1
|
Zhou JE, Li Y, Lin X, Ye J. Prussian Blue Analogue-Templated Nanocomposites for Alkali-Ion Batteries: Progress and Perspective. NANO-MICRO LETTERS 2024; 17:9. [PMID: 39325069 PMCID: PMC11427656 DOI: 10.1007/s40820-024-01517-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/18/2024] [Indexed: 09/27/2024]
Abstract
Lithium-ion batteries (LIBs) have dominated the portable electronic and electrochemical energy markets since their commercialisation, whose high cost and lithium scarcity have prompted the development of other alkali-ion batteries (AIBs) including sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs). Owing to larger ion sizes of Na+ and K+ compared with Li+, nanocomposites with excellent crystallinity orientation and well-developed porosity show unprecedented potential for advanced lithium/sodium/potassium storage. With enticing open rigid framework structures, Prussian blue analogues (PBAs) remain promising self-sacrificial templates for the preparation of various nanocomposites, whose appeal originates from the well-retained porous structures and exceptional electrochemical activities after thermal decomposition. This review focuses on the recent progress of PBA-derived nanocomposites from their fabrication, lithium/sodium/potassium storage mechanism, and applications in AIBs (LIBs, SIBs, and PIBs). To distinguish various PBA derivatives, the working mechanism and applications of PBA-templated metal oxides, metal chalcogenides, metal phosphides, and other nanocomposites are systematically evaluated, facilitating the establishment of a structure-activity correlation for these materials. Based on the fruitful achievements of PBA-derived nanocomposites, perspectives for their future development are envisioned, aiming to narrow down the gap between laboratory study and industrial reality.
Collapse
Affiliation(s)
- Jian-En Zhou
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, 510006, People's Republic of China
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Yilin Li
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Xiaoming Lin
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, 510006, People's Republic of China.
| | - Jiaye Ye
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
2
|
Rafiq K, Sabir M, Abid MZ, Hussain E. Unveiling the scope and perspectives of MOF-derived materials for cutting-edge applications. NANOSCALE 2024; 16:16791-16837. [PMID: 39206569 DOI: 10.1039/d4nr02168a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Although synthesis and design of MOFs are crucial factors to the successful implementation of targeted applications, there is still lack of knowledge among researchers about the synthesis of MOFs and their derived composites for practical applications. For example, many researchers manipulate study results, and it has become quite difficult to quit this habit specifically among the young researchers Undoubtedly, MOFs have become an excellent class of compounds but there are many challenges associated with their improvement to attain diverse applications. It has been noted that MOF-derived materials have gained considerable interest owing to their unique chemical properties. These compounds have exhibited excellent potential in various sectors such as energy, catalysis, sensing and environmental applications. It is worth mentioning that most of the researchers rely on commercially available MOFs for use as precursor supports, but it is an unethical and wrong practice because it prevents the exploration of the hidden diversity of similar materials. The reported studies have significant gaps and flaws, they do not have enough details about the exact parameters used for the synthesis of MOFs and their derived materials. For example, many young researchers claim that MOF-based materials cannot be synthesized as per the reported instructions for large-scale implementation. In this regard, current article provides a comprehensive review of the most recent advancements in the design of MOF-derived materials. The methodologies and applications have been evaluated together with their advantages and drawbacks. Additionally, this review suggests important precautions and solutions to overcome the drawbacks associated with their preparation. Applications of MOF-derived materials in the fields of energy, catalysis, sensing and environment have been discussed. No doubt, these materials have become excellent class but there are still many challenges ahead to specify it for the targeted applications.
Collapse
Affiliation(s)
- Khezina Rafiq
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.
| | - Mamoona Sabir
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.
| | - Muhammad Zeeshan Abid
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.
| | - Ejaz Hussain
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.
| |
Collapse
|
3
|
Cui X, Yang X, Liu Z, Jiang W, Wan J, Liu Y, Ma F. Construction of CoNi 2S 4/Co 9S 8@Co 4S 3 nanocubes derived from Ni-Co prussian blue analogues@cobalt carbonate hydroxide core-shell heterostructure for asymmetric supercapacitor. J Colloid Interface Sci 2024; 661:614-628. [PMID: 38310770 DOI: 10.1016/j.jcis.2024.01.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/06/2024]
Abstract
Construction of Prussian blue analogues (PBAs) with heterostructure is beneficial to preparing PBAs derivatives with superior electrochemical performance. In this work, the core-shell nanostructured nanocubes composed of nickel hexacyanocobalt PBA (NiCo-PBA)@cobalt carbonate hydroxide (CCH) are synthesized through an in-situ epitaxial growth strategy, and the formation mechanisms of coating are carefully validated and specifically discussed. Then, the precursors are successfully transformed into hierarchical CoNi2S4/Co9S8@Co4S3 via the gas-phase vulcanization method. Benefiting from the intriguing heterostructure and multicomponent sulfides, the CoNi2S4/Co9S8@Co4S3-80 electrode exhibits a high specific capacity of 799 ± 16C/g (specific capacitance of 1595 ± 31F/g) at 1 A/g, ultra-high capacity retention of 80 % at a high current density of 20 A/g. The assembled asymmetric supercapacitor (ASC) device delivers a high energy density of 43.3 Wh kg-1 at a power density of 899 W kg-1 and exhibits superior cycling stability with the capacity retention of 88 % after 5,000 cycles. Subsequently, the fabricated all-solid-state ASC device shows an excellent energy density of 36.4 Wh kg-1 with a power density of 824 W kg-1. This work proposing rational design of combining multicomponent sulfides and core-shell heterostructure based on PBA nanocubes opens up a novel route for developing asymmetric supercapacitor electrode materials with superior performance.
Collapse
Affiliation(s)
- Xin Cui
- Key Laboratory of Chemical Engineering Processes & Technology for High-efficiency Conversion (College of Heilongjiang Province), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Xiaoyang Yang
- Key Laboratory of Chemical Engineering Processes & Technology for High-efficiency Conversion (College of Heilongjiang Province), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Zeyi Liu
- Key Laboratory of Chemical Engineering Processes & Technology for High-efficiency Conversion (College of Heilongjiang Province), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Wei Jiang
- Key Laboratory of Chemical Engineering Processes & Technology for High-efficiency Conversion (College of Heilongjiang Province), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Jiafeng Wan
- Key Laboratory of Chemical Engineering Processes & Technology for High-efficiency Conversion (College of Heilongjiang Province), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Yifu Liu
- Key Laboratory of Chemical Engineering Processes & Technology for High-efficiency Conversion (College of Heilongjiang Province), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Fangwei Ma
- Key Laboratory of Chemical Engineering Processes & Technology for High-efficiency Conversion (College of Heilongjiang Province), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
4
|
Peng L, Gineste S, Coudret C, Ciuculescu-Pradines D, Benoît-Marquié F, Mingotaud C, Marty JD. Iron-based hybrid polyionic complexes as chemical reservoirs for the pH-triggered synthesis of Prussian blue nanoparticles. J Colloid Interface Sci 2023; 649:900-908. [PMID: 37390537 DOI: 10.1016/j.jcis.2023.06.136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023]
Abstract
HYPOTHESIS Hybrid polyion complexes (HPICs) obtained from the complexation in aqueous solution of a double hydrophilic block copolymer and metal ions can act as efficient precursors for the controlled synthesis of nanoparticles. In particular, the possibility to control the availability of metal ions by playing on the pH conditions is of special interest to obtain nanoparticles with controlled size and composition. EXPERIMENTS HPICs based on Fe3+ ions were used to initiate the formation of Prussian blue (PB) nanoparticles in presence of potassium ferrocyanide in reaction media with varying pH values. FINDINGS Complexed Fe3+ ions within HPICs can be easily released by adjusting the pH value either through the addition of a base/acid or by using a merocyanine photoacid. This allows to modulate the reactivity of Fe3+ ions with potassium ferrocyanide present in solution. As a result, PB nanoparticles with different structures (core, core-shell), composition and controlled size are obtained.
Collapse
Affiliation(s)
- Liming Peng
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Stéphane Gineste
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Christophe Coudret
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Diana Ciuculescu-Pradines
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Florence Benoît-Marquié
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Christophe Mingotaud
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Jean-Daniel Marty
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France.
| |
Collapse
|
5
|
CeO2/ZIF-9 composites as a heterogeneous catalyst for peroxymonosulfate activation to degrade methylene blue. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04965-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
Liu B, Zhang Q, Ali U, Li Y, Hao Y, Zhang L, Su Z, Li L, Wang C. Solid-solution reaction suppresses the Jahn-Teller effect of potassium manganese hexacyanoferrate in potassium-ion batteries. Chem Sci 2022; 13:10846-10855. [PMID: 36320692 PMCID: PMC9491190 DOI: 10.1039/d2sc03824b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/26/2022] [Indexed: 09/16/2023] Open
Abstract
Potassium manganese hexacyanoferrate (KMnHCF) suffers from poor cycling stability in potassium-ion batteries due to the Jahn-Teller effect, and experiences destabilizing asymmetric expansions and contractions during cycling. Herein, hollow nanospheres consisting of ultrasmall KMnHCF nanocube subunits (KMnHCF-S) are developed by a facile strategy. In situ XRD analysis demonstrates that the traditional phase transition for KMnHCF is replaced by a single-phase solid-solution reaction for KMnHCF-S, which effectively suppresses the Jahn-Teller effect. From DFT calculations, it was found that the calculated reaction energy for K+ extraction in the solid-solution reaction is much lower than that in the phase transition, indicating easier K+ extraction during the solid-solution reaction. KMnHCF-S delivers high capacity, outstanding rate capability, and superior cycling performance. Impressively, the K-ion full cell composed of the KMnHCF-S cathode and graphite anode also displays excellent cycling stability. The solid-solution reaction not only suppresses the Jahn-Teller effect of KMnHCF-S but also provides a strategy to enhance the electrochemical performance of other electrodes which undergo phase transitions.
Collapse
Affiliation(s)
- Bingqiu Liu
- Faculty of Chemistry, Northeast Normal University Changchun 130024 P. R. China
| | - Qi Zhang
- Faculty of Chemistry, Northeast Normal University Changchun 130024 P. R. China
| | - Usman Ali
- Faculty of Chemistry, Northeast Normal University Changchun 130024 P. R. China
| | - Yiqian Li
- Faculty of Chemistry, Northeast Normal University Changchun 130024 P. R. China
| | - Yuehan Hao
- Faculty of Chemistry, Northeast Normal University Changchun 130024 P. R. China
| | - Lingyu Zhang
- Faculty of Chemistry, Northeast Normal University Changchun 130024 P. R. China
| | - Zhongmin Su
- Faculty of Chemistry, Northeast Normal University Changchun 130024 P. R. China
| | - Lu Li
- Faculty of Chemistry, Northeast Normal University Changchun 130024 P. R. China
| | - Chungang Wang
- Faculty of Chemistry, Northeast Normal University Changchun 130024 P. R. China
| |
Collapse
|
7
|
Wu S, Xu X, Yan X, Zhao H, Liu C, Wang Y, Su Q, Yin F, Yang Q. Sea urchin-like CoNi 2S 4materials derived from nickel hexamyanocobaltate for high-performance asymmetric hybrid supercapacitor. NANOTECHNOLOGY 2022; 33:485404. [PMID: 35803093 DOI: 10.1088/1361-6528/ac7fa6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
In this work, a mild chemical precipitation method and simple hydrothermal treatment of the nickel hexamyanocobaltate precursor strategy are developed to prepare a sea urchin-like CoNi2S4compound with remarkable specific capacity and excellent cycling stability. The prepared CoNi2S4has an outstanding specific capacity of 149.1 mA h g-1at 1 A g-1and an initial capacity of 83.1% after 3000 cycles at 10 A g-1. Moreover, the porous carbon nanospheres (PCNs) with exhibit cycling stability (94.7% of initial specific capacity after 10 000 cycles at 10 A g-1) are selected as negative electrode to match CoNi2S4positive electrode for assembly of CoNi2S4//PCNs asymmetric supercapacitor (ASC). Satisfactorily, the as-assembled CoNi2S4//PCNs ASC exhibits an impressive energy density of 41.6 Wh kg-1at 797 W kg-1, as well as the suitable capacity retention of 82.8% after 10 000 cycles. The superior properties of the device demonstrated that the as-prepared material is potential energy storage material.
Collapse
Affiliation(s)
- Shang Wu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental-Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Xin Xu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental-Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Xiangtao Yan
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental-Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Huanlei Zhao
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental-Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Chaoyang Liu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental-Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Yanbin Wang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental-Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Qiong Su
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental-Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Fenping Yin
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental-Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Quanlu Yang
- College of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou, 730030, People's Republic of China
| |
Collapse
|
8
|
Qi W, Jiang W, Ling R, Yang C, Wang Y, Cao B. Highly active CeO2-x/Fe interfaces enable fast redox conversion of polysulfides for high-performance lithium-sulfur batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Huang Y, Liu Y, Deng Y, Zhang J, He B, Sun J, Yang Z, Zhou W, Zhao L. Enhancing the bifunctional activity of CoSe 2 nanocubes by surface decoration of CeO 2 for advanced zinc-air batteries. J Colloid Interface Sci 2022; 625:839-849. [PMID: 35772210 DOI: 10.1016/j.jcis.2022.06.094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/07/2022] [Accepted: 06/20/2022] [Indexed: 10/31/2022]
Abstract
The coupling of oxygen evolution and reduction reactions (OER and ORR) plays a key role in rechargeable Zn-air batteries (ZABs). However, both OER and ORR still suffer from sluggish kinetics, even when using the mainstream precious metal-based catalysts. Herein, oxygen vacancies-rich CeO2 decorated CoSe2 nanocubes are proposed as a novel air electrode to drive OER and ORR for ZABs. The resultant CeO2 coupled CoSe2 nanocubes (CeO2@CoSe2-NCs) catalyst exhibits a significantly enhanced bifunctional activity relative to the pristine CoSe2-NCs and the pristine CeO2. Moreover, an assembled ZABs using this CeO2@CoSe2-NCs electrode delivers a high output power density of 153 mW cm-2 and a long-life stability over 400 cycles, superior to the benchmark Pt/C-IrO2 electrode. Theoretical calculations reveal that the electronic interaction and oxygen vacancies in CeO2@CoSe2-NCs contribute to efficient oxygen electrocatalysis. This protocol provides a promising approach of constructing oxygen vacancies in hybrid catalysts for energy conversion and storage devices.
Collapse
Affiliation(s)
- Yonglong Huang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yuzhou Liu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yanzhu Deng
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jing Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Beibei He
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; Shenzhen Research Institute, China University of Geosciences, Shenzhen 518000, China.
| | - Jian Sun
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhihong Yang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wei Zhou
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Ling Zhao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; Shenzhen Research Institute, China University of Geosciences, Shenzhen 518000, China.
| |
Collapse
|
10
|
Wu X, Ru Y, Bai Y, Zhang G, Shi Y, Pang H. PBA composites and their derivatives in energy and environmental applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214260] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Ashrafi H, Rahnama F, Akhond M, Absalan G. Accelerating Surface Photoreactions Using MoS 2-FeS 2 Nanoadsorbents: Photoreduction of Cr(VI) to Cr(III) and Photodegradation of Methylene Blue. Inorg Chem 2021; 61:1118-1129. [PMID: 34969241 DOI: 10.1021/acs.inorgchem.1c03290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanocubic MoS2-FeS2, as a photocatalyst, was synthesized with high catalytic active edges and high specific surface areas with the capability of absorbing visible light. The results showed that the photocatalytic efficiency of nanocubic MoS2-FeS2 for adsorption/degradation of methylene blue (MB) as well as the reduction of Cr(VI) was high. The adsorption process was found to follow a kinetic model of a pseudo-second-order kind (Qe.cal = 464 mg g-1) along with an isotherm described by the Langmuir model with Qe.cal = 340 mg g-1. The photodegradation process was achieved by holes. It was found that the photodegradation rate constant of MB by MoS2-FeS2 (0.203 min-1) was about 22 times higher than that of MoS2 (0.0091 min-1). The percent apparent quantum yield for photoreduction of Cr(VI) to Cr(III) using MoS2-FeS2 (5.7%) was about 33 times higher than utilizing MoS2 (0.1709%). Therefore, the synergistically prolonged visible-light harvesting as well as the photocarrier diffusion length proved that MoS2-FeS2 nanotubes can effectively be utilized in environmental pollutant's remediation.
Collapse
Affiliation(s)
- Hossein Ashrafi
- Professor Massoumi Laboratory, Department of Chemistry, Shiraz University, Shiraz 71454, Iran
| | - Fatemeh Rahnama
- Professor Massoumi Laboratory, Department of Chemistry, Shiraz University, Shiraz 71454, Iran
| | - Morteza Akhond
- Professor Massoumi Laboratory, Department of Chemistry, Shiraz University, Shiraz 71454, Iran
| | - Ghodratollah Absalan
- Professor Massoumi Laboratory, Department of Chemistry, Shiraz University, Shiraz 71454, Iran
| |
Collapse
|
12
|
Li Y, Liu HY, Shi LN, Zhu YR, Yi TF. Improved lithium storage performance of CeO2-decorated SrLi2Ti6O14 material as an anode for Li-ion battery. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Lan Y, Luo H, Ma Y, Hua Y, Liao T, Yang J. Synergy between copper and iron sites inside carbon nanofibers for superior electrocatalytic denitrification. NANOSCALE 2021; 13:10108-10115. [PMID: 34060572 DOI: 10.1039/d1nr01489g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developing low-cost electrocatalysts for the nitrate reduction reaction (NO3RR) with superior performance is of great significance for wastewater treatment. Herein, we synthesized bimetal Cu/Fe nanoparticles encased in N-doped carbon nanofibers (Cu/Fe@NCNFs) through simple electrospinning followed by a pyrolysis reduction strategy. Metallic copper is beneficial for reducing nitrate to nitrite, and the existence of Fe is conducive to convert nitrate and nitrite into nitrogen. Additionally, the nitrogen-doped carbon nanofibers also facilitate the adsorption of nitrate, and the continuous and complete fiber structure enhances the stability of the catalyst and prevents the corrosion of the active sites. Therefore, the synergetic effect of bimetal Cu/Fe and N-doped carbon fiber plays a key role in promoting the efficiency of nitrate reduction. The obtained Cu/Fe@NCNF catalyst exhibits a satisfactory nitrate conversion efficiency of 76%, removal capacity of 5686 mg N g-1 Cu/Fe and nitrogen selectivity of 94%.
Collapse
Affiliation(s)
- Yue Lan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | | | | | | | | | | |
Collapse
|
14
|
Duan H, Zhang S, Chen Z, Xu A, Zhan S, Wu S. Self-Formed Channel Boosts Ultrafast Lithium Ion Storage in Fe 3O 4@Nitrogen-Doped Carbon Nanocapsule. ACS APPLIED MATERIALS & INTERFACES 2020; 12:527-537. [PMID: 31820908 DOI: 10.1021/acsami.9b16184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Investigations into conversion-type materials such as transition-metal oxides have dominated in energy-storage systems, especially for lithium ion batteries in recent years. A common understanding of taking account of high energy density and high power density allows us to design reasonable electrodes. In this study, the unique Fe3O4@nitrogen-doped carbon (denoted as Fe3O4@NC) nanocapsule with self-formed channels was synthesized based on a facile hydrothermal-coating-annealing route. With respect to the effect of this rational architecture on lithium-storage performance, excellent behavior (a high reversible capacity of 480 mAh g-1) could be maintained at 20 A g-1 during 1000 cycles, with an average Coulombic efficiency of 99.97%. It also means that such a Fe3O4@NC electrode can meet a fast-charge challenge (end-of-charge within ∼2 min). By a series of investigations, we certainly considered that uniform carbon coating improved electrical conductivity and acted as a buffer layer to accommodate volume variations of Fe3O4 nanoparticles during cycling. It is more interesting that self-formed channels can effectively shorten the ion diffusion path and provide a necessary space to buffer volume expansion as well. Benefiting from these synergetic advantages, this Fe3O4@NC nanocapsule also delivered outstanding electrochemical performances in full cells.
Collapse
Affiliation(s)
- Huanhuan Duan
- School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , 510641 , China
| | - Shenkui Zhang
- School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , 510641 , China
| | - Zhuowen Chen
- School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , 510641 , China
| | - Anding Xu
- School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , 510641 , China
| | - Shuzhong Zhan
- School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , 510641 , China
| | - Songping Wu
- School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , 510641 , China
| |
Collapse
|
15
|
Tan X, Wu Y, Lin X, Zeb A, Xu X, Luo Y, Liu J. Application of MOF-derived transition metal oxides and composites as anodes for lithium-ion batteries. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00929f] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Research progress of MOF-derived metal oxides and composites in lithium ion batteries has been presented based on different organic linkers.
Collapse
Affiliation(s)
- Xiaohong Tan
- School of Chemistry
- South China Normal University
- Guangzhou
- P. R. China
| | - Yongbo Wu
- School of Physics and Telecom Engineering
- South China Normal University
- Guangzhou
- P. R. China
| | - Xiaoming Lin
- School of Chemistry
- South China Normal University
- Guangzhou
- P. R. China
| | - Akif Zeb
- School of Chemistry
- South China Normal University
- Guangzhou
- P. R. China
| | - Xuan Xu
- School of Chemistry
- South China Normal University
- Guangzhou
- P. R. China
| | - Yifan Luo
- School of Chemistry
- South China Normal University
- Guangzhou
- P. R. China
| | | |
Collapse
|