1
|
Meng J, Zahran M, Li X. Metal-Organic Framework-Based Nanostructures for Electrochemical Sensing of Sweat Biomarkers. BIOSENSORS 2024; 14:495. [PMID: 39451708 PMCID: PMC11506703 DOI: 10.3390/bios14100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Sweat is considered the most promising candidate to replace conventional blood samples for noninvasive sensing. There are many tools and optical and electrochemical methods that can be used for detecting sweat biomarkers. Electrochemical methods are known for their simplicity and cost-effectiveness. However, they need to be optimized in terms of selectivity and catalytic activity. Therefore, electrode modifiers such as nanostructures and metal-organic frameworks (MOFs) or combinations of them were examined for boosting the performance of the electrochemical sensors. The MOF structures can be prepared by hydrothermal/solvothermal, sonochemical, microwave synthesis, mechanochemical, and electrochemical methods. Additionally, MOF nanostructures can be prepared by controlling the synthesis conditions or mixing bulk MOFs with nanoparticles (NPs). In this review, we spotlight the previously examined MOF-based nanostructures as well as promising ones for the electrochemical determination of sweat biomarkers. The presence of NPs strongly improves the electrical conductivity of MOF structures, which are known for their poor conductivity. Specifically, Cu-MOF and Co-MOF nanostructures were used for detecting sweat biomarkers with the lowest detection limits. Different electrochemical methods, such as amperometric, voltammetric, and photoelectrochemical, were used for monitoring the signal of sweat biomarkers. Overall, these materials are brilliant electrode modifiers for the determination of sweat biomarkers.
Collapse
Affiliation(s)
- Jing Meng
- School of Civil Engineering, Nantong Institute of Technology, Nantong 226002, China
| | - Moustafa Zahran
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Xiaolin Li
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| |
Collapse
|
2
|
Wei C, Wang Z, Hu Y, Huang J, Zhang Y, Wang H, Liu Q, Yu Z. Layer-by-layer growth of Cu 3(HHTP) 2 films on Cu(OH) 2 nanowire arrays for high performance ascorbic acid sensing. Biosens Bioelectron 2024; 255:116256. [PMID: 38555772 DOI: 10.1016/j.bios.2024.116256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/01/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Growing three-dimensional (3D) metal organic frameworks (MOFs) via heterogeneous epitaxial growth on metal hydroxide arrays are effective for constructing electrochemical sensor. However, the growth of MOFs is difficult to control, resulting in thick and irregular morphologies and even damage the metal hydroxide template. In this work, Cu3(HHTP)2 (HHTP = 2, 3, 6, 7, 10, 11-hexahydroxytriphenylene) films with controllable thickness and morphology were successfully prepared on Cu(OH)2 nanowire arrays (NWAs) through layer-by-layer (LBL) growth method. We have discovered that the LBL cycle and the reaction solvent composition are crucial for growing homogenous MOF thin films. The Cu3(HHTP)2 based ascorbic acid (AA) sensor, fabricated in ethanol within 10 LBL cycles, generated an ultrahigh sensitivity of 821.64 μA mM-1 cm-2 in the range of 6-981.41 μM, a low detection limit of 60 nM as well as the great selectivity, stability and reproducibility. Moreover, the relative deviation for AA detection in two fruit juices were 3.22 % and 3.71 %, and the test result for human sweat fall within the normal AA concentration range, verifying the feasibility of as-prepared sensor for practical application.
Collapse
Affiliation(s)
- Chenhuinan Wei
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, China; New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan, China.
| | - Zhuo Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Yurun Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Jingqi Huang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Yang Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Huihu Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, China; New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan, China
| | - Qiming Liu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ziyang Yu
- Hubei Key Laboratory of Optical Information and Pattern Recognition, School of Optical Information and Energy Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
3
|
Hu X, Liu W, Yan Y, Deng H, Cai Y. Development of a novel magnetic metal-organic framework for the immobilization of short-chain dehydrogenase for the asymmetric reduction of pro-chiral ketone. Int J Biol Macromol 2023; 253:127414. [PMID: 37838135 DOI: 10.1016/j.ijbiomac.2023.127414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Short-chain dehydrogenase/reductase (SDR) acts as a biocatalyst in the synthesis of chiral alcohols with high optical purity. Herein, we achieved immobilization via crosslinking on novel magnetic metal-organic framework nanoparticles with a three-layer shell structure (Fe3O4@PDA@Cu (PABA)). The results of scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and energy dispersive X-ray spectroscopy confirmed the morphology and cross-linking property of immobilized SDR, which was more durable, stable, and reusable and exhibited better kinetic performance than free enzyme. The SDR and glucose dehydrogenase (GDH) were co-immobilized and then used for the asymmetric reduction of COBE and ethyl 2-oxo-4-phenylbutanoate (OPBE). These finding suggest that enzymes immobilized on novel MOF nanoparticles can serve as promising biocatalysts for asymmetric reduction prochiral ketones into chiral alcohols.
Collapse
Affiliation(s)
- Xiaoxiang Hu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Wenjing Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yi Yan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Huaxiang Deng
- Center for Synthetic Biochemistry, Institute of Synthetic Biology, Institutes of Advanced Technologies, Shenzhen, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
4
|
Zheng L, Cao M, Du Y, Liu Q, Emran MY, Kotb A, Sun M, Ma CB, Zhou M. Artificial enzyme innovations in electrochemical devices: advancing wearable and portable sensing technologies. NANOSCALE 2023; 16:44-60. [PMID: 38053393 DOI: 10.1039/d3nr05728c] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
With the rapid evolution of sensing technologies, the integration of nanoscale catalysts, particularly those mimicking enzymatic functions, into electrochemical devices has surfaced as a pivotal advancement. These catalysts, dubbed artificial enzymes, embody a blend of heightened sensitivity, selectivity, and durability, laying the groundwork for innovative applications in real-time health monitoring and environmental detection. This minireview penetrates into the fundamental principles of electrochemical sensing, elucidating the unique attributes that establish artificial enzymes as foundational elements in this field. We spotlight a range of innovations where these catalysts have been proficiently incorporated into wearable and portable platforms. Navigating the pathway of amalgamating these nanoscale wonders into consumer-appealing devices presents a multitude of challenges; nevertheless, the progress made thus far signals a promising trajectory. As the intersection of materials science, biochemistry, and electronics progressively intensifies, a flourishing future seems imminent for artificial enzyme-infused electrochemical devices, with the potential to redefine the landscapes of wearable health diagnostics and portable sensing solutions.
Collapse
Affiliation(s)
- Long Zheng
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China.
| | - Mengzhu Cao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China.
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130000, China
| | - Quanyi Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130000, China
| | - Mohammed Y Emran
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Ahmed Kotb
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Mimi Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China.
| | - Chong-Bo Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China.
| | - Ming Zhou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China.
| |
Collapse
|
5
|
Ayyanu R, Arul A, Song N, Anand Babu Christus A, Li X, Tamilselvan G, Bu Y, Kavitha S, Zhang Z, Liu N. Wearable sensor platforms for real-time monitoring and early warning of metabolic disorders in humans. Analyst 2023; 148:4616-4636. [PMID: 37712440 DOI: 10.1039/d3an01085f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Nowadays, the prevalence of metabolic syndromes (MSs) has attracted increasing concerns as it is closely related to overweight and obesity, physical inactivity and overconsumption of energy, making the diagnosis and real-time monitoring of the physiological range essential and necessary for avoiding illness due to defects in the human body such as higher risk of cardiovascular disease, diabetes, stroke and diseases related to artery walls. However, the current sensing techniques are inconvenient and do not continuously monitor the health status of humans. Alternatively, the use of recent wearable device technology is a preferable method for the prevention of these diseases. This can enable the monitoring of the health status of humans in different health domains, including environment and structure. The use wearable devices with the purpose of facilitating rapid treatment and real-time monitoring can decrease the prevalence of MS and long-time monitor the health status of patients. This review highlights the recent advances in wearable sensors toward continuous monitoring of blood pressure and blood glucose, and further details the monitoring of abnormal obesity, triglycerides and HDL. We also discuss the challenges and future prospective of monitoring MS in humans.
Collapse
Affiliation(s)
- Ravikumar Ayyanu
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Amutha Arul
- Department of Chemistry, Francis Xavier Engineering College, Tirunelveli 627003, India
| | - Ninghui Song
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - A Anand Babu Christus
- Department Chemistry, SRM Institute of Science and Technology, Ramapuram Campus, Ramapuram-600089, Chennai, Tamil Nadu, India
| | - Xuesong Li
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - G Tamilselvan
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yuanqing Bu
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - S Kavitha
- Department of Chemistry, The M.D.T Hindu college (Affiliated to Manonmanium Sundaranar University), Tirunelveli-627010, Tamil Nadu, India
| | - Zhen Zhang
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Nan Liu
- Institute of Environment and Health, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, P. R. China.
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
6
|
Jannath KA, Karim MM, Saputra HA, Seo K, Kim KB, Shim Y. A review on the recent advancements in nanomaterials for
nonenzymatic
lactate sensing. B KOREAN CHEM SOC 2023. [DOI: 10.1002/bkcs.12678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Khatun A. Jannath
- Department of Chemistry Pusan National University Busan Republic of Korea
| | - Md Mobarok Karim
- Department of Chemistry Pusan National University Busan Republic of Korea
| | - Heru Agung Saputra
- Department of Chemistry Pusan National University Busan Republic of Korea
| | - Kyeong‐Deok Seo
- Department of Chemistry Pusan National University Busan Republic of Korea
| | - Kwang Bok Kim
- Digital Health Care R&D Department Korea Institute of Industrial Technology (KITECH) Cheonan Republic of Korea
| | - Yoon‐Bo Shim
- Department of Chemistry Pusan National University Busan Republic of Korea
| |
Collapse
|
7
|
Shen Y, Liu C, He H, Zhang M, Wang H, Ji K, Wei L, Mao X, Sun R, Zhou F. Recent Advances in Wearable Biosensors for Non-Invasive Detection of Human Lactate. BIOSENSORS 2022; 12:1164. [PMID: 36551131 PMCID: PMC9776101 DOI: 10.3390/bios12121164] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Lactate, a crucial product of the anaerobic metabolism of carbohydrates in the human body, is of enormous significance in the diagnosis and treatment of diseases and scientific exercise management. The level of lactate in the bio-fluid is a crucial health indicator because it is related to diseases, such as hypoxia, metabolic disorders, renal failure, heart failure, and respiratory failure. For critically ill patients and those who need to regularly control lactate levels, it is vital to develop a non-invasive wearable sensor to detect lactate levels in matrices other than blood. Due to its high sensitivity, high selectivity, low detection limit, simplicity of use, and ability to identify target molecules in the presence of interfering chemicals, biosensing is a potential analytical approach for lactate detection that has received increasing attention. Various types of wearable lactate biosensors are reviewed in this paper, along with their preparation, key properties, and commonly used flexible substrate materials including polydimethylsiloxane (PDMS), polyethylene terephthalate (PET), paper, and textiles. Key performance indicators, including sensitivity, linear detection range, and detection limit, are also compared. The challenges for future development are also summarized, along with some recommendations for the future development of lactate biosensors.
Collapse
Affiliation(s)
- Yutong Shen
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Chengkun Liu
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Haijun He
- Engineering Research Center for Knitting Technology of the Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Mengdi Zhang
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Hao Wang
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Keyu Ji
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Liang Wei
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Xue Mao
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Runjun Sun
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Fenglei Zhou
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
| |
Collapse
|
8
|
Kollias L, Rousseau R, Glezakou VA, Salvalaglio M. Understanding Metal-Organic Framework Nucleation from a Solution with Evolving Graphs. J Am Chem Soc 2022; 144:11099-11109. [PMID: 35709413 DOI: 10.1021/jacs.1c13508] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A mechanistic understanding of metal-organic framework (MOF) synthesis and scale-up remains underexplored due to the complex nature of the interactions of their building blocks. In this work, we investigate the collective assembly of building units at the early stages of MOF nucleation, using MIL-101(Cr) as a prototypical example. Using large-scale molecular dynamics simulations, we observe that the choice of solvent (water and N,N-dimethylformamide), the introduction of ions (Na+ and F-) and the relative populations of MIL-101(Cr) half-secondary building unit (half-SBU) isomers have a strong influence on the cluster formation process. Additionally, the shape, size, nucleation and growth rates, crystallinity, and short and long-range order largely vary depending on the synthesis conditions. We evaluate these properties as they naturally emerge when interpreting the self-assembly of MOF nuclei as the time evolution of an undirected graph. Solution-induced conformational complexity and ionic concentration have a dramatic effect on the morphology of clusters emerging during assembly. While pure solvents lead to the rapid formation of a small number of large clusters, the presence of ions in aqueous solutions results in smaller clusters and slower nucleation. This diversity is captured by the key features of the graph representation. Principle component analysis on graph properties reveals that only a small number of molecular descriptors is needed to deconvolute MOF self-assembly. Descriptors such as the average coordination number between half-SBUs and fractal dimension are of particulalr interest as they can be can be followed experimentally by techniques like by time-resolved spectroscopy. Ultimately, graph theory emerges as an approach that can be used to understand complex processes revealing molecular descriptors accessible by both simulation and experiment.
Collapse
Affiliation(s)
- Loukas Kollias
- Basic and Applied Molecular Foundations, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Roger Rousseau
- Basic and Applied Molecular Foundations, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Vassiliki-Alexandra Glezakou
- Basic and Applied Molecular Foundations, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Matteo Salvalaglio
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| |
Collapse
|
9
|
Jiang L, Wang H, Rao Z, Zhu J, Li G, Huang Q, Wang Z, Liu H. In situ electrochemical reductive construction of metal oxide/metal-organic framework heterojunction nanoarrays for hydrogen peroxide sensing. J Colloid Interface Sci 2022; 622:871-879. [PMID: 35561607 DOI: 10.1016/j.jcis.2022.04.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 11/25/2022]
Abstract
Transition metal oxide/metal-organic framework heterojunctions (TMO@MOF) that combine the large specific surface area of MOFs with TMOs' high catalytic activity and multifunctionality, show excellent performances in various catalytic reactions. Nevertheless, the present preparation approaches of TMO@MOF heterojunctions are too complex to control, stimulating interests in developing simple and highly controllable methods for preparing such heterojunction. In this study, we propose an in situ electrochemical reduction approach to fabricating Cu2O nanoparticle (NP)@CuHHTP heterojunction nanoarrays with a graphene-like conductive MOF CuHHTP (HHTP is 2,3,6,7,10,11-hexahydroxytriphenylene). We have discovered that size-controlled Cu2O nanoparticles could be in situ grown on CuHHTP by applying different electrochemical reduction potentials. Also, the obtained Cu2O NP@CuHHTP heterojunction nanoarrays show high H2O2 sensitivity of 8150.6 μA·mM-1·cm2 and satisfactory detection performances in application of measuring H2O2 concentrations in urine and serum samples. This study offers promising guidance for the synthesis of MOF-based heterojunctions for early cancer diagnosis.
Collapse
Affiliation(s)
- Lipei Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Haitao Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Zhuang Rao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jiannan Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Guangfang Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Qin Huang
- Department of Rehabilitation Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, PR China
| | - Zhengyun Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
10
|
Controlled Deposition of Nanostructured Hierarchical TiO2 Thin Films by Low Pressure Supersonic Plasma Jets. NANOMATERIALS 2022; 12:nano12030533. [PMID: 35159878 PMCID: PMC8839591 DOI: 10.3390/nano12030533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 11/25/2022]
Abstract
Plasma-assisted supersonic jet deposition (PA-SJD) is a precise technique for the fabrication of thin films with a desired nanostructured morphology. In this work, we used quadrupole mass spectrometry of the neutral species in the jet and the extensive characterization of TiO2 films to improve our understanding of the relationship between jet chemistry and film properties. To do this, an organo–metallic precursor (titanium tetra–isopropoxide or TTIP) was first dissociated using a reactive argon–oxygen plasma in a vacuum chamber and then delivered into a second, lower pressure chamber through a nozzle. The pressure difference between the two chambers generated a supersonic jet carrying nanoparticles of TiO2 in the second chamber, and these were deposited onto the surface of a substrate located few centimeters away from the nozzle. The nucleation/aggregation of the jet nanoparticles could be accurately tuned by a suitable choice of control parameters in order to produce the required structures. We demonstrate that high-quality films of up to several µm in thickness and covering a surface area of few cm2 can be effectively produced using this PA-SJD technique.
Collapse
|
11
|
Kamathe V, Nagar R. Morphology-driven gas sensing by fabricated fractals: A review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:1187-1208. [PMID: 34858773 PMCID: PMC8593696 DOI: 10.3762/bjnano.12.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Fractals are intriguing structures that repeat themselves at various length scales. Interestingly, fractals can also be fabricated artificially in labs under controlled growth environments and be explored for various applications. Such fractals have a repeating unit that spans in length from nano- to millimeter range. Fractals thus can be regarded as connectors that structurally bridge the gap between the nano- and the macroscopic worlds and have a hybrid structure of pores and repeating units. This article presents a comprehensive review on inorganic fabricated fractals (fab-fracs) synthesized in labs and employed as gas sensors across materials, morphologies, and gas analytes. The focus is to investigate the morphology-driven gas response of these fab-fracs and identify key parameters of fractal geometry in influencing gas response. Fab-fracs with roughened microstructure, pore-network connectivity, and fractal dimension (D) less than 2 are projected to be possessing better gas sensing capabilities. Fab-fracs with these salient features will help in designing the commercial gas sensors with better performance.
Collapse
Affiliation(s)
- Vishal Kamathe
- Nanomaterials for Energy Applications Lab, Applied Science Department, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Lavale, Pune-412115, Maharashtra, India
| | - Rupali Nagar
- Nanomaterials for Energy Applications Lab, Applied Science Department, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Lavale, Pune-412115, Maharashtra, India
| |
Collapse
|
12
|
Wang D, Zheng P, Chen P, Wu D. Immobilization of alpha-L-rhamnosidase on a magnetic metal-organic framework to effectively improve its reusability in the hydrolysis of rutin. BIORESOURCE TECHNOLOGY 2021; 323:124611. [PMID: 33418354 DOI: 10.1016/j.biortech.2020.124611] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 05/25/2023]
Abstract
α-L-Rhamnosidase (Rha) is a biotechnologically important enzyme that degrades biomass containing natural rhamnoside. Herein, the recombinant Rha was successfully immobilized on magnetic metal-organic frameworks (MOFs), and used to hydrolyze rutin. Magnetic MOFs were constructed by binding Cu2+ and PABA to the surface of Fe3O4 nanoparticles coated with a polydopamine film through coordinate covalent bonds, and the enzyme was attached to the MOFs using the cross-linking agents EDC/NHS. The immobilized enzyme Rha@MOF reached an activity of 25.09 U/g with a lower apparent Km value compared with the free enzyme. The conversion rate of 20 g/L rutin was 91.42%, corresponding to an isoquercitrin productivity of 12.78 g/L/h. Rha@MOF also exhibited significantly improved reusability; the conversion rate was still 73.55% after 30 cycles at 60 °C. These results indicated that the magnetic MOF-immobilized enzyme was a feasible biocatalyst for the conversion of flavonoids with low aqueous solubility.
Collapse
Affiliation(s)
- Deqing Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Pu Zheng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Pengcheng Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Dan Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Zhang X, Yang J, Qu H, Yu ZG, Nandakumar DK, Zhang Y, Tan SC. Machine-Learning-Assisted Autonomous Humidity Management System Based on Solar-Regenerated Super Hygroscopic Complex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003939. [PMID: 33747746 PMCID: PMC7967090 DOI: 10.1002/advs.202003939] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/28/2020] [Indexed: 06/12/2023]
Abstract
High levels of humidity can induce thermal discomfort and consequent health disorders. However, proper utilization of this astounding resource as a freshwater source can aid in alleviating water scarcity. Herein, a low-energy and highly efficient humidity control system is reported comprising of an in-house developed desiccant dehumidifier and hygrometer (sensor), with an autonomous operation capability that can realize simultaneous dehumidification and freshwater production. The high efficiency and energy saving mainly come from the deployed super hygroscopic complex (SHC), which exhibits high water uptake (4.64 g g-1) and facile regeneration. Machine-learning-assisted in-house developed low cost and high precision hygrometers enable the autonomous operation of the humidity management system. The dehumidifier can reduce the relative humidity (RH) of a confined room from 75% to 60% in 15 minutes with energy consumption of 0.05 kWh, saving more than 60% of energy compared with the commercial desiccant dehumidifiers, and harvest 10 L of atmospheric water in 24 h. Moreover, the reduction in RH from 80% to 60% at 32 °C results in the reduction of apparent temperature by about 7 °C, thus effectively improving the thermal comfort of the inhabitants.
Collapse
Affiliation(s)
- Xueping Zhang
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117574Singapore
| | - Jiachen Yang
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117574Singapore
| | - Hao Qu
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117574Singapore
| | - Zhi Gen Yu
- Institute of High Performance ComputingSingapore138632Singapore
| | - Dilip Krishna Nandakumar
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117574Singapore
| | - Yaoxin Zhang
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117574Singapore
| | - Swee Ching Tan
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117574Singapore
| |
Collapse
|
14
|
Two Cd(II) Complexes Based on Carboxylate and Bis(imidazolyl) Ligands: Syntheses, Crystal Structures and Luminescence Properties. J CLUST SCI 2021. [DOI: 10.1007/s10876-020-01966-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
15
|
Li P, Shi X, Wu Y, Song M, Lai Y, Yu H, Lu G. Cathodic synthesis of a Cu-catecholate metal–organic framework. CrystEngComm 2021. [DOI: 10.1039/d0ce01651a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uniform copper-catecholate metal–organic framework (Cu-CAT-1) films with tunable thickness were prepared by oxygen-assisted cathodic synthesis.
Collapse
Affiliation(s)
- Pingping Li
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Soochow University
- Suzhou 215123
- PR China
| | - Xiaofei Shi
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Soochow University
- Suzhou 215123
- PR China
| | - Yunling Wu
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Soochow University
- Suzhou 215123
- PR China
| | - Min Song
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Soochow University
- Suzhou 215123
- PR China
| | - Yapeng Lai
- Department of Cell Biology
- School of Biology & Basic Medical Sciences
- Soochow University
- Suzhou 215123
- PR China
| | - Huijun Yu
- Department of Cell Biology
- School of Biology & Basic Medical Sciences
- Soochow University
- Suzhou 215123
- PR China
| | - Guang Lu
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Soochow University
- Suzhou 215123
- PR China
| |
Collapse
|
16
|
Yang J, Zhang X, Qu H, Yu ZG, Zhang Y, Eey TJ, Zhang YW, Tan SC. A Moisture-Hungry Copper Complex Harvesting Air Moisture for Potable Water and Autonomous Urban Agriculture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002936. [PMID: 32743963 DOI: 10.1002/adma.202002936] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/01/2020] [Indexed: 06/11/2023]
Abstract
The earth's atmosphere houses an enormous amount of water, which could be effectively exploited for a plethora of applications. While the development of materials for harnessing this abundant resource has gained impetus in recent years, limited efforts have been devoted to in-depth research on their agricultural applications. Herein, a novel copper(II)-ethanolamine complex (Cu-complex), which has a maximum water uptake of up to 300% and a water production rate of 2.24 g g-1 h-1 under natural sunlight, is reported. As a proof-of-concept application, using this material, a fully automated and self-sustainable solar-powered SmartFarm device is developed. The Cu-complex harvests atmospheric water during the night, stores the adsorbed water within, and efficiently releases the adsorbed water during the day when the device is exposed to sunlight. The water harvesting and irrigation process can be fine-tuned to suit different types of plants and local climates for an optimal cultivation. With the SmartFarm in operation, the demand for freshwater for irrigation could be greatly reduced and urban farming techniques such as large-scale rooftop farming could be promoted with a view of alleviating both water and food scarcity in the near future.
Collapse
Affiliation(s)
- Jiachen Yang
- Department of Materials Science and Engineering, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Xueping Zhang
- Department of Materials Science and Engineering, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Hao Qu
- Department of Materials Science and Engineering, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Zhi Gen Yu
- Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis (North Tower), Singapore, 138632, Singapore
| | - Yaoxin Zhang
- Department of Materials Science and Engineering, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Tze Jie Eey
- Department of Materials Science and Engineering, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Yong-Wei Zhang
- Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis (North Tower), Singapore, 138632, Singapore
| | - Swee Ching Tan
- Department of Materials Science and Engineering, 9 Engineering Drive 1, Singapore, 117575, Singapore
| |
Collapse
|
17
|
Zhang Y, Chen Y, Huang J, Liu Y, Peng J, Chen S, Song K, Ouyang X, Cheng H, Wang X. Skin-interfaced microfluidic devices with one-opening chambers and hydrophobic valves for sweat collection and analysis. LAB ON A CHIP 2020; 20:2635-2645. [PMID: 32555915 DOI: 10.1039/d0lc00400f] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Soft, skin-interfaced microfluidic platforms are capable of capturing, storing, and assessing sweat chemistry and total sweat loss, which provides essential insight into human physiological health. However, sweat loss from the outlet of the microfluidic devices often leads to deviation of the measured concentration of the biomarker or electrolyte from the actual value. Here, we introduce hydrophobic valves at the junction of the chamber and the microfluidic channel as a new chamber design to reduce sweat evaporation. Because the advancing front of the liquid in the hydrophilic microchannel is blocked by the hydrophobic valve, the fluid flows into the chambers, forms the initial meniscus, and completely fills the chambers along the initial meniscus. Fluid dynamic modeling and numerical simulations provide critical insights into the sweat sampling mechanism into the chambers. With significantly reduced evaporation and contamination, the sweat sample can be easily stored for a long time for later analysis when in situ analysis is limited. Additionally, the design with multiple chambers can allow sequential generation of sweat collection at different times for long-term analysis. The in situ real-time measurements of the sweat loss and pH value analysis from the human subject demonstrate the practical utility of the devices in collecting, storing, and analyzing the sweat generated from sweat glands on the skin.
Collapse
Affiliation(s)
- Yingxue Zhang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Du L, Chen W, Zhu P, Tian Y, Chen Y, Wu C. Applications of Functional Metal-Organic Frameworks in Biosensors. Biotechnol J 2020; 16:e1900424. [PMID: 32271998 DOI: 10.1002/biot.201900424] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/14/2020] [Indexed: 12/12/2022]
Abstract
In recent decades, fast advancements in the fields of metal-organic frameworks (MOFs) are providing unprecedented opportunities for the development of novel functional MOFs for various biosensing applications. Exciting progress is achieved due to the combination of MOFs with various functional components, which introduces novel structures and new features to the MOFs-based biosensing applications, such as higher stability, higher sensitivity, higher flexibility, and higher specificity. This review aims to be a comprehensive summary of the most recent advances in the development of functional MOFs for various biosensing applications, placing special attention on important contributions in recent 3 years. In this review, the most recent developments in design and synthesis of functional MOFs for biosensing applications are summarized. MOFs-based biosensing applications are outlined according to the central roles of MOFs in biosensors, which include carriers of sensitive elements, enzyme-mimic elements, electrochemical signaling, optical signaling, and gas sensing. Finally, the current challenges and future development trends of functional MOFs for biosensing applications are proposed and discussed.
Collapse
Affiliation(s)
- Liping Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wei Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ping Zhu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yulan Tian
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yating Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|