1
|
Lv J, Yin R, Zhou L, Li J, Kikas R, Xu T, Wang Z, Jin H, Wang X, Wang S. Microenvironment Engineering for the Electrocatalytic CO
2
Reduction Reaction. Angew Chem Int Ed Engl 2022; 61:e202207252. [DOI: 10.1002/anie.202207252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jing‐Jing Lv
- Key Laboratory of Carbon Materials of Zhejiang Province Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| | - Ruonan Yin
- Key Laboratory of Carbon Materials of Zhejiang Province Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| | - Limin Zhou
- Key Laboratory of Carbon Materials of Zhejiang Province Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| | - Jun Li
- Key Laboratory of Carbon Materials of Zhejiang Province Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| | - Reddu Kikas
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Ting Xu
- Key Laboratory of Carbon Materials of Zhejiang Province Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| | - Zheng‐Jun Wang
- Key Laboratory of Carbon Materials of Zhejiang Province Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| | - Huile Jin
- Key Laboratory of Carbon Materials of Zhejiang Province Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| | - Xin Wang
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Shun Wang
- Key Laboratory of Carbon Materials of Zhejiang Province Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| |
Collapse
|
2
|
Badawy IM, Ismail AM, Khedr GE, Taha MM, Allam NK. Selective electrochemical reduction of CO 2 on compositionally variant bimetallic Cu-Zn electrocatalysts derived from scrap brass alloys. Sci Rep 2022; 12:13456. [PMID: 35931804 PMCID: PMC9355942 DOI: 10.1038/s41598-022-17317-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022] Open
Abstract
The electrocatalytic reduction of carbon dioxide (CO2RR) into value-added fuels is a promising initiative to overcome the adverse effects of CO2 on climate change. Most electrocatalysts studied, however, overlook the harmful mining practices used to extract these catalysts in pursuit of achieving high-performance. Repurposing scrap metals to use as alternative electrocatalysts would thus hold high privilege even at the compromise of high performance. In this work, we demonstrated the repurposing of scrap brass alloys with different Zn content for the conversion of CO2 into carbon monoxide and formate. The scrap alloys were activated towards CO2RR via simple annealing in air and made more selective towards CO production through galvanic replacement with Ag. Upon galvanic replacement with Ag, the scrap brass-based electrocatalysts showed enhanced current density for CO production with better selectivity towards the formation of CO. The density functional theory (DFT) calculations were used to elucidate the potential mechanism and selectivity of the scrap brass catalysts towards CO2RR. The d-band center in the different brass samples with different Zn content was elucidated.
Collapse
Affiliation(s)
- Ibrahim M Badawy
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Ahmed Mohsen Ismail
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Ghada E Khedr
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt.,Department of Analysis and Evaluation, Egyptian Petroleum Research Institute, Cairo, 11727, Egypt
| | - Manar M Taha
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Nageh K Allam
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt.
| |
Collapse
|
3
|
Lv JJ, Yin R, Zhou L, Li J, Kikas R, Xu T, Wang ZJ, Jin H, Wang X, Wang S. Microenvironment Engineering for the Electrocatalytic CO2 Reduction Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jing-Jing Lv
- Wenzhou University Institute of New Materials and Industrial Technologies CHINA
| | - Ruonan Yin
- Wenzhou University Institute of New Materials and Industrial Technologies CHINA
| | - Limin Zhou
- Wenzhou University Institute of New Materials and Industrial Technologies CHINA
| | - Jun Li
- Wenzhou University Institute of New Materials and Industrial Technologies CHINA
| | - Reddu Kikas
- Nanyang Technological University School of Chemical and Biomedical Engineering SINGAPORE
| | - Ting Xu
- Wenzhou University Institute of New Materials and Industrial Technologies CHINA
| | - Zheng-Jun Wang
- Wenzhou University Institute of New Materials and Industrial Technologies CHINA
| | - Huile Jin
- Wenzhou University Institute of New Materials and Industrial Technologies CHINA
| | - Xin Wang
- Nanyang Technological University School of Chemical and Biomedical Engineering SINGAPORE
| | - Shun Wang
- Wenzhou University Nano-materials & Chemistry Key Laboratory Xueyuan Middle Road 325027 Wenzhou CHINA
| |
Collapse
|
4
|
Masel RI, Liu Z, Yang H, Kaczur JJ, Carrillo D, Ren S, Salvatore D, Berlinguette CP. An industrial perspective on catalysts for low-temperature CO 2 electrolysis. NATURE NANOTECHNOLOGY 2021; 16:118-128. [PMID: 33432206 DOI: 10.1038/s41565-020-00823-x] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Electrochemical conversion of CO2 to useful products at temperatures below 100 °C is nearing the commercial scale. Pilot units for CO2 conversion to CO are already being tested. Units to convert CO2 to formic acid are projected to reach pilot scale in the next year. Further, several investigators are starting to observe industrially relevant rates of the electrochemical conversion of CO2 to ethanol and ethylene, with the hydrogen needed coming from water. In each case, Faradaic efficiencies of 80% or more and current densities above 200 mA cm-2 can be reproducibly achieved. Here we describe the key advances in nanocatalysts that lead to the impressive performance, indicate where additional work is needed and provide benchmarks that others can use to compare their results.
Collapse
Affiliation(s)
| | | | | | | | | | - Shaoxuan Ren
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Danielle Salvatore
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Curtis P Berlinguette
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Chen EX, Yang J, Qiu M, Wang X, Zhang YF, Guo YJ, Huang SL, Sun YY, Zhang J, Hou Y, Lin Q. Understanding the Efficiency and Selectivity of Two-Electron Production of Metalloporphyrin-Embedded Zirconium-Pyrogallol Scaffolds in Electrochemical CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52588-52594. [PMID: 33185432 DOI: 10.1021/acsami.0c14135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Because of the high efficiency and mild reaction conditions, electrocatalytic CO2 reduction (ECR) has attracted significant attention in recent years. However, the specific mechanism of the formation of the two-electron production (CO or HCOOH) in this reaction is still unclear. Herein, with density functional theory calculation and experimental manipulation, the specific mechanism of the selective two-electron reduction of CO2 has been systematically investigated, employing the polyphenolate-substituted metalloporphyrinic frameworks, ZrPP-1-M (M = Fe, Co, Ni, Cu, and Zn), as model catalysts. Experimental observations and theoretical calculations discovered that ZrPP-1-Co is a more favorable catalyst for ECR among them. Compared with the formation of HCOOH, electroreduction of CO2 into CO has more beneficial thermodynamic and kinetic routes with ZrPP-1-Co as a catalyst. After introducing the r-GO for improving the conductivity, the Faradaic efficiency for CO formation is 82.4% at -0.6 v (vs RHE).
Collapse
Affiliation(s)
- Er-Xia Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Jian Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mei Qiu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- College of Science, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Xinyue Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yong-Fan Zhang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Yu-Jun Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Shan-Lin Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Ya-Yong Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qipu Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
6
|
Fundamentals of Gas Diffusion Electrodes and Electrolysers for Carbon Dioxide Utilisation: Challenges and Opportunities. Catalysts 2020. [DOI: 10.3390/catal10060713] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Electrocatalysis plays a prominent role in the development of carbon dioxide utilisation technologies. Many new and improved CO2 conversion catalysts have been developed in recent years, progressively achieving better performance. However, within this flourishing field, a disconnect in catalyst performance evaluation has emerged as the Achilles heel of CO2 electrolysis. Too often, catalysts are assessed in electrochemical settings that are far removed from industrially relevant operational conditions, where CO2 mass transport limitations should be minimised. To overcome this issue, gas diffusion electrodes and gas-fed electrolysers need to be developed and applied, presenting new challenges and opportunities to the CO2 electrolysis community. In this review, we introduce the reader to the fundamentals of gas diffusion electrodes and gas-fed electrolysers, highlighting their advantages and disadvantages. We discuss in detail the design of gas diffusion electrodes and their operation within gas-fed electrolysers in both flow-through and flow-by configurations. Then, we correlate the structure and composition of gas diffusion electrodes to the operational performance of electrolysers, indicating options and prospects for improvement. Overall, this study will equip the reader with the fundamental understanding required to enhance and optimise CO2 catalysis beyond the laboratory scale.
Collapse
|