1
|
Manna SK, Rout A, Mondal S, Mukhopadhyay S. Recent advancements of chromogenic and fluorogenic organic probes for the sensing of greenhouse gas CO 2: current achievements, challenges and future prospects. Talanta 2025; 295:128296. [PMID: 40373586 DOI: 10.1016/j.talanta.2025.128296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/17/2025]
Abstract
Considering the significant environmental, biological, and industrial importance of CO2, the design, and development of chromogenic and fluorogenic organic probes has become a significant research topic in the past few decades. The design techniques, sensing mechanisms, and uses of organic CO2 probes published since 2019 have all been addressed in this feature article. We initially classified these CO2 probes into two categories: 1. CO2 chemosensor and 2. CO2 chemodosimeter. We again categorize CO2 chemosensors into five distinct types: (i) anion-induced deprotonation strategy; (ii) aggregation-induced emission (AIE)-based chemosensors; (iii) ionic-liquid-based chemosensors; (iv) polymer-based chemosensors; and (v) miscellaneous approaches. This review explores the achievements of these probes, their limitations and challenges, and future opportunities in this field. It also presents a comparison of all these probes. We anticipate that this review will be beneficial to researchers in the design of chromogenic and fluorogenic CO2 probes for biological and environmental applications in the future.
Collapse
Affiliation(s)
- Saikat Kumar Manna
- Department of Chemistry, Haldia Government College, Debhog, Haldia, Purba Medinipur, West Bengal 721657, India.
| | - Arnab Rout
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Sanchita Mondal
- Department of Chemistry, Sree Chaitanya College, Habra, North 24 Parganas, West Bengal 743268, India.
| | | |
Collapse
|
2
|
Guo X, Song T, Chen D, Zhu J, Li Z, Xia Q, Wang L, Yang W. Multi Stimuli-Responsive Aggregation-Induced Emission Active Polymer Platform Based on Tetraphenylethylene-Appended Maleic Anhydride Terpolymers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3543-3557. [PMID: 36622779 DOI: 10.1021/acsami.2c21668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Multi stimuli-responsive aggregation-induced emission (AIE) active polymers have great application prospects in high-tech innovations. Herein, three types of tetraphenylethylene (TPE)-containing monomers were synthesized and utilized in preparing TPE-appended maleic anhydride terpolymers. After hydrolysis, the produced TPE-appended maleic acid terpolymers have identical linear charge densities but different "primary" structures, which created widely varied microenvironments around the carboxylate and TPE groups. Benefiting from the synergistic interaction of the TPE moiety and the terpolymer conformation change, the TPE-appended maleic acid terpolymers exhibited fluorescence changes in response to multi stimuli, including pH, ionic strength, Ca2+, and bovine serum albumin. On both the "signaling" and the "stimuli acceptor" sides, the multi stimuli-responsive fluorescence behavior was influenced markedly by the terpolymer primary structure. The fundamental insights gained in the present work are important for developing an efficient and versatile stimuli-responsive AIE-active polymer platform for chemo-sensing, bioimaging, and so on.
Collapse
Affiliation(s)
- Xiaoning Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Tong Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Dong Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Jinchang Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Zhenlin Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Qing Xia
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Li Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| |
Collapse
|
3
|
Qi J, Huang J, Yan Y. Vesicles Displaying Aggregation Induced Emission: Fabrication and Applications. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Chowdhury P, Banerjee A, Saha B, Bauri K, De P. Stimuli-Responsive Aggregation-Induced Emission (AIE)-Active Polymers for Biomedical Applications. ACS Biomater Sci Eng 2022; 8:4207-4229. [PMID: 36054823 DOI: 10.1021/acsbiomaterials.2c00656] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
At high concentration or in the aggregated state, most of the traditional luminophores suffer from the general aggregation-caused quenching (ACQ) effect, which significantly limits their biomedical applications. On the contrary, a few fluorophores exhibit an aggregation-induced emission (AIE) feature which is just the opposite of ACQ. The luminophores with aggregation-induced emission (AIEgens) have exhibited noteworthy advantages to get tunable emission, excellent photostability, and biocompatibility. Incorporating AIEgens into polymer design has yielded diversified polymer systems with fascinating photophysical characteristics. Again, stimuli-responsive polymers are capable of undergoing chemical and/or physical property changes on receiving signals from single or multiple stimuli. The combination of the AIE property and stimuli responses in a single polymer platform provides a feasible and effective strategy for the development of smart polymers with promising biomedical applications. Herein, the advancements in stimuli-responsive polymers with AIE characteristics for biomedical applications are summarized. AIE-active polymers are first categorized into conventional π-π conjugated and nonconventional fluorophore systems and then subdivided based on various stimuli, such as pH, redox, enzyme, reactive oxygen species (ROS), and temperature. In each section, the design strategies of the smart polymers and their biomedical applications, including bioimaging, cancer theranostics, gene delivery, and antimicrobial examples, are introduced. The current challenges and future perspectives of this field are also stated at the end of this review article.
Collapse
Affiliation(s)
- Pampa Chowdhury
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Arnab Banerjee
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Biswajit Saha
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Kamal Bauri
- Department of Chemistry, Raghunathpur College, Raghunathpur, 723133 Purulia, West Bengal, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| |
Collapse
|
5
|
Hu R, Wang J, Qin A, Tang BZ. Aggregation-Induced Emission-Active Biomacromolecules: Progress, Challenges, and Opportunities. Biomacromolecules 2022; 23:2185-2196. [PMID: 35171563 DOI: 10.1021/acs.biomac.1c01516] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biomacromolecules featuring aggregation-induced-emission (AIE) characteristics generally present new properties and performances that are silent in the molecular state, providing endless possibilities for the evolution of biomedical applications. Tremendous achievements based on the research of AIE-active biomacromolecules have been made in synthetic exploration, material development, and practical applications. In this Perspective, we give a brief account in the development of AIE-active biomacromolecules. Remarkable progresses have been made in the exploration of AIE-active biomacromolecule preparation, structure-property relationships, and the relevant biomedical applications. The existing challenges and promising opportunities, as well as the future directions in AIE-active biomacromolecule research, are also discussed. It is expected that this Perspective can act as a trigger for the innovation of AIE-active biomacromolecule research and aggregate science.
Collapse
Affiliation(s)
- Rong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, 510641 Guangzhou, China.,School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jia Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, 510641 Guangzhou, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, 510641 Guangzhou, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, 510641 Guangzhou, China.,Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City 518172, Guangdong, China.,Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
6
|
Zhang N, Fan Y, Chen H, Trépout S, Brûlet A, Li MH. Polymersomes with a smectic liquid crystal structure and AIE fluorescence. Polym Chem 2022. [DOI: 10.1039/d1py01686e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fluorescent smectic polymersomes with aggregation-induced emission are prepared from an amphiphilic block copolymer containing a liquid crystal hydrophobic block and a tetraphenylethene-bearing unit between hydrophilic and hydrophobic blocks.
Collapse
Affiliation(s)
- Nian Zhang
- Chimie ParisTech, PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Yujiao Fan
- Chimie ParisTech, PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Hui Chen
- Chimie ParisTech, PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, 75005 Paris, France
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Chaoyang District, 100029 Beijing, China
| | - Sylvain Trépout
- Institut Curie, Université Paris-Saclay, Inserm US43, CNRS UMS2016, Centre Universitaire, Bât. 101B-110-111-112, Rue Henri Becquerel, CS 90030, 91401 ORSAY Cedex, France
| | - Annie Brûlet
- Laboratoire Léon Brillouin, Université Paris-Saclay, UMR12 CEA-CNRS, CEA Saclay, 91191 Gif sur Yvette cedex, France
| | - Min-Hui Li
- Chimie ParisTech, PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
7
|
Xia X, Tan X, Wu C, Li Y, Zhao G, Du M. PM1-loaded recombinant human H-ferritin nanocages: A novel pH-responsive sensing platform for the identification of cancer cells. Int J Biol Macromol 2021; 199:223-233. [PMID: 34971641 DOI: 10.1016/j.ijbiomac.2021.12.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 12/31/2022]
Abstract
The aggregation-induced emission (AIE) material has been widely used in biological detection due to their unique property of fluorescing in aggregation state. However, the poor dispersion and biocompatibility limit its application in in vivo real-time imaging. Here, a novel strategy is designed to obtain pH-responsive AIE nanomaterials, working through 4-Undecoxy Tetraphenyl Ethylene Methacrylate (PM1) block, with excellent features (dispersion, biocompatibility, self-reconstruction and cancer specific recognition). The recombinant human H-ferritin (rHuHF) was used to prepare rHuHF-PM1 nanocomposites which effectively supported the dispersion and transfer of PM1 in the biological environment, even making it target tumor cells due to the overexpression of ferritin receptors on tumor cells. To simulate the changes of rHuHF in intracellular lysosomes, particle size and fluorescence of rHuHF-PM1 were analyzed, which reflected the loose structural changes of rHuHF nanocages in weak acid system that facilitated the degradation of macromolecular rHuHF in intracellular lysosomes and following release of PM1. The released PM1 molecules aggregated and emitted brilliant blue fluorescence. Several cell lines, Hela, HT-29, HepG2, L-O2 and HUVEC have all been sensitively detected and distinguished. Accordingly, this nanocage has a potential to be applied to disease diagnosis and provides a novel sensing platform for the identification of cancer.
Collapse
Affiliation(s)
- Xiaoyu Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoyi Tan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Chao Wu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Yao Li
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Guanghua Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
8
|
Guo C, Yuan H, Zhang Y, Yin T, He H, Gou J, Tang X. Asymmetric polymersomes, from the formation of asymmetric membranes to the application on drug delivery. J Control Release 2021; 338:422-445. [PMID: 34496272 DOI: 10.1016/j.jconrel.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022]
Abstract
Nano drug delivery systems have attracted researchers' growing attention and are gradually emerging into the public views. More and more nano-formulations are being approved for marketing or clinical use, representing the field's booming development. Copolymer self-assembly systems such as micelles, nanoparticles, polymersomes occupy a prominent position in the field of nano-drug delivery carriers. Among them, polymersomes, unlike micelles or nanoparticles, resemble liposomes' structure and possess large internal hollow hydrophilic reservoirs, allowing them to carry hydrophilic drugs. Nevertheless, their insufficient drug loading efficiency and unruly self-assembly morphology have somewhat constrained their applications. Especially for the delivery of biomacromolecule such as peptides, the encapsulation efficiency is always considered to be a formidable obstacle, even if the enormous hydrophilic core would render the polymersomes to have considerable potential in this regard. Reassuringly, the emergence of asymmetric polymersomes holds the prospect of solving this problem. With the development of synthetic technology and a deeper understanding of the self-assembly process, the asymmetric polymersomes which are with different inner and outer shell composition have been gradually recognized by researchers. It has made possible elevated drug loading, more controllable assembly processes and release performance. The internal hydrophilic blocks different from the outer shell could be engineered to have a more remarkable affinity to the cargos or could contain a non-watery aqueous phase to enable the thermodynamically preferred encapsulation of cargos, which would allow for a substantial improvement in drug encapsulation efficiency compared to the conventional approach. In this paper, we aim to deepen the understanding to asymmetric polymersomes and lay the foundation for the development of this field by describing four main elements: the mechanism of their preparation and asymmetric membrane formation process, the characterization of asymmetric membranes, the efficient drug loading, and the special stimulus-responsive release mechanism.
Collapse
Affiliation(s)
- Chen Guo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haoyang Yuan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
9
|
Araste F, Aliabadi A, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Self-assembled polymeric vesicles: Focus on polymersomes in cancer treatment. J Control Release 2021; 330:502-528. [DOI: 10.1016/j.jconrel.2020.12.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022]
|
10
|
Yolsal U, Horton TA, Wang M, Shaver MP. Polymer-supported Lewis acids and bases: Synthesis and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101313] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Mai Z, Li H, Gao Y, Niu Y, Li Y, de Rooij NF, Umar A, Al-Assiri MS, Wang Y, Zhou G. Synergy of CO 2-response and aggregation induced emission in a small molecule: renewable liquid and solid CO 2 chemosensors with high sensitivity and visibility. Analyst 2020; 145:3528-3534. [PMID: 32190881 DOI: 10.1039/d0an00189a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A tetraphenylethylene (TPE) derivative (N,N-dimethyl-N'-(4-(1,2,2-triphenylvinyl)phenyl)acetimidamide, TPE-amidine) was designed and synthesized, and used to prepare visible CO2 chemosensors, TPE-amidine-L (liquid) and TPE-amidine-S (solid). The hydrophilicity of TPE-amidine thoroughly changed because of the unique reversible reaction between the amidine group and CO2, which controlled the molecular aggregation extent in water by CO2. Combining with the well-known aggregate-induced emission effect, the highly selective CO2 chemosensor TPE-amidine-L was developed, which has the lowest CO2 detection limit of 24.6 ppm compared with other reported CO2 chemosensors, and can be regenerated within 10 s by adding triethylamine. With the aim of being safer and more convenient to use, a polyacrylamide hydrogel containing TPE-amidine was prepared as a renewable CO2 sensing "tape" (TPE-amidine-S). The flexibility, adhesivity, CO2 sensitivity and reversibility of the "tape" is systematically investigated, showing great potential for "on-site" and "real-time" CO2 detection in practical applications.
Collapse
Affiliation(s)
- Zhijian Mai
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|