1
|
Lopez E, Gómez M, Becar I, Zapata P, Pizarro J, Navlani-García M, Cazorla-Amorós D, Presser V, Gómez T, Cárdenas C. Removal of Mo(VI), Pb(II), and Cu(II) from wastewater using electrospun cellulose acetate/chitosan biopolymer fibers. Int J Biol Macromol 2024; 269:132160. [PMID: 38718995 DOI: 10.1016/j.ijbiomac.2024.132160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/18/2024] [Accepted: 05/05/2024] [Indexed: 05/30/2024]
Abstract
Environmentally friendly polymers such as cellulose acetate (CA) and chitosan (CS) were used to obtain electrospun fibers for Cu2+, Pb2+, and Mo6+ capture. The solvents dichloromethane (DCM) and dimethylformamide (DMF) allowed the development of a surface area of 148 m2 g-1 for CA fibers and 113 m2 g-1 for cellulose acetate/chitosan (CA/CS) fibers. The fibers were characterized by IR-DRIFT, SEM, TEM, CO2 sorption isotherms at 273 K, Hg porosimetry, TGA, stress-strain tests, and XPS. The CA/CS fibers had a higher adsorption capacity than CA fibers without affecting their physicochemical properties. The capture capacity reached 102 mg g-1 for Cu2+, 49.3 mg g-1 for Pb2+, and 13.1 mg g-1 for Mo6+. Furthermore, optimal pH, adsorption times qt, and C0 were studied for the evaluation of kinetic models and adsorption isotherms. Finally, a proposal for adsorbate-adsorbent interactions is presented as a possible capture mechanism where, in the case of Mo6+, a computational study is presented. The results demonstrate the potential to evaluate the fibers in tailings wastewater from copper mining.
Collapse
Affiliation(s)
- Esmeralda Lopez
- Departamento de Ingeniería Metalúrgica, Facultad de Ingeniería, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile; Laboratorio de Química Ambiental y Remediación, Departamento de Ingeniería Geoespacial y Ambiental, Facultad de Ingeniería, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile; Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile.
| | - Mauricio Gómez
- Laboratorio de Química Ambiental y Remediación, Departamento de Ingeniería Geoespacial y Ambiental, Facultad de Ingeniería, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile; Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile.
| | - Ian Becar
- Laboratorio de Química Ambiental y Remediación, Departamento de Ingeniería Geoespacial y Ambiental, Facultad de Ingeniería, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile
| | - Paula Zapata
- Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile
| | - Jaime Pizarro
- Laboratorio de Química Ambiental y Remediación, Departamento de Ingeniería Geoespacial y Ambiental, Facultad de Ingeniería, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile
| | - Miriam Navlani-García
- Instituto Universitario de Materiales, Departamento de Química Inorgánica, Universidad de Alicante, Apartado 99, 03080 Alicante, Spain
| | - Diego Cazorla-Amorós
- Instituto Universitario de Materiales, Departamento de Química Inorgánica, Universidad de Alicante, Apartado 99, 03080 Alicante, Spain
| | - Volker Presser
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany; Department of Material Science and Engineering, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany; Saarene - Saarland Center for Energy Materials and Sustainability, Campus C4 2, 66123 Saarbrücken, Germany
| | - Tatiana Gómez
- Theoretical and Computational Chemistry Center, Institute of Applied Sciences, Faculty of Engineering, Universidad Autonoma de Chile, Santiago, Chile
| | - Carlos Cárdenas
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Av. Las Palmeras 3425, Ñuñoa, Santiago, Chile; Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), Av. Ecuador 3493, Santiago 9170124, Chile
| |
Collapse
|
2
|
Hu B, Wu Y, Wang K, Guo H, Lei Z, Liu Z, Wang L. Gram-Scale Mechanochemical Synthesis of Atom-Layer MoS 2 Semiconductor Electrocatalyst via Functionalized Graphene Quantum Dots for Efficient Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305344. [PMID: 37658517 DOI: 10.1002/smll.202305344] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/14/2023] [Indexed: 09/03/2023]
Abstract
The development of advanced and efficient synthetic methods is pivotal for the widespread application of 2D materials. In this study, a facile and scalable solvent-free mechanochemical approach is approached, employing graphene quantum dots (GQDs) as exfoliation agents, for the synthesis and functionalization of nearly atom-layered MoS2 nanosheets (ALMS). The resulting ALMS exhibits an ultrathin average thickness of 4 nm and demonstrates high solvent stability. The impressive yield of ALMS reached 63%, indicating its potential for scalable production of stable nanosheets. Remarkably, the ALMS catalyst exhibits excellent HER performance. Moreover, the ALMS catalyst showcases exceptional long-term durability, maintaining stable performance for nearly 200 h, underscoring its potential as a highly efficient and durable electrocatalyst. Significantly, the catalytic properties of ALMS are significantly influenced by ball milling production conditions. The GQD-assisted large-scale machinery synthesis pathway provides a promising avenue for the development of efficient and high-performance ultrathin 2D materials.
Collapse
Affiliation(s)
- Bingjie Hu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, P. R. China
| | - Yao Wu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, P. R. China
| | - Huazhang Guo
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, P. R. China
| | - Zhendong Lei
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Liang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, P. R. China
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
3
|
Allah AE, El-Deeb MM, Farghali AA, El Moll H, Abdelwahab A. Growth of polyoxomolybdate with a porous pyramidal structure on carbon xerogel nanodiamond as an efficient electro-catalyst for oxygen reduction reaction. RSC Adv 2023; 13:8090-8100. [PMID: 36922950 PMCID: PMC10009581 DOI: 10.1039/d2ra07543a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/28/2023] [Indexed: 03/15/2023] Open
Abstract
The slow kinetics of the oxygen reduction reaction (ORR) limits the large-scale usage of the fuel cells. Thus, it is crucial to develop an efficient and stable electrocatalyst for the ORR. Herein, facile synthesis of three-dimensional nitrogen-doped carbon xerogel diamond nanoparticles, CDNPs support is reported. The as-prepared CDNPs support was functionalized with a Keggin-type polyoxomolybdate via the hydrothermal process (POM@CDNPs). As the characterization techniques revealed, this nanocomposite possesses a three-dimensional structure, high density of nitrogen doping, and well-dispersed porous pyramidal morphology of POM, making it a promising catalyst for ORR in alkaline medium. The POM@CDNPs nanocomposite exhibits an outstanding activity for ORR with a limiting current density that reaches -7.30 mA cm-2 at 0.17 V vs. RHE. Moreover, a half-wave potential of 0.773 V is delivered with a stability of about 99.9% after the 100th repetitive cycle as this catalyst forces the ORR to the direct-four-electron pathway. This work spots the advantages of hybridizing the sp3 of the nanodiamond with the sp2 of the carbon xerogels to increase the conductivity of the support material. In addition, the role of the porous pyramidal morphology of the POM on the activity of the nanocomposite was evaluated. This study suggests using advanced carbon-based electro-catalysts with outstanding activity and stability.
Collapse
Affiliation(s)
- Abeer Enaiet Allah
- Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef 62511 Egypt
| | - Mohamed M El-Deeb
- Applied Electrochemistry Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University 62511 Beni-Suef Egypt
| | - Ahmed A Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef 62511 Egypt
| | - H El Moll
- Department of Chemistry, College of Science, University of Hail P.O. Box 2440 81451 Hail Kingdom of Saudi Arabia
| | - Abdalla Abdelwahab
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef 62511 Egypt .,Faculty of Science, Galala University Sokhna Suez 43511 Egypt
| |
Collapse
|
4
|
Dual-cathode plasma-induced exfoliated WSe2/graphene nanosheet composite mediating an efficient hydrogen evolution reaction. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
5
|
Guo YX, Yang M, Liu Z, Yang XY, Xiao Y, Li XY, Ye CF, Li Y, Liu JP, Su BL, Chen LH, Wang YL. Boosting highly active defect MoV sites for amorphous molybdenum sulfide from catalyst-substrate effect toward efficient hydrogen evolution. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
6
|
Li Q, Liu H, Jin B, Li L, Sheng Q, Cui M, Li Y, Lang X, Zhu Y, Zhao L, Jiang Q. Anchoring polysulfides via a CoS 2/NC@1T MoS 2 modified separator for high-performance lithium–sulfur batteries. Inorg Chem Front 2023. [DOI: 10.1039/d2qi01884e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CoS2/NC@1T MoS2 synthesized by a one-step hydrothermal method forms a unique hierarchical configuration with simultaneous internal and external modifications. A lithium–sulfur battery with a CoS2/NC@1T MoS2-PP separator shows superior cycling performance.
Collapse
Affiliation(s)
- Qicheng Li
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Hui Liu
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Bo Jin
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Lei Li
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Qidong Sheng
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Mengyang Cui
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Yiyang Li
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Xingyou Lang
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Yongfu Zhu
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Lijun Zhao
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|
7
|
Wang J, Chen B, Zhang W, Wu Y, Chen L, Wen J, Yan H. Property Comparison of Transition‐Metal Dichalcogenides (MoS
2
, MoSe
2
and MoTe
2
) and Their Applicability as Electrochemical Biosensors for Glucose Detection. ChemistrySelect 2022. [DOI: 10.1002/slct.202201722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jiameng Wang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province College of Pharmaceutical Science Institute of Life Science and Green Development Hebei University Baoding 071002 China
| | - Baohua Chen
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province College of Pharmaceutical Science Institute of Life Science and Green Development Hebei University Baoding 071002 China
| | - Wuyi Zhang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province College of Pharmaceutical Science Institute of Life Science and Green Development Hebei University Baoding 071002 China
| | - Yifeng Wu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province College of Pharmaceutical Science Institute of Life Science and Green Development Hebei University Baoding 071002 China
| | - Lanlan Chen
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province College of Pharmaceutical Science Institute of Life Science and Green Development Hebei University Baoding 071002 China
| | - Jia Wen
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province College of Pharmaceutical Science Institute of Life Science and Green Development Hebei University Baoding 071002 China
| | - Hongyuan Yan
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province College of Pharmaceutical Science Institute of Life Science and Green Development Hebei University Baoding 071002 China
| |
Collapse
|
8
|
Surface plasma–induced tunable nitrogen doping through precursors provides 1T-2H MoSe2/graphene sheet composites as electrocatalysts for the hydrogen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Xu X, Zhang Y, Han Y, Wu J, Zhang X, Xu Y. A hierarchical hollow Ni/Co-functionalized MoS 2 architecture with highly sensitive non-enzymatic glucose sensing activity. Dalton Trans 2021; 50:10059-10066. [PMID: 34169948 DOI: 10.1039/d1dt01406d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hierarchical hollow Ni/Co-codoped MoS2 architecture was successfully prepared using a Ni/Co Prussian Blue analogue as the precursor followed by the solvothermal-assisted insertion of MoS42- and extraction of [Co(CN)6]3- at 200 °C for 32 h. The obtained Ni/Co-codoped MoS2 composite exhibited a hollow microcubic structural characteristic, and the morphology, structure, and chemical compositions were carefully characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), respectively. The Ni/Co-codoped MoS2 composite used as an electrode material featured excellent glucose sensing activity and a high sensitivity of 2546 μA mM-1 cm-2 with a relatively low detection limit of 0.69 μM (S/N = 3). In addition, the Ni/Co-codoped MoS2 composite showed good anti-interference sensing performance in the presence of ascorbic acid (AA), lysine (Lys), cysteine (Cys), urea, H2O2, KCl, and other interferents. These experimental results revealed that the composite is a promising electrode material for enzyme-free glucose sensing, and the feasible synthetic strategy may provide an effective and controlled route to prepare other multi-metal substituted sulfide-based hierarchical structures with high electrochemical sensing performance.
Collapse
Affiliation(s)
- Xuejuan Xu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, PR China.
| | - Yuchi Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, PR China.
| | - Yide Han
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, PR China.
| | - Junbiao Wu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, PR China.
| | - Xia Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, PR China.
| | - Yan Xu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, PR China. and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| |
Collapse
|
10
|
Nguyen VT, Le PA, Hsu YC, Wei KH. Plasma-Induced Exfoliation Provides Onion-Like Graphene-Surrounded MoS 2 Nanosheets for a Highly Efficient Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11533-11542. [PMID: 32073824 DOI: 10.1021/acsami.9b20902] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With the goal of obtaining sustainable earth-abundant electrocatalyst materials displaying high performance in the hydrogen evolution reaction (HER), here we propose a facile one-pot plasma-induced electrochemical process for the fabrication of new core-shell structures of ultrathin MoS2 nanosheets engulfed within onion-like graphene nanosheets (OGNs@MoS2). The resultant OGNs@MoS2 structures not only increased the number of active sites of the semiconducting MoS2 nanosheets but also enhanced their conductivity. Our OGNs@MoS2 composites exhibited high HER performance, characterized by a low overpotential of 118 mV at a current density of 10 mA cm-2, a Tafel slope of 73 mV dec-1, and long-time stability of 105 s without degradation; this performance is much better than that of the sheet-like graphene-wrapped MoS2 composite GNs@MoS2 (182 mV, 82 mV dec-1) and is among the best ever reported for composites involving MoS2 and graphene nanosheets prepared through a simple one-batch process and using a low temperature and a short time for the HER. This approach appears to be an effective and simple strategy for tuning the morphologies of composites of graphene and transition metal dichalcogenide materials for a broad range of energy applications.
Collapse
Affiliation(s)
- Van-Truong Nguyen
- Department of Material Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan, Republic of China
| | - Phuoc Anh Le
- Department of Material Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan, Republic of China
| | - Yung-Chi Hsu
- Department of Material Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan, Republic of China
| | - Kung-Hwa Wei
- Department of Material Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan, Republic of China
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan, Republic of China
| |
Collapse
|