
- International Institute of Nanotechnology, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Omar K Farha
- International Institute of Nanotechnology, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Sujan Fernando
- Center for Air and Aquatic Resources Engineering & Science, Clarkson University, Potsdam, New York 13699, United States
| | - Selma Mededovic Thagard
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Thomas M Holsen
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Mario Wriedt
- Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| |
Collapse
|
6
|
Sattari A, Ramazani A, Aghahosseini H, Aroua MK. The application of polymer containing materials in CO2 capturing via absorption and adsorption methods. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101526] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Sai Bhargava Reddy M, Ponnamma D, Sadasivuni KK, Kumar B, Abdullah AM. Carbon dioxide adsorption based on porous materials. RSC Adv 2021; 11:12658-12681. [PMID: 35423803 PMCID: PMC8697313 DOI: 10.1039/d0ra10902a] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/11/2021] [Indexed: 12/22/2022] Open
Abstract
Global warming due to the high concentration of anthropogenic CO2 in the atmosphere is considered one of the world's leading challenges in the 21st century as it leads to severe consequences such as climate change, extreme weather events, ocean warming, sea-level rise, declining Arctic sea ice, and the acidification of oceans. This encouraged advancing technologies that sequester carbon dioxide from the atmosphere or capture those emitted before entering the carbon cycle. Recently, CO2 capture, utilizing porous materials was established as a very favorable route, which has drawn extreme interest from scientists and engineers due to their advantages over the absorption approach. In this review, we summarize developments in porous adsorbents for CO2 capture with emphasis on recent studies. Highly efficient porous adsorption materials including metal-organic frameworks (MOFs), zeolites, mesoporous silica, clay, porous carbons, porous organic polymers (POP), and metal oxides (MO) are discussed. Besides, advanced strategies employed to increase the performance of CO2 adsorption capacity to overcome their drawbacks have been discoursed.
Collapse
Affiliation(s)
- M Sai Bhargava Reddy
- Center for Nanoscience and Technology, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad Telangana State 500085 India
| | | | | | - Bijandra Kumar
- Department of Mathematics, Computer Science and Engineering Technology, Elizabeth City State University Elizabeth City NC 27909 USA
| | | |
Collapse
|
8
|
Jung D, Chen Z, Alayoglu S, Mian MR, Goetjen TA, Idrees KB, Kirlikovali KO, Islamoglu T, Farha OK. Postsynthetically Modified Polymers of Intrinsic Microporosity (PIMs) for Capturing Toxic Gases. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10409-10415. [PMID: 33591706 DOI: 10.1021/acsami.0c21741] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polymers of intrinsic microporosity (PIMs) are promising materials for gas adsorption because of their high surface area, processability, and tailorable backbone. Specifically, nitrile groups on the backbone of PIM-1, an archetypal PIM, can be converted to other functional groups to selectively capture targeted gas molecules. Despite these appealing features of PIMs, their potential has mainly only been realized for the separation of nontoxic gases. Here, we prepared PIM-1 materials modified with carboxylic acid and amidoxime functional groups and investigated their performance as adsorbents for the capture of ammonia (NH3) and sulfur dioxide (SO2) gases. After determining the Brønsted acidity or basicity of the PIMs from potentiometric acid-base titrations, which can be correlated with affinity for acidic or basic toxic gases, we explored the uptake capacity toward NH3 and SO2, respectively. Gas sorption studies revealed that the carboxylated PIM showed higher affinity toward NH3 through the incorporation of Brønsted acid sites, while the amidoxime functionalized PIM exhibited affinity toward SO2 through the installed of slightly basic functional groups. Overall, this study highlights new insight into PIMs as solid sorbent materials for capturing toxic gases, which can be transferred to their potential use in practical applications, such as personal protective equipment or air filtration.
Collapse
Affiliation(s)
- Dahee Jung
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhijie Chen
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Selim Alayoglu
- Reactor Engineering and Catalyst Testing Core, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mohammad Rasel Mian
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Timothy A Goetjen
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Karam B Idrees
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kent O Kirlikovali
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Timur Islamoglu
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
9
|
Yolsal U, Horton TA, Wang M, Shaver MP. Polymer-supported Lewis acids and bases: Synthesis and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101313] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Wang T, Yao H, Song N, Yang Y, Shi K, Guan S. Construction of Microporous Polyimides with Tunable Pore Size and High CO2 Selectivity Based on Cross-Linkable Linear Polyimides. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tianjiao Wang
- Key Laboratory of High Performance Plastics, Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hongyan Yao
- Key Laboratory of High Performance Plastics, Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ningning Song
- Key Laboratory of High Performance Plastics, Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yanchao Yang
- Key Laboratory of High Performance Plastics, Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Kaixiang Shi
- Key Laboratory of High Performance Plastics, Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shaowei Guan
- Key Laboratory of High Performance Plastics, Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|