1
|
Zhu L, Wang Q, Du J, Li X, Meng Q, Lu J, Miao Y, Li Y. Non-central symmetric 2D bismuth-based perovskites for piezoelectric-enhanced sonodynamic immunotherapy. J Colloid Interface Sci 2025; 687:386-401. [PMID: 39965436 DOI: 10.1016/j.jcis.2025.02.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025]
Abstract
Sonodynamic therapy (SDT), an emerging treatment modality, exhibits great potential in cancer therapy owing to its excellent tissue penetration, immune activation ability, and relatively low side effects. The lattice distortion of inorganic perovskite is challenging to control, which leads to an unsatisfactory SDT effect. This study presents a two-dimensional bismuth-based halide perovskite material, MA3Bi2Cl9-PEG (MBCP), with favorable piezoelectric properties, being first applied to tumor sonodynamic immunotherapy. By introducing methylamine cations, the central symmetry of MBC is effectively disrupted, resulting in a non-centrosymmetric crystal structure. This structural modification remarkably enhances the piezoelectric performance, enabling more robust charge separation effects under ultrasound excitation and thus facilitating the efficient generation of reactive oxygen species (ROS). Moreover, the generated ROS triggers immunogenic cell death in tumor cells, through the depletion of excessive glutathione and the inhibition of glutathione peroxidase 4, induces ferroptosis. The combined therapeutic strategy substantially enhances the anti-tumor efficacy and effectively suppresses lung metastasis. This research offers a promising example of the application of perovskite piezoelectric materials in sonodynamic immunotherapy.
Collapse
Affiliation(s)
- Luna Zhu
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qian Wang
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Du
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xueyu Li
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qingxuan Meng
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiacheng Lu
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
2
|
Kavousi N, Nazari M, Toossi MTB, Azimian H, Alibolandi M. Smart bismuth-based platform: A focus on radiotherapy and multimodal systems. J Drug Deliv Sci Technol 2024; 101:106136. [DOI: 10.1016/j.jddst.2024.106136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Zhang GC, Song K, Wang XF, He Z, Du J, Sun JL, Xu RC, Liu ZY, Wang F, Qi ZR, Yu XN, Miao Y, Dong L, Weng SQ, Shen XZ, Liu TT, Li Y, Zhu JM. Bismuth-based mesoporous nanoball carrying sorafenib for synergistic photothermal and molecularly-targeted therapy in an orthotopic hepatocellular carcinoma xenograft mouse model. Colloids Surf B Biointerfaces 2024; 245:114279. [PMID: 39368423 DOI: 10.1016/j.colsurfb.2024.114279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/03/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
Sorafenib (SOR), a multi-kinase inhibitor for advanced hepatocellular carcinoma (HCC), has limited clinical application due to severe side effects and drug resistance. To overcome these challenges, we developed a bismuth-based nanomaterial (BOS) for thermal injury-assisted continuous targeted therapy in HCC. Initially, the mesoporous nanomaterial was loaded with SOR, forming the BOS@SOR nano-carrier system for drug delivery and controlled release. Notably, compared to targeted or photothermal therapy alone, the combination therapy using this nano-carrier system significantly impaired cell proliferation and increased apoptosis. In vivo efficacy evaluations demonstrated that BOS@SOR exhibited excellent biocompatibility, confirmed through hemolysis and biochemical analyses. Additionally, BOS@SOR enhanced contrast in computed tomography, aiding in the precise identification of HCC size and location. The photothermal therapeutic properties of bismuth further contributed to the synergistic anti-tumor activity of BOS@SOR, significantly reducing tumor growth in an orthotopic xenograft HCC model. Taken together, encapsulating SOR within a bismuth-based mesoporous nanomaterial creates a multifunctional and environmentally stable nanocomposite (BOS@SOR), enhancing the therapeutic effect of SOR and presenting an effective strategy for HCC treatment.
Collapse
Affiliation(s)
- Guang-Cong Zhang
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Kang Song
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiao-Fan Wang
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Zongyan He
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Du
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jia-Lei Sun
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Ru-Chen Xu
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Zhi-Yong Liu
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Fu Wang
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Zhuo-Ran Qi
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Xiang-Nan Yu
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Shu-Qiang Weng
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Xi-Zhong Shen
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China; Key Laboratory of Medical Molecular Virology, Shanghai Medical College of Fudan University, 138 Yixueyuan Rd., Shanghai 200032, China
| | - Tao-Tao Liu
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China; Department of Gastroenterology and Hepatology, Shanghai Geriatric Medical Center, Shanghai, China.
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Ji-Min Zhu
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China.
| |
Collapse
|
4
|
Chen G, Ping J, Du J, Zhao L, Li Y, Liu H. Glutathione and acid dual-responsive bismuth-based nanosensitizer for chemo-mediated cancer sonodynamic therapy. Biomed Mater 2024; 19:045035. [PMID: 38857606 DOI: 10.1088/1748-605x/ad565c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
Chemotherapeutic agents hold significant clinical potential in combating tumors. However, delivering these drugs to the tumor site for controlled release remains a crucial challenge. In this study, we synthesize and construct a glutathione (GSH) and acid dual-responsive bismuth-based nano-delivery platform (BOD), aiming for sonodynamic enhancement of docetaxel (DTX)-mediated tumor therapy. The bismuth nanomaterial can generate multiple reactive oxygen species under ultrasound stimulation. Furthermore, the loading of DTX to form BOD effectively reduces the toxicity of DTX in the bloodstream, ensuring its cytotoxic effect is predominantly exerted at the tumor site. DTX can be well released in high expression of GSH and acidic tumor microenvironment. Meanwhile, ultrasound can also promote the release of DTX. Results from bothin vitroandin vivoexperiments substantiate that the synergistic therapy involving chemotherapy and sonodynamic therapy significantly inhibits the growth and proliferation of tumor cells. This study provides a favorable paradigm for developing a synergistic tumor treatment platform for tumor microenvironment response and ultrasound-promoted drug release.
Collapse
Affiliation(s)
- Guobo Chen
- Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, People's Republic of China
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Jing Ping
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Jun Du
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Linghao Zhao
- Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, People's Republic of China
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Hui Liu
- Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, People's Republic of China
| |
Collapse
|
5
|
Du J, He Z, Wang Q, Chen G, Li X, Lu J, Qi Q, Ouyang R, Miao Y, Li Y. Topochemical-like bandgap regulation engineering: A bismuth thiooxide nanocatalyst for breast cancer phototherapy. J Colloid Interface Sci 2024; 662:171-182. [PMID: 38341940 DOI: 10.1016/j.jcis.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
The physical property tuning of nanomaterials is of great importance in energy, medicine, environment, catalysis, and other fields. Topochemical synthesis of nanomaterials can achieve precise control of material properties. Here, we synthesized a kind of element-doped bismuth-based nanomaterial (BOS) by topochemical-like synthesis and used it for the phototherapy of tumors. In this study, we employed bismuth fluoride nanoflowers as a template and fabricated element-doped bismuth oxide nanoflowers by reduction conditions. The product is consistent with the precursor in crystal structure and nanomorphology, realizing topochemical-like synthesis under mild conditions. BOS can generate reactive oxygen species, consume glutathione, and perform photothermal conversion under 730 nm light irradiation. In vitro and in vivo studies demonstrate that BOS could suppress tumor growth by inducing apoptosis and ferroptosis through phototherapy. Therefore, this study offers a general regulation method for tuning the physical properties of nanomaterials by using a topochemical-like synthesis strategy.
Collapse
Affiliation(s)
- Jun Du
- Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zongyan He
- Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qian Wang
- Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guobo Chen
- Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xueyu Li
- Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiacheng Lu
- Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qingwen Qi
- Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ruizhuo Ouyang
- Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yuhao Li
- Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
6
|
Zhu L, Chen G, Wang Q, Du J, Wu S, Lu J, Liu B, Miao Y, Li Y. High-Z elements dominated bismuth-based heterojunction nano-semiconductor for radiotherapy-enhanced sonodynamic breast cancer therapy. J Colloid Interface Sci 2024; 662:914-927. [PMID: 38382375 DOI: 10.1016/j.jcis.2024.02.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
Ultrasound and X-rays possess remarkable tissue penetration capabilities, making them promising candidates for cancer therapy. Sonodynamic therapy, which utilizes ultrasound excitation, offers a safer alternative to radiotherapy and can be combined with X-rays to mitigate the adverse effects on normal tissues. In this study, we developed a bismuth-based heterostructure semiconductor (BFIP) to enhance the efficacy of radiotherapy and sonodynamic therapy in treating breast cancer. The semiconductor is fabricated through a two-step process involving the synthesis of porous spherical bismuth fluoride and partially reduced to bismuth oxyiodide. Then, followed by surface modification with amphiphilic polyethylene glycol, BFIP is fabricated. Incorporating heavy atoms in the BFIP enhances radiosensitivity. The BFIP exhibits superior carrier separation efficiency compared to bismuth fluoride, generating a substantial quantity of reactive oxygen species upon ultrasound stimulation. Moreover, the BFIP effectively depletes glutathione through coordination and hole-mediated oxidation pathways, disrupting the tumor microenvironment and inducing oxidative stress. Encouraging results are acquired in both in vitro cell and in vivo tumor models. Our study provides a de-risking strategy by utilizing ultrasound as a partial substitute for X-rays in treating deep-seated tumors, offering a viable research direction for constructing a unified nanoplatform.
Collapse
Affiliation(s)
- Lejin Zhu
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guobo Chen
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qian Wang
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Du
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Sijia Wu
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiacheng Lu
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Baolin Liu
- Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, Shanghai 200093, China.
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, Shanghai 200093, China.
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, Shanghai 200093, China.
| |
Collapse
|
7
|
Dixit T, Dave N, Basu K, Sonawane P, Gawas T, Ravindran S. Nano-radiopharmaceuticals as therapeutic agents. Front Med (Lausanne) 2024; 11:1355058. [PMID: 38560384 PMCID: PMC10978739 DOI: 10.3389/fmed.2024.1355058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
In recent years, there has been an increased interest in exploring the potential synergy between nanotechnology and nuclear medicine. The application of radioactive isotopes, commonly referred to as radiopharmaceuticals, is recognized in nuclear medicine for diagnosing and treating various diseases. Unlike conventional pharmaceutical agents, radiopharmaceuticals are designed to work without any pharmacological impact on the body. Nevertheless, the radiation dosage employed in radiopharmaceuticals is often sufficiently high to elicit adverse effects associated with radiation exposure. Exploiting their capacity for selective accumulation on specific organ targets, radiopharmaceuticals have utility in treating diverse disorders. The incorporation of nanosystems may additionally augment the targeting capability of radiopharmaceuticals, leveraging their distinct pharmacokinetic characteristics. Conversely, radionuclides could be used in research to assess nanosystems pharmacologically. However, more investigation is needed to verify the safety and effectiveness of radiopharmaceutical applications mediated by nanosystems. The use of nano-radiopharmaceuticals as therapeutic agents to treat various illnesses and disorders is majorly covered in this review. The targeted approach to cancer therapy and various types of nanotools for nano-radiopharmaceutical delivery, is also covered in this article.
Collapse
Affiliation(s)
| | | | | | | | | | - Selvan Ravindran
- Symbiosis School of Biological Sciences, Faculty of Medical and Health Sciences, Symbiosis International (Deemed University), Lavale, Pune, India
| |
Collapse
|
8
|
He Z, Du J, Wang Q, Chen G, Li X, Zhang Z, Wang S, Jing W, Miao Q, Li Y, Miao Y, Wu J. Dye-augmented bandgap engineering of a degradable cascade nanoreactor for tumor immune microenvironment-enhanced dynamic phototherapy of breast cancer. Acta Biomater 2024; 176:390-404. [PMID: 38244657 DOI: 10.1016/j.actbio.2024.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/31/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Non-invasive precision tumor dynamic phototherapy has broad application prospects. Traditional semiconductor materials have low photocatalytic activity and low reactive oxygen species (ROS) production rate due to their wide band gap, resulting in unsatisfactory phototherapy efficacy for tumor treatment. Employing the dye-sensitization mechanism can significantly enhance the catalytic activity of the materials. We develop a multifunctional nanoplatform (BZP) by leveraging the benefits of bismuth-based semiconductor nanomaterials. BZP possesses robust ROS generation and remarkable near-infrared photothermal conversion capabilities for improving tumor immune microenvironment and achieving superior phototherapy sensitization. BZP produces highly cytotoxic ROS species via the photocatalytic process and cascade reaction, amplifying the photocatalytic therapy effect. Moreover, the simultaneous photothermal effect during the photocatalytic process facilitates the improvement of therapeutic efficacy. Additionally, BZP-mediated phototherapy can trigger the programmed death of tumor cells, stimulate dendritic cell maturation and T cell activation, modulate the tumor immune microenvironment, and augment the therapeutic effect. Hence, this study demonstrates a promising research paradigm for tumor immune microenvironment-improved phototherapy. STATEMENT OF SIGNIFICANCE: Through the utilization of dye sensitization and rare earth doping techniques, we have successfully developed a biodegradable bismuth-based semiconductor nanocatalyst (BZP). Upon optical excitation, the near-infrared dye incorporated within BZP promptly generates free electrons, which, under the influence of the Fermi energy level, undergo transfer to BiF3 within BZP, thereby facilitating the effective separation of electron-hole pairs and augmenting the catalytic capability for reactive oxygen species (ROS) generation. Furthermore, a cascade reaction mechanism generates highly cytotoxic ROS, which synergistically depletes intracellular glutathione, thereby intensifying oxidative stress. Ultimately, this dual activation strategy, combining oxidative and thermal damage, holds significant potential for tumor immunotherapy.
Collapse
Affiliation(s)
- Zongyan He
- Department of Anesthesiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Du
- Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qian Wang
- Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guobo Chen
- Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xueyu Li
- Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zheng Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shanhou Wang
- Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wenxuan Jing
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qing Miao
- Department of Anesthesiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Yuhao Li
- Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yuqing Miao
- Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jingxiang Wu
- Department of Anesthesiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
9
|
Chen G, Yang Z, Du J, He Z, Zhang Y, Zheng K, Cai S, Chen M, Li Y, Zheng L, Miao Y, Zhang D. Topological Regulating Bismuth Nano-Semiconductor for Immunogenic Cell Death-Mediated Sonocatalytic Hyperthermia Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304032. [PMID: 37528704 DOI: 10.1002/smll.202304032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/12/2023] [Indexed: 08/03/2023]
Abstract
Immunogenic cell death (ICD) can activate the body's immune system via dead cell antigens to achieve immunotherapy. Currently, small molecule drugs have been used for ICD treatment in clinical, however, how to precisely control the induced ICD while treating tumors is of great significance for improving therapeutic efficacy. Based on this, a sono/light dual response strategy to tumor therapy and activation of ICD is proposed. A topological synthesis method is used to obtain sulfur-doped bismuth oxide Bi2 O3-x Sx (BS) using BiF3 (BF) as a template through reduction and a morphology-controllable bismuth-based nano-semiconductor with a narrow bandgap is constructed. Under the stimulation of ultrasound, BS can produce reactive oxygen species (ROS) through the sonocatalytic process, which cooperates with BS to consume glutathione and enhance cellular oxidative damage, further inducing ICD. Due to the introduction of sulfur in the reduction reaction, BS can achieve photothermal conversion under light, and combine with ROS to treat tumors. Further, with the assistance of ivermectin (IVM) to form composite (BSM), combined with sono/light dual strategy, ICD is promoted and DCs maturation is accelerated. The proposed ICD-mediated hyperthermia/sonocatalytic therapy strategy will pay the way for synergetic enhancement of tumor treatment efficacy and provide a feasible idea for controllable induction of ICD.
Collapse
Affiliation(s)
- Guobo Chen
- School of Materials and Chemistry, Institute of Bismuth, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhijin Yang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education & Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jun Du
- School of Materials and Chemistry, Institute of Bismuth, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zongyan He
- School of Materials and Chemistry, Institute of Bismuth, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yule Zhang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education & Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Kejie Zheng
- Engineering Research Center of Optical Instrument and System, the Ministry of Education & Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shuqi Cai
- Engineering Research Center of Optical Instrument and System, the Ministry of Education & Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Mengya Chen
- Engineering Research Center of Optical Instrument and System, the Ministry of Education & Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System, the Ministry of Education & Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education & Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
10
|
Ouyang R, Zhang W, Liu J, Li Y, Zhang J, Jiang L, Zhao Y, Wang H, Dai C, Tamayo AIB, Liu B, Miao Y. Pt Nanodot Inlaid Mesoporous NaBiOF Nanoblackberry for Remarkable Signal Amplification Toward Biomarker Detection. Mikrochim Acta 2023; 190:214. [PMID: 37171612 DOI: 10.1007/s00604-023-05789-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/09/2023] [Indexed: 05/13/2023]
Abstract
A new ultrasensitive sandwich-type electrochemical immunosensor has been successfully constructed to quantitatively detect carcinoembryonic antigen (CEA) using blackberry-like mesoporous bismuth-based nanospheres NaBiOF (NBOF NSs) inlaid with Pt nanodots (NDs) (BiPt NSs) as the antibody capture and signal-amplifying probe. The growth of Pt NDs inside the holes of NBOF NSs formed the nanozyme inlay outside NBOF NSs, greatly increasing the specific surface area and exposure of the catalytic active sites by minimizing the particle size of the Pt to nanodot scale. Such a blackberry-shaped heterojunction structure of BiPt NSs was well-suited to antibody capture and improved the catalytic performance of BiPt NSs in reducing H2O2, amplifying the signal, and yielding highly sensitive detection of CEA. The use of Au nanoparticle-modified multi-walled carbon nanotubes (Au@MWCNTs) as the electrode substrates significantly enhanced the electron transfer behavior over the electrode surface, further increasing the conductivity and sensitivity of the immunosensor. Remarkably, good compatibility with human body fluid was achieved using the newly developed BiPt-based immunosensor resulting from the favorable biocompatibility and stability of both BiPt NSs and Au@MWCNTs. Benefiting from the double signal amplification strategy and the high biocompatibility, the immunosensor responded linearly to CEA in a wide range from 50 fg/mL to 100 ng/ml with an extremely low detection limit of 3.52 fg/mL (S/N = 3). The excellent detection properties of this new immunosensor were evidenced by the satisfactory selectivity, reproducibility, and stability obtained, as well as the reliable and precise determination of CEA in actual human blood samples. This work provides a new strategy for the early clinical diagnosis of cancer. Novel blackberry-like mesoporous NaBiOF nanospheres with Pt nanodot inlay were successfully usedto construct a sandwich-type electrochemical immunosensor for the ultra-sensitive detection ofcarcinoembryonic antigen in human blood plasma based on a remarkable signal amplification strategy.
Collapse
Affiliation(s)
- Ruizhuo Ouyang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Weilun Zhang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jinyao Liu
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuhao Li
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jing Zhang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lan Jiang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuefeng Zhao
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Hui Wang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chenyu Dai
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Abel Ibrahim Balbín Tamayo
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Faculty of Chemistry, University of Havana, 10400, Havana, Cuba
| | - Baolin Liu
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China.
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yuqing Miao
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
11
|
Sisin NNT, Rahman WN. Potentials of Bismuth-Based Nanoparticles and Baicalein Natural Compounds as Radiosensitizers in Cancer Radiotherapy: a Review. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-022-01057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
Huang AT, Du J, Liu ZY, Zhang GC, Abuduwaili W, Yan JY, Sun JL, Xu RC, Liu TT, Shen XZ, Dong L, Zhu JM, Li Y. Sorafenib-Loaded Cu 2-xSe Nanoparticles Boost Photothermal-Synergistic Targeted Therapy against Hepatocellular Carcinoma. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183191. [PMID: 36144982 PMCID: PMC9505850 DOI: 10.3390/nano12183191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 05/23/2023]
Abstract
Hepatocellular carcinoma (HCC) accounts for the predominant form of liver malignancy and presents a leading cause of cancer-related death globally. Sorafenib (SOR), a first-line targeted drug for advanced HCC treatment, has a battery of untoward side effects. Photothermal therapy (PTT) has been utilized as an effective adjuvant in synergy with other approaches. However, little is known about the tumoricidal efficacy of combining SOR with PTT for HCC. Herein, a novel versatile nanoparticle, Cu2-xSe@SOR@PEG (CSP), that is based on a photothermal Cu2-xSe core and SOR for simultaneously reinforcing PTT and reducing the adverse effects of SOR was constructed. The synthesized CSP exhibited a remarkably enhanced therapeutic effect upon 808 nm laser irradiation via dampening HCC cell propagation and metastasis and propelling cell apoptosis. The intravenous administration of CSP substantially suppressed tumor growth in a xenograft tumor mouse model. It was noted that the CSP manifested low toxicity and excellent biocompatibility. Together, this work indicates a promising and versatile tool that is based on synergistic PTT and molecular-targeted therapy for HCC management.
Collapse
Affiliation(s)
- An-Tian Huang
- Institute of Bismuth and Rhenium, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Disease, Shanghai 200032, China
| | - Jun Du
- Institute of Bismuth and Rhenium, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhi-Yong Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Disease, Shanghai 200032, China
| | - Guang-Cong Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Disease, Shanghai 200032, China
| | - Weinire Abuduwaili
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Disease, Shanghai 200032, China
| | - Jia-Yan Yan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Jia-Lei Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Disease, Shanghai 200032, China
| | - Ru-Chen Xu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Disease, Shanghai 200032, China
| | - Tao-Tao Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Disease, Shanghai 200032, China
| | - Xi-Zhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Disease, Shanghai 200032, China
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Disease, Shanghai 200032, China
| | - Ji-Min Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Disease, Shanghai 200032, China
| | - Yuhao Li
- Institute of Bismuth and Rhenium, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
13
|
Wen S, Ovais M, Li X, Ren J, Liu T, Wang Z, Cai R, Chen C. Tailoring bismuth-based nanoparticles for enhanced radiosensitivity in cancer therapy. NANOSCALE 2022; 14:8245-8254. [PMID: 35647806 DOI: 10.1039/d2nr01500e] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Achieving a complete response to cancer treatment is a severe challenge, and has puzzled humans for a long time. Fortunately, radiotherapy (RT) gives rise to a common clinical treatment method, during which the usage of radiosensitizers is essential. Among preclinical radiosensitizers, bismuth-based nanoparticles (Bi-based NPs) are widely explored in cancer diagnosis and treatment, because they share favourable properties, such as low toxicity, strong X-ray absorption and facile preparation. However, pure Bi alone cannot achieve both efficient and safe RT outcomes, mainly due to poor targeting of tumor sites, long retention-induced systemic toxicity and immune resistance. This work provides an overview of recent advances and developments in Bi-based NPs that are tailored to enhance radiosensitivity. For the fabrication process, surface modification of Bi-based NPs is essential to achieve tumor-targeted delivery and penetration. Moreover, the incorporation of other elements, such as Fe ions, can increase diagnostic accuracy with optimal theranostic efficacy. Meanwhile, the structure-activity relationship can also be manipulated to maximize the chemotherapeutic drug loading capability of Bi-based NPs, to enhance X-ray attenuation by means of a large surface area or to achieve safer metabolic routes with rapid clearance from the human body. In addition, Bi-based NPs exhibit synergistic antitumor potential when combined with diverse therapies, such as photothermal therapy (PTT) and high-intensity focused ultrasound (HIFU). To summarize, the latest research on Bi-based NPs as radiosensitizers is described in the review, including both their advantages and disadvantages for improving treatment, thus providing a useful guide for future clinical application.
Collapse
Affiliation(s)
- Shumin Wen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Muhammad Ovais
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Jiayu Ren
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Ziyao Wang
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Cai
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| |
Collapse
|
14
|
Song K, Du J, Wang X, Zheng L, Ouyang R, Li Y, Miao Y, Zhang D. Biodegradable Bismuth-Based Nano-Heterojunction for Enhanced Sonodynamic Oncotherapy through Charge Separation Engineering. Adv Healthc Mater 2022; 11:e2102503. [PMID: 35114073 DOI: 10.1002/adhm.202102503] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/06/2022] [Indexed: 12/13/2022]
Abstract
Sonodynamic therapy is a noninvasive treatment method that generates reactive oxygen species (ROS) triggered by ultrasound, to achieve oxidative damage to tumors. However, methods are required to improve the efficiency of ROS generation and achieve continuous oxidative damage. A ternary heterojunction sonosensitizer composed of Bi@BiO2- x @Bi2 S3 -PEG (BOS) to achieve thermal injury-assisted continuous sonodynamic therapy for tumors is prepared. The oxygen vacancy in BOS can capture hot electrons and promotes the separation of hot carriers on the bismuth surface. The local electric field induced by localized surface plasmon resonance also contributes to the rapid transfer of electrons. Therefore, BOS not only possesses the functions of each component but also exhibits higher catalytic activity to generate ROS. Meanwhile, BOS continuously consumes glutathione, which is conducive to its biodegradation and achieves continuous oxidative stress injury. In addition, the photothermal conversion of BOS under near-infrared irradiation helps to achieve thermal tumor damage and further relieves tumor hypoxia, thus amplifying the sonodynamic therapeutic efficacy. This process not only provides a strategy for thermal damage to amplify the efficacy of sonodynamic therapy, but also expands the application of bismuth-based heterojunction nanomaterials as sonosensitizers in sonodynamic therapy.
Collapse
Affiliation(s)
- Kang Song
- Institute of Bismuth Science and School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China
| | - Jun Du
- Institute of Bismuth Science and School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China
| | - Xiang Wang
- Institute of Bismuth Science and School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System Ministry of Education Shanghai Key Laboratory of Modern Optical System University of Shanghai for Science and Technology Shanghai 200093 China
| | - Ruizhuo Ouyang
- Institute of Bismuth Science and School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yuhao Li
- Institute of Bismuth Science and School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yuqing Miao
- Institute of Bismuth Science and School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System Ministry of Education Shanghai Key Laboratory of Modern Optical System University of Shanghai for Science and Technology Shanghai 200093 China
| |
Collapse
|
15
|
Bhardwaj P, Gota V, Vishwakarma K, Pai V, Chaudhari P, Mohanty B, Thorat R, Yadav S, Gurjar M, Goda JS, Banerjee R. Loco-regional radiosensitizing nanoparticles-in-gel augments head and neck cancer chemoradiotherapy. J Control Release 2022; 343:288-302. [DOI: 10.1016/j.jconrel.2022.01.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/12/2023]
|
16
|
Du J, Liu J, Chen Y, Zhao Y, Li Y, Miao Y. Lanthanide-doped bismuth-based nanophosphors for ratiometric upconversion optical thermometry. RSC Adv 2022; 12:8743-8749. [PMID: 35424804 PMCID: PMC8985227 DOI: 10.1039/d2ra01181f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/14/2022] [Indexed: 12/28/2022] Open
Abstract
Nanothermometry could realize stable, efficient, and noninvasive temperature detection at the nanoscale. Unfortunately, most applications of nanothermometers are still limited due to their intricate synthetic process and low-temperature sensitivity. Herein, we reported a kind of novel bismuth-based upconversion nanomaterial with a fast and facile preparation strategy. The bismuth-based upconversion luminophore was synthesized by the co-precipitation method within 1 minute. By optimizing the doping ratio of the sensitizer Yb ion and the activator Er ion and adjusting the synthetic solvent strategy, the crystallinity of the nanomaterials was increased and the upconversion luminescence intensity was improved. Ratiometric upconversion optical measurements of temperature in the range of 278 K to 358 K can be achieved by ratiometric characteristic emission peaks of thermally sensitive Er ion. This method of rapidly constructing nanometer temperature probes provides a feasible strategy for the construction of novel fluorescent temperature probes. Lanthanide-doped bismuth-based nanospheres can be rapidly synthesized within 1 minute for upconversion luminescence ratiometric temperature detection.![]()
Collapse
Affiliation(s)
- Jun Du
- School of Materials and Chemistry, Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jinliang Liu
- School of Materials and Chemistry, Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ying Chen
- School of Materials and Chemistry, Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuefeng Zhao
- School of Materials and Chemistry, Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
17
|
Liu W, Chen B, Zheng H, Xing Y, Chen G, Zhou P, Qian L, Min Y. Advances of Nanomedicine in Radiotherapy. Pharmaceutics 2021; 13:pharmaceutics13111757. [PMID: 34834172 PMCID: PMC8622383 DOI: 10.3390/pharmaceutics13111757] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy (RT) remains one of the current main treatment strategies for many types of cancer. However, how to improve RT efficiency while reducing its side effects is still a large challenge to be overcome. Advancements in nanomedicine have provided many effective approaches for radiosensitization. Metal nanoparticles (NPs) such as platinum-based or hafnium-based NPs are proved to be ideal radiosensitizers because of their unique physicochemical properties and high X-ray absorption efficiency. With nanoparticles, such as liposomes, bovine serum albumin, and polymers, the radiosensitizing drugs can be promoted to reach the tumor sites, thereby enhancing anti-tumor responses. Nowadays, the combination of some NPs and RT have been applied to clinical treatment for many types of cancer, including breast cancer. Here, as well as reviewing recent studies on radiotherapy combined with inorganic, organic, and biomimetic nanomaterials for oncology, we analyzed the underlying mechanisms of NPs radiosensitization, which may contribute to exploring new directions for the clinical translation of nanoparticle-based radiosensitizers.
Collapse
Affiliation(s)
- Wei Liu
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (W.L.); (P.Z.)
| | - Bo Chen
- Department of Bio-X Interdisciplinary Science at Hefei National Laboratory (HFNL) for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China; (B.C.); (Y.M.)
| | - Haocheng Zheng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (H.Z.); (Y.X.); (G.C.)
- CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yun Xing
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (H.Z.); (Y.X.); (G.C.)
- CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Guiyuan Chen
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (H.Z.); (Y.X.); (G.C.)
- CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Peijie Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (W.L.); (P.Z.)
| | - Liting Qian
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (W.L.); (P.Z.)
- Correspondence:
| | - Yuanzeng Min
- Department of Bio-X Interdisciplinary Science at Hefei National Laboratory (HFNL) for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China; (B.C.); (Y.M.)
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (H.Z.); (Y.X.); (G.C.)
- CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
18
|
Ding M, Liu J, Yang J, Wang H, Xie X, Yang X, Li Y, Guo N, Ouyang R, Miao Y. How do bismuth-based nanomaterials function as promising theranostic agents for the tumor diagnosis and therapy? Curr Med Chem 2021; 29:1866-1890. [PMID: 34365944 DOI: 10.2174/0929867328666210806123008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
The complexity of tumor microenvironment and the diversity of tumors seriously affect the therapeutic effect, the focus, therefore, has gradually been shifted from monotherapy to combination therapy in clinical research in order to improve the curative effect. The synergistic enhancement interactions among multiple monotherapies majorly contribute to the birth of the multi-mode cooperative therapy, whose effect of the treatment is clearly stronger than that of any single therapy. In addition, the accurate diagnosis of the tumour location is also crucial to the treatment. Bismuth-based nanomaterials (NMs) hold great properties as promising theranostic platforms based on their many unique features that include low toxicity, excellent photothermal conversion efficiency as well as high ability of X-ray computed tomography imaging and photoacoustic imaging. In this review, we will introduce briefly the main features of tumor microenvironment first and its effect on the mechanism of nanomedicine actions and present the recent advances of bismuth-based NMs for diagnosis and photothermal therapy-based combined therapies using bismuth-based NMs are presented, which may provide a new way for overcoming drug resistance and hypoxia. At the end, further challenges and outlooks regarding this promising field are discussed accompanied with some design tips for bismuth-based NMs, hoping to provide researchers some inspirations to design safe and effective nanotherapeutic agents for the clinical treatments of cancers.
Collapse
Affiliation(s)
- Mengkui Ding
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Jinyao Liu
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Junlei Yang
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Hui Wang
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Xianjin Xie
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Xiaoyu Yang
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Yuhao Li
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Ning Guo
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Ruizhuo Ouyang
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Yuqing Miao
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| |
Collapse
|
19
|
Liu J, Zhang J, Song K, Du J, Wang X, Liu J, Li B, Ouyang R, Miao Y, Sun Y, Li Y. Tumor Microenvironment Modulation Platform Based on Composite Biodegradable Bismuth-Manganese Radiosensitizer for Inhibiting Radioresistant Hypoxic Tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101015. [PMID: 34263544 DOI: 10.1002/smll.202101015] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/08/2021] [Indexed: 05/21/2023]
Abstract
Solid tumors possess a unique internal environment with high-level thiols (mainly glutathione), over-expressed H2 O2 , and low oxygen partial pressure, which severely restrict the radiotherapy (RT) efficacy. To overcome the imperfections of RT alone, there is vital to design a multifunctional radiosensitizer that simultaneously achieves multimodal therapy and tumor microenvironment (TME) regulation. Bismuth (Bi)-based nanospheres are wrapped in the MnO2 layer to form core-shell-structured radiosensitizer (Bi@Mn) that can effectively load docetaxel (DTX). The solubility of Bi@Mn-DTX is further improved via folic acid-modified amphiphilic polyethylene glycol (PFA). Bi@Mn-DTX-PFA can specifically respond to the TME to realize multimodal therapy. Primarily, the outer MnO2 layer responds with H2 O2 and glutathione to release oxygen and generate •OH, thereby alleviating hypoxia and achieving chemodynamic therapy (CDT). Afterward, the strong coordination between Bi3+ and deprotonated thiol groups in glutathione allows the mesoporous Bi-containing core bonding with glutathione to form a water-soluble complex. These actions conduce Bi@Mn-DTX-PFA degradation, further releasing DTX to implement chemotherapy (CHT). In addition, the degradation in vivo and tumor enrichment of Bi@Mn-PFA are explored via T1 -weighted magnetic resonance and computed tomography imaging. The biodegradable composite Bi@Mn-DTX-PFA can simultaneously modulate the TME and achieve multimodal treatment (RT/CDT/CHT) for hypoxic tumors.
Collapse
Affiliation(s)
- Jie Liu
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jing Zhang
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Kang Song
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jun Du
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiang Wang
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jinliang Liu
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Bing Li
- Department of Research and Development & Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, 201321, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
| | - Ruizhuo Ouyang
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuqing Miao
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yun Sun
- Department of Research and Development & Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, 201321, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
| | - Yuhao Li
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
20
|
Wang S, Gao D, Li K, Ye S, Liu Q, Peng Y, Lv G, Qiu L, Lin J. Radiopharmacological evaluation of a caspase-3 responsive probe with optimized pharmacokinetics for PET imaging of tumor apoptosis. Org Biomol Chem 2021; 18:3512-3521. [PMID: 32334424 DOI: 10.1039/d0ob00690d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Early evaluation of the therapy efficiency can promote the development of anti-tumor drugs and optimization of the treatment method. Caspase-3 is a key biomarker for early apoptosis. Detection of caspase-3 activity is essential for quick assessment of the curative effect. We have reported a PET probe that could image drug-induced tumor apoptosis in vivo. However, high liver uptake limits its application. In order to optimize the pharmacokinetics of the previous probe, we introduced a hydrophilic peptide sequence to minimize liver uptake. The structure of the new probe was confirmed by mass spectrometry and nuclear magnetic resonance. This probe was able to cross the cell membrane freely and could be converted into a dimer through the condensation reaction of 2-cyano-6-aminobenzothiazole (CBT) and cysteine in response to intracellular activated caspase-3 and glutathione (GSH). The hydrophobic dimers further self-assembled into nanoparticles, which could enhance the probe aggregation in apoptotic tumor tissues. In vivo experiments showed that the tumor uptake of the new probe was higher than that of the previous probe, while the liver uptake of the new probe was significantly reduced. The new probe might be promising in imaging apoptotic tumors with suitable pharmacokinetics.
Collapse
Affiliation(s)
- Shijie Wang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Liu Y, Zhang J, Du J, Song K, Liu J, Wang X, Li B, Ouyang R, Miao Y, Sun Y, Li Y. Biodegradable BiOCl platform for oxidative stress injury-enhanced chemodynamic/radiation therapy of hypoxic tumors. Acta Biomater 2021; 129:280-292. [PMID: 34033970 DOI: 10.1016/j.actbio.2021.05.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022]
Abstract
Various physiological characteristics of the tumor microenvironment (TME), such as hypoxia, overexpression of glutathione (GSH) and hydrogen peroxide (H2O2), and mild acidity, can severely reduce the efficacy of many cancer therapies. Altering the redox balance of the TME and increasing oxidative stress can accordingly enhance the efficacy of tumor therapy. Herein, we developed a bismuth-based Cu2+-doped BiOCl nanotherapeutic platform, BCHN, able to self-supply H2O2 for TME-regulated chemodynamic therapy (CDT) combined with sensitized radiotherapy (RT). BCHN released H2O2 and consumed GSH to degrade the composite in the slightly acidic TME, and generated hydroxyl radicals (•OH) via a Fenton-like reaction catalyzed by copper ions, to achieve oxidative stress-enhanced CDT. The Fenton-like reaction also catalyzed H2O2 to produce O2 to relieve tumor hypoxia, and combined with the X-ray-blocking property of bismuth to realize TME-enhanced radiotherapy. Synergistic CDT/RT has previously been shown to effectively inhibit tumor cell proliferation and achieve effective tumor control. The current results demonstrated a highly efficient multifunctional bio-degradable nanoplatform for oncotherapy. STATEMENT OF SIGNIFICANCE: Tumor microenvironment-modulated synergy of radiotherapy and chemodynamic therapy is conducive to rapid tumor ablation. Based on this principle, we fabricated a biodegradable BiOCl-based nanocomposite, BCHN. By supplying H2O2, a Fenton-like reaction generated •OH and O2 catalyzed by copper ions, and consumed glutathione to biodegrade the composite. Overall, these actions increased tumor oxidative stress and realized the synergistic anti-tumor actions of chemodynamic therapy combined with bismuth-based sensitization radiotherapy. This strategy thus provides a unique approach to oncology therapy.
Collapse
|
22
|
Ma S, Xie J, Wang L, Zhou Z, Luo X, Yan J, Ran G. Hetero-Core-Shell BiNS-Fe@Fe as a Potential Theranostic Nanoplatform for Multimodal Imaging-Guided Simultaneous Photothermal-Photodynamic and Chemodynamic Treatment. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10728-10740. [PMID: 33645960 DOI: 10.1021/acsami.0c21579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photothermal/photodynamic therapy (PTT/PDT) and synergistic therapeutic strategies are often sought after, owing to their low side effects and minimal invasiveness compared to chemotherapy and surgical treatments. However, in spite of the development of the most PTT/PDT materials with good tumor-inhibitory effect, there are some disadvantages of photosensitizers and photothermal agents, such as low stability and low photonic efficiency, which greatly limit their further application. Therefore, in this study, a novel bismuth-based hetero-core-shell semiconductor nanomaterial BiNS-Fe@Fe with good photonic stability and synergistic theranostic functions was designed. On the one hand, BiNS-Fe@Fe with a high atomic number exhibits good X-ray absorption, enhanced magnetic resonance (MR) T2-weighted imaging, and strong photoacoustic imaging (PAI) signals. In addition, the hetero-core-shell provides a strong barrier to decline the recombination of electron-hole pairs, inducing the generation of a large amount of reactive oxygen species (ROS) when irradiated with visible-NIR light. Meanwhile, a Fenton reaction can further increase ROS generation in the tumor microenvironment. Furthermore, an outstanding chemodynamic therapeutic potential was determined for this material. In particular, a high photothermal conversion efficiency (η = 37.9%) is of significance and could be achieved by manipulating surface decoration with Fe, which results in tumor ablation. In summary, BiNS-Fe@Fe could achieve remarkable utilization of ROS, high photothermal conversion law, and good chemodynamic activity, which highlight the multimodal theranostic potential strategies of tumors, providing a potential viewpoint for theranostic applications of tumors.
Collapse
Affiliation(s)
- Sihan Ma
- College of Energy, Xiamen University, Xiamen 361002, Fujian, China
- Fujian Research Center for Nuclear Engineering, Xiamen 361102, Fujian, China
| | - Jun Xie
- School of Medicine, Xiamen University, Xiamen 361002, Fujian, China
| | - Lin Wang
- Department of Oncology, Zhongshan Hospital, Xiamen University, No. 201-209 Hubinnan Road, Xiamen 361004, Fujian, China
| | - Zonglang Zhou
- School of Medicine, Xiamen University, Xiamen 361002, Fujian, China
- 174 Clinical College affiliated to Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui, China
| | - Xian Luo
- School of Medicine, Xiamen University, Xiamen 361002, Fujian, China
| | - Jianghua Yan
- School of Medicine, Xiamen University, Xiamen 361002, Fujian, China
| | - Guang Ran
- College of Energy, Xiamen University, Xiamen 361002, Fujian, China
| |
Collapse
|
23
|
Yu X, Liu X, Yang K, Chen X, Li W. Pnictogen Semimetal (Sb, Bi)-Based Nanomaterials for Cancer Imaging and Therapy: A Materials Perspective. ACS NANO 2021; 15:2038-2067. [PMID: 33486944 DOI: 10.1021/acsnano.0c07899] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Innovative multifunctional nanomaterials have attracted tremendous interest in current research by facilitating simultaneous cancer imaging and therapy. Among them, antimony (Sb)- and bismuth (Bi)-based nanoparticles are important species with multifunction to boost cancer theranostic efficacy. Despite the rapid development, the extensive previous work treated Sb- and Bi-based nanoparticles as mutually independent species, and therefore a thorough understanding of their relationship in cancer theranostics was lacking. We propose here that the identical chemical nature of Sb and Bi, being semimetals, provides their derived nanoparticles with inherent multifunction for near-infrared laser-driven and/or X-ray-based cancer imaging and therapy as well as some other imparted functions. An overview of recent progress on Sb- and Bi-based nanoparticles for cancer theranostics is provided to highlight the relationship between chemical nature and multifunction. The understanding of Sb- and Bi-based nanoparticles in this way might shed light on the further design of smart multifunctional nanoparticles for cancer theranostics.
Collapse
Affiliation(s)
- Xujiang Yu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyi Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kai Yang
- School of Radiation Medicine and Protection (SRMP) and School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 117597
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
24
|
Rai A, Noor S, Ahmad SI, Alajmi MF, Hussain A, Abbas H, Hasan GM. Recent Advances and Implication of Bioengineered Nanomaterials in Cancer Theranostics. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:91. [PMID: 33494239 PMCID: PMC7909769 DOI: 10.3390/medicina57020091] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
Cancer is one of the most common causes of death and affects millions of lives every year. In addition to non-infectious carcinogens, infectious agents contribute significantly to increased incidence of several cancers. Several therapeutic techniques have been used for the treatment of such cancers. Recently, nanotechnology has emerged to advance the diagnosis, imaging, and therapeutics of various cancer types. Nanomaterials have multiple advantages over other materials due to their small size and high surface area, which allow retention and controlled drug release to improve the anti-cancer property. Most cancer therapies have been known to damage healthy cells due to poor specificity, which can be avoided by using nanosized particles. Nanomaterials can be combined with various types of biomaterials to make it less toxic and improve its biocompatibility. Based on these properties, several nanomaterials have been developed which possess excellent anti-cancer efficacy potential and improved diagnosis. This review presents the latest update on novel nanomaterials used to improve the diagnostic and therapeutic of pathogen-associated and non-pathogenic cancers. We further highlighted mechanistic insights into their mode of action, improved features, and limitations.
Collapse
Affiliation(s)
- Ayushi Rai
- Department of Nanoscience, Central University of Gujarat, Sector 29, Gandhinagar 382030, India;
| | - Saba Noor
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Syed Ishraque Ahmad
- Department of Chemistry, Zakir Husain Delhi College, University of Delhi, New Delhi 110002, India;
| | - Mohamed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (A.H.)
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (A.H.)
| | - Hashim Abbas
- Department of Medicine, Nottingham University Hospitals, NHS Trust, Nottingham NG7 2UH, UK;
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
25
|
Zhang J, Song K, Ping J, Du J, Sun Y, Zhang J, Qi M, Miao Y, Li Y. A biodegradable bismuth–gadolinium-based nano contrast agent for accurate identification and imaging of renal insufficiency in vivo. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00878a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A biodegradable gadolinium-doped mesoporous bismuth-based nanomaterial is used to diagnose kidneys with dysfunction accurately via magnetic resonance imaging in vivo.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Bismuth Science & School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Kang Song
- Institute of Bismuth Science & School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Jing Ping
- Institute of Bismuth Science & School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Jun Du
- Institute of Bismuth Science & School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Yun Sun
- Department of Research and Development & Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201321, P. R. China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai 201321, P. R. China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, P. R. China
| | - Jianping Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
| | - Ming Qi
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
| | - Yuqing Miao
- Institute of Bismuth Science & School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Yuhao Li
- Institute of Bismuth Science & School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| |
Collapse
|
26
|
Zhang J, Liu Y, Wang X, Du J, Song K, Li B, Chang H, Ouyang R, Miao Y, Sun Y, Li Y. Nanozyme-Incorporated Biodegradable Bismuth Mesoporous Radiosensitizer for Tumor Microenvironment-Modulated Hypoxic Tumor Thermoradiotherapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57768-57781. [PMID: 33326213 DOI: 10.1021/acsami.0c18853] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Solid tumors inevitably develop radioresistance due to low oxygen partial pressure in the tumor microenvironment. Despite numerous attempts, there are still few effective ways to avoid the hypoxia-induced poor radiotherapeutic effect. To overcome this problem, platinum (Pt) nanodots were fabricated into a mesoporous bismuth (Bi)-based nanomaterial to construct a biodegradable nanocomposite BiPt-folic acid-modified amphiphilic polyethylene glycol (PFA). BiPt-PFA could act as a radiosensitizer to enhance the absorption of X-rays at the tumor site and simultaneously trigger response behaviors related to the tumor microenvironment due to the enrichment of materials in the tumor area. During this process, the Bi-based component consumed glutathione via coordination, thus altering the oxidative stress balance, while Pt nanoparticles catalyzed the decomposition of hydrogen peroxide to generate oxygen, thereby relieving tumor hypoxia. Both Pt and Bi thus co-modulated the tumor microenvironment to improve the radiotherapeutic effect. In addition, Pt dots in BiPt-PFA had strong near-infrared absorption ability and created an intensive photothermal therapeutic effect. Modulation of the tumor microenvironment could thus improve the therapeutic effect in hypoxic tumors by a combination of photothermal therapy and enhanced radiotherapy. BiPt-PFA, as a biodegradable nanocomposite, may thus modulate the tumor microenvironment to enhance the hypoxic tumor therapeutic effect by thermoradiotherapy.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Bismuth Science and College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yongtian Liu
- Institute of Bismuth Science and College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiang Wang
- Institute of Bismuth Science and College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Du
- Institute of Bismuth Science and College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Kang Song
- Institute of Bismuth Science and College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Bing Li
- Department of Research and Development & Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China
| | - Haizhou Chang
- Institute of Bismuth Science and College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ruizhuo Ouyang
- Institute of Bismuth Science and College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- Institute of Bismuth Science and College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yun Sun
- Department of Research and Development & Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China
| | - Yuhao Li
- Institute of Bismuth Science and College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
27
|
Bartoli M, Jagdale P, Tagliaferro A. A Short Review on Biomedical Applications of Nanostructured Bismuth Oxide and Related Nanomaterials. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5234. [PMID: 33228140 PMCID: PMC7699380 DOI: 10.3390/ma13225234] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022]
Abstract
In this review, we reported the main achievements reached by using bismuth oxides and related materials for biological applications. We overviewed the complex chemical behavior of bismuth during the transformation of its compounds to oxide and bismuth oxide phase transitions. Afterward, we summarized the more relevant studies regrouped into three categories based on the use of bismuth species: (i) active drugs, (ii) diagnostic and (iii) theragnostic. We hope to provide a complete overview of the great potential of bismuth oxides in biological environments.
Collapse
Affiliation(s)
- Mattia Bartoli
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy;
- Italian Institute of Technology, Via Livorno 60, 10144 Torino, Italy
| | - Pravin Jagdale
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Florence, Italy;
| | - Alberto Tagliaferro
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy;
- Italian Institute of Technology, Via Livorno 60, 10144 Torino, Italy
| |
Collapse
|
28
|
Chen W, Xie Y, Wang M, Li C. Recent Advances on Rare Earth Upconversion Nanomaterials for Combined Tumor Near-Infrared Photoimmunotherapy. Front Chem 2020; 8:596658. [PMID: 33240857 PMCID: PMC7677576 DOI: 10.3389/fchem.2020.596658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/07/2020] [Indexed: 01/23/2023] Open
Abstract
Cancer has been threatening the safety of human life. In order to treat cancer, many methods have been developed to treat tumor, such as traditional therapies like surgery, chemotherapy, radiotherapy, as well as new strategies like photodynamic therapy, photothermal therapy, sonodynamic therapy, and other emerging therapies. Although there are so many ways to treat tumors, these methods all face the dilemma that they are incapable to cope with metastasis and recurrence of tumors. The emergence of immunotherapy has given the hope to conquer the challenge. Immunotherapy is to use the body's own immune system to stimulate and maintain a systemic immune response to form immunological memory, resist the metastasis and recurrence of tumors. At the same time, immunotherapy can combine with other treatments to exhibit excellent antitumor effects. Upconversion nanoparticles (UCNPs) can convert near-infrared (NIR) light into ultraviolet and visible light, thus have good performance in bioimaging and NIR triggered phototherapy. In this review paper, we summarize the design, fabrication, and application of UCNPs-based NIR photoimmunotherapy for combined cancer treatment, as well as put forward the prospect of future development.
Collapse
Affiliation(s)
- Weilin Chen
- Institute of Frontier and Interdisciplinarity Science, Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, China
| | - Yulin Xie
- Institute of Frontier and Interdisciplinarity Science, Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, China
| | - Man Wang
- Institute of Frontier and Interdisciplinarity Science, Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, China
| | - Chunxia Li
- Institute of Frontier and Interdisciplinarity Science, Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, China
| |
Collapse
|
29
|
Zhang G, Liu J, Yu X, Deng Y, Sun Y, Liu T, Dong L, Zhu C, Shen X, Zhu J, Weng S, Li Y. Bismuth-Based Mesoporous Nanoball Carrying Sorafenib for Computed Tomography Imaging and Synergetic Chemoradiotherapy of Hepatocellular Carcinoma. Adv Healthc Mater 2020; 9:e2000650. [PMID: 33000919 DOI: 10.1002/adhm.202000650] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/05/2020] [Indexed: 01/10/2023]
Abstract
Sorafenib (SOR), a multi-kinase inhibitor for advanced hepatocellular carcinoma (HCC), reveals a limited therapeutic effect due to a lack of selectivity and evident drug resistance. In the present study, bismuth-based mesoporous nanomaterial (NBOF) is loaded with SOR and then coated with polyethylene glycol and folic acid conjugates (P-FA) to form an NBOF@SOR-P-FA nanocarrier system. The system achieves significantly enhanced anti-cancer efficacy by combining chemotherapy with radiotherapy. To evaluate the effect of synergistic treatment, cytotoxicity detection, Live/Dead staining, apoptotic assay, and Western blot analysis are performed. The results suggest that NBOF@SOR-P-FA significantly inhibits HCC cell proliferation and promotes cell apoptosis. Also, the NBOF@SOR-P-FA exhibits excellent biocompatibility by hemolysis and serum biochemical tests and produces a substantially enhanced contrast efficiency as compared to iohexol by computed tomography imaging. More importantly, the profound suppression of tumor growth and potentiation of apoptosis are observed in a mouse subcutaneous tumor model. Collectively, these results indicate that the bismuth-based nanotheranostic platform could enhance the therapeutic effect of sorafenib and serve as an innovative method for HCC treatment.
Collapse
Affiliation(s)
- Guang‐Cong Zhang
- Institute of Bismuth Science & College of Science University of Shanghai for Science and Technology Shanghai 200093 China
- Department of Gastroenterology and Hepatology Zhongshan Hospital and Shanghai Institute of Liver Diseases Fudan University Shanghai 200032 China
| | - Jie Liu
- Institute of Bismuth Science & College of Science University of Shanghai for Science and Technology Shanghai 200093 China
| | - Xiang‐Nan Yu
- Department of Gastroenterology and Hepatology Zhongshan Hospital and Shanghai Institute of Liver Diseases Fudan University Shanghai 200032 China
| | - Yong Deng
- Institute of Bismuth Science & College of Science University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yun Sun
- Department of Research and Development & Department of Nuclear Medicine Shanghai Proton and Heavy Ion Center Fudan University Shanghai Cancer Center Shanghai 201321 China
| | - Tao‐Tao Liu
- Department of Gastroenterology and Hepatology Zhongshan Hospital and Shanghai Institute of Liver Diseases Fudan University Shanghai 200032 China
| | - Ling Dong
- Department of Gastroenterology and Hepatology Zhongshan Hospital and Shanghai Institute of Liver Diseases Fudan University Shanghai 200032 China
| | - Chang‐Feng Zhu
- Department of Gastroenterology and Hepatology Zhongshan Hospital and Shanghai Institute of Liver Diseases Fudan University Shanghai 200032 China
| | - Xi‐Zhong Shen
- Department of Gastroenterology and Hepatology Zhongshan Hospital and Shanghai Institute of Liver Diseases Fudan University Shanghai 200032 China
- Key Laboratory of Medical Molecular Virology Shanghai Medical College of Fudan University Shanghai 200032 China
| | - Ji‐Min Zhu
- Department of Gastroenterology and Hepatology Zhongshan Hospital and Shanghai Institute of Liver Diseases Fudan University Shanghai 200032 China
| | - Shu‐Qiang Weng
- Department of Gastroenterology and Hepatology Zhongshan Hospital and Shanghai Institute of Liver Diseases Fudan University Shanghai 200032 China
| | - Yuhao Li
- Institute of Bismuth Science & College of Science University of Shanghai for Science and Technology Shanghai 200093 China
| |
Collapse
|
30
|
Liu J, Zhang J, Huang F, Deng Y, Li B, Ouyang R, Miao Y, Sun Y, Li Y. X-ray and NIR light dual-triggered mesoporous upconversion nanophosphor/Bi heterojunction radiosensitizer for highly efficient tumor ablation. Acta Biomater 2020; 113:570-583. [PMID: 32629190 DOI: 10.1016/j.actbio.2020.06.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
Developing a multi-functional radiosensitizer with high efficiency and low toxicity remains challenging. Herein, we report a mesoporous heterostructure radiosensitizer (UCNP@NBOF-FePc-PFA) containing Lu-based upconversion nanophosphor (UCNP) and Bi-based nanomaterial loaded with iron phthalocyanine for X-ray and NIR light dual-triggered tri-modal tumor therapy. NaLuF4:Yb,Tm, a Lu-based UCNP, offers radiosensitization and upconversion luminescence for optical bio-imaging. However, Bi has a higher X-ray mass attenuation coefficient than Lu. Thus, after stepwise fabrication, Na0.2Bi0.8O0.35F1.91:Yb (NBOF) was assembled with the UCNP to form a mesoporous heterostructure composite. This enhanced the radiosensitization effect and drug load to realize multi-modal tumor therapy. After coating it with folate-conjugated amphiphilic PEG (PFA), UCNP@NBOF-FePc-PFA realized tumor photothermal/photodynamic/radio-therapy. The structure of UCNP@NBOF-FePc-PFA was well characterized. Different properties triggered by X-ray and NIR light were evaluated. Finally, a highly efficient tumor ablation effect was demonstrated in vitro and in vivo. Consequently, this kind of nanocomposite provides a unique strategy for designing a theranostic platform for oncotherapy. STATEMENT OF SIGNIFICANCE: The synergy of enhanced radiotherapy and photothermal/photodynamic therapy is found to improve tumor therapeutic efficacy. On that basis, a heterostructure nanohybrid containing Lu-based UCNP and Bi-based mesoporous material is synthesized. The heterostructure nanohybrid can be loaded with FePc and decorated with folate-modified amphiphilic PEG to form a multi-functional theranostic nano-platform. The platform exhibits upconversion luminescence capacity, X-ray attenuation property, photothermal effect, and X-ray and NIR dual-light triggered ROS generation capability. These features can not only enable upconversion luminescence/CT bioimaging of living beings but also be applied to the photothermal/photodynamic/radio- synergistic tumor ablation. To sum up, the nanomaterial offers a novel method for the construction of a new theranostic platform.
Collapse
Affiliation(s)
- Jie Liu
- Institute of Bismuth Science, College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jing Zhang
- Institute of Bismuth Science, College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Fei Huang
- Institute of Bismuth Science, College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yong Deng
- Institute of Bismuth Science, College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Bing Li
- Department of Research and Development & Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai 201321, China; Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China
| | - Ruizhuo Ouyang
- Institute of Bismuth Science, College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- Institute of Bismuth Science, College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yun Sun
- Department of Research and Development & Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai 201321, China; Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China.
| | - Yuhao Li
- Institute of Bismuth Science, College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
31
|
Qin X, Liu J, Xu Y, Li B, Cheng J, Wu X, Zhang J, Liu Z, Ning R, Li Y, Zhang Y, Sun Y, Lu JJ. Mesoporous Bi-Containing Radiosensitizer Loading with DOX to Repolarize Tumor-Associated Macrophages and Elicit Immunogenic Tumor Cell Death to Inhibit Tumor Progression. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31225-31234. [PMID: 32551494 DOI: 10.1021/acsami.0c08074] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Tumor-associated macrophages (TAMs) were a major component of tumor, which comprised up to 50% of tumor mass, and correlated with poor prognosis in more than 80% of cases. TAMs were resistant to radiotherapy and chemotherapy, and radiation could further activate TAMs to promote tumor progression. Herein, we explored a kind of Bi-based mesoporous upconversion nanophosphor (UCNP) loaded with doxorubicin (UCNP-DOX) to elicit immunogenic tumor cell death and repolarize TAMs to an antitumor M1-like type for strengthening the tumor-specific antitumor immune effects of X-ray radiotherapy. The repolarization effect of UCNP-DOX with X-ray was confirmed in THP-1 cell line, in vivo mouse model, and hydrothorax of a non-small-cell lung carcinoma patient. Moreover, the UCNP-DOX and X-ray radiation could elicit immunogenic tumor necrosis, presenting more tumor antigens for tumor-specific immune response. In a cell co-incubation system, activated macrophages could significantly inhibit cancer colony formation, migration, and invasion. After treatment, xenografted tumor in mice was also found to be significantly regressed and presented substantial CD8-positive T cells. This study opens the door to further enhance the abscopal effects and inhibit the metastasis in radiotherapy.
Collapse
Affiliation(s)
- Xiaojia Qin
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China
- Shanghai Engineering Research Center for Molecular Imaging Probes, Shanghai 200032, China
| | - Jie Liu
- Institute of Bismuth Science & College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yunhua Xu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Bing Li
- Department of Research and Development, Shanghai Proton and Heavy Ion Center, Shanghai 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China
| | - Jingyi Cheng
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China
- Shanghai Engineering Research Center for Molecular Imaging Probes, Shanghai 200032, China
| | - Xiaodong Wu
- Department of Research and Development, Shanghai Proton and Heavy Ion Center, Shanghai 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China
| | - Jianping Zhang
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai 201321, China
- Shanghai Engineering Research Center for Molecular Imaging Probes, Shanghai 200032, China
| | - Zhengwang Liu
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai 201321, China
| | - Renli Ning
- Department of Research and Development, Shanghai Proton and Heavy Ion Center, Shanghai 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China
| | - Yuhao Li
- Institute of Bismuth Science & College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yingjian Zhang
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China
- Shanghai Engineering Research Center for Molecular Imaging Probes, Shanghai 200032, China
| | - Yun Sun
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai 201321, China
- Department of Research and Development, Shanghai Proton and Heavy Ion Center, Shanghai 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China
- Shanghai Engineering Research Center for Molecular Imaging Probes, Shanghai 200032, China
| | - Jiade J Lu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China
| |
Collapse
|
32
|
Yu XN, Deng Y, Zhang GC, Liu J, Liu TT, Dong L, Zhu CF, Shen XZ, Li YH, Zhu JM. Sorafenib-Conjugated Zinc Phthalocyanine Based Nanocapsule for Trimodal Therapy in an Orthotopic Hepatocellular Carcinoma Xenograft Mouse Model. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17193-17206. [PMID: 32207914 DOI: 10.1021/acsami.0c00375] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sorafenib, a multitargeted kinase inhibitor, has been reported to elicit a limited therapeutic effect in hepatocellular carcinoma (HCC). Currently, phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is emerging as a powerful modality for cancer therapy. However, few studies have been reported the effectiveness of the combination of sorafenib with PDT and PTT in HCC. Herein, we designed and synthesized bovine serum albumin (BSA)-coated zinc phthalocyanine (ZnPc) and sorafenib (SFB) nanoparticle (ZnPc/SFB@BSA). The obtained ZnPc/SFB@BSA was able to trigger PDT, PTT, and chemotherapy. After irradiation by a 730 nm light, ZnPc/SFB@BSA significantly suppressed HCC cell proliferation and metastasis while promoted cell apoptosis in vitro. Furthermore, intravenous injection of ZnPc/SFB@BSA led to dramatically reduced tumor growth in an orthotopic xenograft HCC model. More importantly, ZnPc/SFB@BSA presented low toxicity and adequate blood compatibility. Therefore, a combination of ZnPc with sorafenib via BSA-assembled nanoparticle can markedly suppress HCC growth, representing a promising strategy for HCC patients.
Collapse
Affiliation(s)
- Xiang-Nan Yu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
- Shanghai Institute of Liver Disease, Shanghai 200032, China
| | - Yong Deng
- Institute of Bismuth Science & College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guang-Cong Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
- Shanghai Institute of Liver Disease, Shanghai 200032, China
| | - Jie Liu
- Institute of Bismuth Science & College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tao-Tao Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
- Shanghai Institute of Liver Disease, Shanghai 200032, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
- Shanghai Institute of Liver Disease, Shanghai 200032, China
| | - Chang-Feng Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
- Shanghai Institute of Liver Disease, Shanghai 200032, China
| | - Xi-Zhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
- Shanghai Institute of Liver Disease, Shanghai 200032, China
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yu-Hao Li
- Institute of Bismuth Science & College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ji-Min Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
- Shanghai Institute of Liver Disease, Shanghai 200032, China
| |
Collapse
|