1
|
Hong Y, Ye F, Gao X, Inman JT, Wang MD. Tunable elliptical cylinders for rotational mechanical studies of single DNA molecules. SCIENCE ADVANCES 2024; 10:eadr4519. [PMID: 39671476 PMCID: PMC11641005 DOI: 10.1126/sciadv.adr4519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/06/2024] [Indexed: 12/15/2024]
Abstract
The angular optical trap (AOT) is a powerful technique for measuring the DNA topology and rotational mechanics of fundamental biological processes. Realizing the full potential of the AOT requires rapid torsional control of these processes. However, existing AOT quartz cylinders are limited in their ability to meet the high rotation rate requirement while minimizing laser-induced photodamage. In this work, we present a trapping particle design to meet this challenge by creating small metamaterial elliptical cylinders with tunable trapping force and torque properties. The optical torque of these cylinders arises from their shape anisotropy, with their optical properties tuned via multilayered SiO2 and Si3N4 deposition. We demonstrate that these cylinders can be rotated at about three times the rate of quartz cylinders without slippage while enhancing the torque measurement resolution during DNA torsional elasticity studies. This approach opens opportunities for previously inaccessible rotational studies of DNA processing.
Collapse
Affiliation(s)
- Yifeng Hong
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Fan Ye
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Xiang Gao
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - James T. Inman
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Michelle D. Wang
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
2
|
Hong Y, Ye F, Gao X, Inman JT, Wang MD. Tunable Elliptical Cylinders for Rotational Mechanical Studies of Single DNA Molecules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614944. [PMID: 39386461 PMCID: PMC11463624 DOI: 10.1101/2024.09.25.614944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The angular optical trap (AOT) is a powerful technique for measuring the DNA topology and rotational mechanics of fundamental biological processes. Realizing the full potential of the AOT requires rapid torsional control of these processes. However, existing AOT quartz cylinders are limited in their ability to meet the high rotation rate requirement while minimizing laser-induced photodamage. In this work, we present a novel trapping particle design to meet this challenge by creating small metamaterial elliptical cylinders with tunable trapping force and torque properties. The optical torque of these cylinders arises from their shape anisotropy, with their optical properties tuned via multilayered SiO2 and Si3N4 deposition. We demonstrate that these cylinders can be rotated at about 3 times the rate of quartz cylinders without slippage while enhancing the torque measurement resolution during DNA torsional elasticity studies. This approach opens new opportunities for previously inaccessible rotational studies of DNA processing.
Collapse
Affiliation(s)
- Yifeng Hong
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Fan Ye
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Xiang Gao
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - James T. Inman
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Michelle D. Wang
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Hong Y, Ye F, Qian J, Gao X, Inman JT, Wang MD. Optical torque calculations and measurements for DNA torsional studies. Biophys J 2024; 123:3080-3089. [PMID: 38961622 PMCID: PMC11428274 DOI: 10.1016/j.bpj.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/20/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
The angular optical trap (AOT) is a powerful instrument for measuring the torsional and rotational properties of a biological molecule. Thus far, AOT studies of DNA torsional mechanics have been carried out using a high numerical aperture oil-immersion objective, which permits strong trapping but inevitably introduces spherical aberrations due to the glass-aqueous interface. However, the impact of these aberrations on torque measurements is not fully understood experimentally, partly due to a lack of theoretical guidance. Here, we present a numerical platform based on the finite element method to calculate forces and torques on a trapped quartz cylinder. We have also developed a new experimental method to accurately determine the shift in the trapping position due to the spherical aberrations by using a DNA molecule as a distance ruler. We found that the calculated and measured focal shift ratios are in good agreement. We further determined how the angular trap stiffness depends on the trap height and the cylinder displacement from the trap center and found full agreement between predictions and measurements. As a further verification of the methodology, we showed that DNA torsional properties, which are intrinsic to DNA, could be determined robustly under different trap heights and cylinder displacements. Thus, this work has laid both a theoretical and experimental framework that can be readily extended to investigate the trapping forces and torques exerted on particles with arbitrary shapes and optical properties.
Collapse
Affiliation(s)
- Yifeng Hong
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York
| | - Fan Ye
- Howard Hughes Medical Institute, Cornell University, Ithaca, New York; Department of Physics & LASSP, Cornell University, Ithaca, New York
| | - Jin Qian
- Department of Physics & LASSP, Cornell University, Ithaca, New York
| | - Xiang Gao
- Howard Hughes Medical Institute, Cornell University, Ithaca, New York; Department of Physics & LASSP, Cornell University, Ithaca, New York
| | - James T Inman
- Howard Hughes Medical Institute, Cornell University, Ithaca, New York; Department of Physics & LASSP, Cornell University, Ithaca, New York
| | - Michelle D Wang
- Howard Hughes Medical Institute, Cornell University, Ithaca, New York; Department of Physics & LASSP, Cornell University, Ithaca, New York.
| |
Collapse
|
4
|
Ye F, Inman JT, Hong Y, Hall PM, Wang MD. Resonator nanophotonic standing-wave array trap for single-molecule manipulation and measurement. Nat Commun 2022; 13:77. [PMID: 35013276 PMCID: PMC8748738 DOI: 10.1038/s41467-021-27709-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/03/2021] [Indexed: 11/29/2022] Open
Abstract
Nanophotonic tweezers represent emerging platforms with significant potential for parallel manipulation and measurements of single biological molecules on-chip. However, trapping force generation represents a substantial obstacle for their broader utility. Here, we present a resonator nanophotonic standing-wave array trap (resonator-nSWAT) that demonstrates significant force enhancement. This platform integrates a critically-coupled resonator design to the nSWAT and incorporates a novel trap reset scheme. The nSWAT can now perform standard single-molecule experiments, including stretching DNA molecules to measure their force-extension relations, unzipping DNA molecules, and disrupting and mapping protein-DNA interactions. These experiments have realized trapping forces on the order of 20 pN while demonstrating base-pair resolution with measurements performed on multiple molecules in parallel. Thus, the resonator-nSWAT platform now meets the benchmarks of a table-top precision optical trapping instrument in terms of force generation and resolution. This represents the first demonstration of a nanophotonic platform for such single-molecule experiments. Applications of nanophotonic tweezers have been limited by the low trapping force. Here, the authors present enhanced force generation in a nanophotonic standing-wave array trap by integrating a critically-coupled resonator design and demonstrate common single-molecule experiments.
Collapse
Affiliation(s)
- Fan Ye
- Howard Hughes Medical Institute, Ithaca, NY, 14853, USA.,Department of Physics & LASSP, Ithaca, NY, 14853, USA
| | - James T Inman
- Howard Hughes Medical Institute, Ithaca, NY, 14853, USA.,Department of Physics & LASSP, Ithaca, NY, 14853, USA
| | - Yifeng Hong
- Department of Electrical and Computer Engineering, Ithaca, NY, 14853, USA
| | | | - Michelle D Wang
- Howard Hughes Medical Institute, Ithaca, NY, 14853, USA. .,Department of Physics & LASSP, Ithaca, NY, 14853, USA.
| |
Collapse
|
5
|
Tang Y, Ha S, Begou T, Lumeau J, Urbach HP, Dekker NH, Adam AJ. Versatile Multilayer Metamaterial Nanoparticles with Tailored Optical Constants for Force and Torque Transduction. ACS NANO 2020; 14:14895-14906. [PMID: 33170655 PMCID: PMC7690042 DOI: 10.1021/acsnano.0c04233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/23/2020] [Indexed: 05/30/2023]
Abstract
The ability to apply force and torque directly to micro- and nanoscale particles in optical traps has a wide range of applications. While full control of both force and torque in three dimensions has been realized using top-down fabrication of rod-shaped particles composed of birefringent crystalline materials, widespread usage of such particles is limited as the optical constants of the predominant birefringent materials (quartz SiO2 and rutile TiO2) preclude coverage of the full application space of optical trapping. Here, we show that multilayer metamaterial nanoparticles provide access to a wide range of optical constants that can be specifically tuned for each application. Selecting the material pair Nb2O5/SiO2 from the library of amorphous dielectrics as our metamaterial, we show that its refractive index and birefringence can be designed by adapting the ratio of layer thicknesses. Using a robust top-down fabrication process, we show that uniformly sized, free-floating Nb2O5/SiO2 particles with high birefringence at moderate refractive index are obtained at high yield. Using an optical torque wrench, we show that these particles function as joint force and torque transducers while maintaining excellent stability in aqueous solutions and can be controllably optimized for particular physical characteristics such as maximal torque transfer or rapid response time. We expect that such customizable birefringent metamaterial nanoparticles whose properties surpass those of conventional crystalline particles will provide a means to unleash the full potential of optical trapping applications.
Collapse
Affiliation(s)
- Ying Tang
- Optics Research
Group, Department of Imaging Physics, Delft
University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Seungkyu Ha
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Thomas Begou
- Aix Marseille Univ, CNRS, Centrale
Marseille, Institut Fresnel, 13013 Marseille, France
| | - Julien Lumeau
- Aix Marseille Univ, CNRS, Centrale
Marseille, Institut Fresnel, 13013 Marseille, France
| | - H. Paul Urbach
- Optics Research
Group, Department of Imaging Physics, Delft
University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Nynke H. Dekker
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Aurèle J.
L. Adam
- Optics Research
Group, Department of Imaging Physics, Delft
University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| |
Collapse
|
6
|
Optical Trapping and Manipulating with a Silica Microring Resonator in a Self-Locked Scheme. MICROMACHINES 2020; 11:mi11020202. [PMID: 32075346 PMCID: PMC7074748 DOI: 10.3390/mi11020202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 01/09/2023]
Abstract
Based on the gradient force of evanescent waves in silica waveguides and add-drop micro-ring resonators, the optical trapping and manipulation of micro size particles is demonstrated in a self-locked scheme that maintains the on-resonance system even if there is a change in the ambient temperature or environment. The proposed configuration allows the trapping of particles in the high Q resonator without the need for a precise wavelength adjustment of the input signal. On the one hand, a silicon dioxide waveguide having a lower refractive index and relatively larger dimensions facilitates the coupling of the laser with a single-mode fiber. Furthermore, the experimental design of the self-locked scheme reduces the sensitivity of the ring to the environment. This combination can trap the micro size particles with a high stability while manipulating them with high accuracy.
Collapse
|
7
|
Andrew PK, Williams MAK, Avci E. Optical Micromachines for Biological Studies. MICROMACHINES 2020; 11:mi11020192. [PMID: 32069922 PMCID: PMC7074663 DOI: 10.3390/mi11020192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/09/2020] [Accepted: 02/09/2020] [Indexed: 12/27/2022]
Abstract
Optical tweezers have been used for biological studies since shortly after their inception. However, over the years research has suggested that the intense laser light used to create optical traps may damage the specimens being studied. This review aims to provide a brief overview of optical tweezers and the possible mechanisms for damage, and more importantly examines the role of optical micromachines as tools for biological studies. This review covers the achievements to date in the field of optical micromachines: improvements in the ability to produce micromachines, including multi-body microrobots; and design considerations for both optical microrobots and the optical trapping set-up used for controlling them are all discussed. The review focuses especially on the role of micromachines in biological research, and explores some of the potential that the technology has in this area.
Collapse
Affiliation(s)
- Philippa-Kate Andrew
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North 4410, New Zealand;
| | - Martin A. K. Williams
- School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand;
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Ebubekir Avci
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North 4410, New Zealand;
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- Correspondence:
| |
Collapse
|
8
|
Badman RP, Ye F, Wang MD. Towards biological applications of nanophotonic tweezers. Curr Opin Chem Biol 2019; 53:158-166. [PMID: 31678712 DOI: 10.1016/j.cbpa.2019.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023]
Abstract
Optical trapping (synonymous with optical tweezers) has become a core biophysical technique widely used for interrogating fundamental biological processes on size scales ranging from the single-molecule to the cellular level. Recent advances in nanotechnology have led to the development of 'nanophotonic tweezers,' an exciting new class of 'on-chip' optical traps. Here, we describe how nanophotonic tweezers are making optical trap technology more broadly accessible and bringing unique biosensing and manipulation capabilities to biological applications of optical trapping.
Collapse
Affiliation(s)
- Ryan P Badman
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Fan Ye
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA; Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Michelle D Wang
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA; Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|