1
|
Lenzi C, Masetti A, Gualandi I, Scavetta E, Rigamonti L, Mazzoni R. Advances in Electrocatalyzed Water Oxidation by Molecular Complexes of First Row Transition Metals. CHEM REC 2025:e202400266. [PMID: 40270253 DOI: 10.1002/tcr.202400266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/06/2025] [Indexed: 04/25/2025]
Abstract
Energy transition toward sustainable, alternative, and affordable solutions is likely to be one of the major challenges of the anthropocene era. The oxygen evolution reaction (OER) is a pivotal electrocatalytic process essential for advancing renewable energy conversion and storage technologies, including water splitting, artificial photosynthesis, metal-air batteries, and fuel cells. Electrocatalytic pathways can significantly reduce the overall energy requirements of these devices, particularly focusing on the energy demands associated with water splitting for hydrogen production. This review, after introducing the state of the art in heterogeneous catalysis, will be devoted to the description of molecular water oxidation electrocatalysts (MWOCs), focusing on the recent advancements on catalysts composed of various metals, including Mn, Co, Cu, Ni, and Fe, in combination with a range of mono- and multidentate ligands. Critical insights are presented and discussed to provide readers with suggestions for ligand design in assisted catalysis. These observations aim to identify synergistic solutions that could enhance technological maturity by reducing energy absorption while improving stability and efficiency.
Collapse
Affiliation(s)
- Chiara Lenzi
- Department of Industrial Chemistry "Toso Montanari", via Gobetti, 85, 40129, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna, via Gobetti, 85, 40129, Bologna, Italy
| | - Andrea Masetti
- Department of Industrial Chemistry "Toso Montanari", via Gobetti, 85, 40129, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna, via Gobetti, 85, 40129, Bologna, Italy
| | - Isacco Gualandi
- Department of Industrial Chemistry "Toso Montanari", via Gobetti, 85, 40129, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna, via Gobetti, 85, 40129, Bologna, Italy
| | - Erika Scavetta
- Department of Industrial Chemistry "Toso Montanari", via Gobetti, 85, 40129, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna, via Gobetti, 85, 40129, Bologna, Italy
| | - Luca Rigamonti
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125, Modena, Italy
| | - Rita Mazzoni
- Department of Industrial Chemistry "Toso Montanari", via Gobetti, 85, 40129, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna, via Gobetti, 85, 40129, Bologna, Italy
| |
Collapse
|
2
|
Wen Z, Sun Y, Li W, Wang JP, Li J, Jiang X, Fan L, Fan J, Li H. Regulation of Electron and Mass Transport Pathways in Efficient and Stable Low-Loading PEM Water Electrolyzers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411256. [PMID: 40012307 DOI: 10.1002/smll.202411256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/07/2025] [Indexed: 02/28/2025]
Abstract
Improving the utilization of iridium in proton exchange membrane (PEM) water electrolyzer is critical in reducing their cost for future development. Titanium dioxide (TiO2) has notable electrochemical stability at high operating potential and has been developed as a promising support of iridium-based OER nano-catalysts. However, limited by insufficient conductivity, the iridium content on TiO2 support catalysts is normally above 50 wt.%. Herein, support is provided for iridium on conductivity-enhanced TiO2 for low-iridium-loading PEMWE, successfully reducing the iridium content to 28 wt.% by the regulation of electron transport pathway. A new ionomer distribution strategy is then applied to the Ir@Pt@TiO2 catalyst layer to release the iridium sites and regulate the local mass transport pathways in the anode. This work reveals that the catalyst-ionomer interface played an important role in activity and stability in the anode of PEMWE. Building a thin and uniform ionomer distribution on supports with iridium exposure can result in continuous proton and electron transport pathways, promoting bubble escape, and exposing more effective active sites during reaction situations. This work provides a novel perspective for future research on the catalyst-ionomer interface and mass transport in PEMWEs.
Collapse
Affiliation(s)
- Zengyin Wen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yujiao Sun
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wenzheng Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | | | - Jiawei Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaoqiang Jiang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li Fan
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiantao Fan
- Academy for Advanced Interdisciplinary Studies, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hui Li
- Department of Materials Science and Engineering, SUSTech Energy Institute for Carbon Neutrality, Shenzhen Key Laboratory of Hydrogen Energy, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
3
|
Wang H, Li X, Zhang G, Gu Z, Chen H, Wei G, Shen S, Cheng J, Zhang J. Recent Progress in Balancing the Activity, Durability, and Low Ir Content for Ir-Based Oxygen Evolution Reaction Electrocatalysts in Acidic Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410407. [PMID: 39711255 DOI: 10.1002/smll.202410407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/06/2024] [Indexed: 12/24/2024]
Abstract
Proton exchange membrane (PEM) electrolysis faces challenges associated with high overpotential and acidic environments, which pose significant hurdles in developing highly active and durable electrocatalysts for the oxygen evolution reaction (OER). Ir-based nanomaterials are considered promising OER catalysts for PEM due to their favorable intrinsic activity and stability under acidic conditions. However, their high cost and limited availability pose significant limitations. Consequently, numerous studies have emerged aimed at reducing iridium content while maintaining high activity and durability. Furthermore, the research on the OER mechanism of Ir-based catalysts has garnered widespread attention due to differing views among researchers. The recent progress in balancing activity, durability, and low iridium content in Ir-based catalysts is summarized in this review, with a particular focus on the effects of catalyst morphology, heteroatom doping, substrate introduction, and novel structure development on catalyst performance from four perspectives. Additionally, the recent mechanistic studies on Ir-based OER catalysts is discussed, and both theoretical and experimental approaches is summarized to elucidate the Ir-based OER mechanism. Finally, the perspectives on the challenges and future developments of Ir-based OER catalysts is presented.
Collapse
Affiliation(s)
- Huimin Wang
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinyi Li
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guozhu Zhang
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zihan Gu
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Chen
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guanghua Wei
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuiyun Shen
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junfang Cheng
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junliang Zhang
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
4
|
Park Y, Jang HY, Lee TK, Kim T, Kim D, Kim D, Baik H, Choi J, Kwon T, Yoo SJ, Back S, Lee K. Atomic-level Ru-Ir mixing in rutile-type (RuIr)O 2 for efficient and durable oxygen evolution catalysis. Nat Commun 2025; 16:579. [PMID: 39794326 PMCID: PMC11723980 DOI: 10.1038/s41467-025-55910-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
The success of proton exchange membrane water electrolysis (PEMWE) depends on active and robust electrocatalysts to facilitate oxygen evolution reaction (OER). Heteroatom-doped-RuOx has emerged as a promising electrocatalysts because heteroatoms suppress lattice oxygen participation in the OER, thereby preventing the destabilization of surface Ru and catalyst degradation. However, identifying suitable heteroatoms and achieving their atomic-scale coupling with Ru atoms are nontrivial tasks. Herein, to steer the reaction pathway away from the involvement of lattice oxygen, we integrate OER-active Ir atoms into the RuO2 matrix, which maximizes the synergy between stable Ru and active Ir centers, by leveraging the changeable growth behavior of Ru/Ir atoms on lattice parameter-modulated templates. In PEMWE, the resulting (RuIr)O2/C electrocatalysts demonstrate notable current density of 4.96 A cm-2 and mass activity of 19.84 A mgRu+Ir-1 at 2.0 V. In situ spectroscopic analysis and computational calculations highlight the importance of the synergistic coexistence of Ru/Ir-dual-OER-active sites for mitigating Ru dissolution via the optimization of the binding energy with oxygen intermediates and stabilization of Ru sites.
Collapse
Affiliation(s)
- Yeji Park
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, Republic of Korea
- Hydrogen Fuel Cell Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Ho Yeon Jang
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, Republic of Korea
| | - Tae Kyung Lee
- Hydrogen Fuel Cell Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Chemistry and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Taekyung Kim
- Korea Basic Science Institute (KBSI), Seoul, Republic of Korea
| | - Doyeop Kim
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, Republic of Korea
| | - Dongjin Kim
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, Republic of Korea
| | - Hionsuck Baik
- Korea Basic Science Institute (KBSI), Seoul, Republic of Korea
| | - Jinwon Choi
- Department of Chemistry, Incheon National University, Incheon, Republic of Korea
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, Incheon, Republic of Korea
| | - Taehyun Kwon
- Department of Chemistry, Incheon National University, Incheon, Republic of Korea.
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, Incheon, Republic of Korea.
| | - Sung Jong Yoo
- Hydrogen Fuel Cell Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea.
- Division of Energy & Environment Technology, KIST school, University of Science and Technology (UST), Daejeon, Republic of Korea.
| | - Seoin Back
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, Republic of Korea.
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Edgington J, Vispute S, Li R, Deberghes A, Seitz LC. Quantification of electrochemically accessible iridium oxide surface area with mercury underpotential deposition. SCIENCE ADVANCES 2024; 10:eadp8911. [PMID: 39504370 PMCID: PMC11540024 DOI: 10.1126/sciadv.adp8911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024]
Abstract
Research drives development of sustainable electrocatalytic technologies, but efforts are hindered by inconsistent reporting of advances in catalytic performance. Iridium-based oxide catalysts are widely studied for electrocatalytic technologies, particularly for the oxygen evolution reaction (OER) for proton exchange membrane water electrolysis, but insufficient techniques for quantifying electrochemically accessible iridium active sites impede accurate assessment of intrinsic activity improvements. We develop mercury underpotential deposition and stripping as a reversible electrochemical adsorption process to robustly quantify iridium sites and consistently normalize OER performance of benchmark IrOx electrodes to a single intrinsic activity curve, where other commonly used normalization methods cannot. Through rigorous deconvolution of mercury redox and reproportionation reactions, we extract net monolayer deposition and stripping of mercury on iridium sites throughout testing using a rotating ring disk electrode. This technique is a transformative method to standardize OER performance across a wide range of iridium-based materials and quantify electrochemical iridium active sites.
Collapse
Affiliation(s)
- Jane Edgington
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208-3113, USA
| | - Sejal Vispute
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208-3113, USA
| | - Ruihan Li
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208-3113, USA
| | - Adrien Deberghes
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208-3113, USA
| | - Linsey C. Seitz
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208-3113, USA
| |
Collapse
|
6
|
Esterhuizen JA, Mathur A, Goldsmith BR, Linic S. High-Performance Iridium-Molybdenum Oxide Electrocatalysts for Water Oxidation in Acid: Bayesian Optimization Discovery and Experimental Testing. J Am Chem Soc 2024; 146:5511-5522. [PMID: 38373924 DOI: 10.1021/jacs.3c13491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Ir oxides are costly and scarce catalysts for oxygen evolution reaction (OER) in acid. There has been extensive interest in developing alternatives that are either Ir-free or require smaller amounts of Ir to drive the reactions at acceptable rates. One design strategy is to identify Ir-based mixed oxides that achieve similar performance while requiring smaller amounts of Ir. The obstacle to this strategy has been a very large phase space of the Ir-based mixed metal oxides, in terms of the metals combined with Ir and the different crystallographic structures of the mixed oxides, which prevents a thorough exploration of possible materials. In this work, we developed a workflow that uses machine-learning-aided Bayesian optimization in combination with density functional theory to make the exploration of this phase space plausible. This screening identified Mo as a promising dopant for forming acid-tolerant Ir-based oxides for the OER. We synthesized and characterized the Ir-Mo mixed oxides in the form of thin-film electrocatalysts with a known surface area. We show that these mixed oxides exhibited overpotentials ∼30 mV lower than a pure Ir control while maintaining 24% lower Ir dissolution rates than the Ir control. These findings suggest that Mo is a promising dopant and highlight the promise of machine learning to guide the experimental exploration and optimization of catalytic materials.
Collapse
Affiliation(s)
- Jacques A Esterhuizen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| | - Aarti Mathur
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| | - Bryan R Goldsmith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| | - Suljo Linic
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| |
Collapse
|
7
|
Wu Q, Gao Q, Wang X, Qi Y, Shen L, Tai X, Yang F, He X, Wang Y, Yao Y, Ren Y, Luo Y, Sun S, Zheng D, Liu Q, Alfaifi S, Sun X, Tang B. Boosting electrocatalytic performance via electronic structure regulation for acidic oxygen evolution. iScience 2024; 27:108738. [PMID: 38260173 PMCID: PMC10801216 DOI: 10.1016/j.isci.2023.108738] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
High-purity hydrogen produced by water electrolysis has become a sustainable energy carrier. Due to the corrosive environments and strong oxidizing working conditions, the main challenge faced by acidic water oxidation is the decrease in the activity and stability of anodic electrocatalysts. To address this issue, efficient strategies have been developed to design electrocatalysts toward acidic OER with excellent intrinsic performance. Electronic structure modification achieved through defect engineering, doping, alloying, atomic arrangement, surface reconstruction, and constructing metal-support interactions provides an effective means to boost OER. Based on introducing OER mechanism commonly present in acidic environments, this review comprehensively summarizes the effective strategies for regulating the electronic structure to boost the activity and stability of catalytic materials. Finally, several promising research directions are discussed to inspire the design and synthesis of high-performance acidic OER electrocatalysts.
Collapse
Affiliation(s)
- Qian Wu
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, Shandong, China
| | - Qingping Gao
- Department of Chemical Engineering, Weifang Vocational College, Weifang 262737, Shandong, China
| | - Xingpeng Wang
- Department of Chemical Engineering, Weifang Vocational College, Weifang 262737, Shandong, China
| | - Yuping Qi
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, Shandong, China
| | - Li Shen
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, Shandong, China
| | - Xishi Tai
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, Shandong, China
| | - Fan Yang
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, Shandong, China
| | - Xun He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Yan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Yongchao Yao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Yuchun Ren
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Yonglan Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610068, Sichuan, China
| | - Sulaiman Alfaifi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
- Laoshan Laboratory, Qingdao 266237, Shandong, China
| |
Collapse
|
8
|
Wang C, Yang F, Feng L. Recent advances in iridium-based catalysts with different dimensions for the acidic oxygen evolution reaction. NANOSCALE HORIZONS 2023; 8:1174-1193. [PMID: 37434582 DOI: 10.1039/d3nh00156c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Proton exchange membrane (PEM) water electrolysis is considered a promising technology for green hydrogen production, and iridium (Ir)-based catalysts are the best materials for anodic oxygen evolution reactions (OER) owing to their high stability and anti-corrosion ability in a strong acid electrolyte. The properties of Ir-based nanocatalysts can be tuned by rational dimension engineering, which has received intensive attention recently for catalysis ability boosting. To achieve a comprehensive understanding of the structural and catalysis performance, herein, an overview of the recent progress was provided for Ir-based catalysts with different dimensions for the acidic OER. The promotional effect was first presented in terms of the nano-size effect, synergistic effect, and electronic effect based on the dimensional effect, then the latest progress of Ir-based catalysts classified into zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) catalysts was introduced in detail; and the practical application of some typical examples in the real PEM water electrolyzers (PEMWE) was also presented. Finally, the problems and challenges faced by current dimensionally engineered Ir-based catalysts in acidic electrolytes were discussed. It is concluded that the increased surface area and catalytic active sites can be realized by dimensional engineering strategies, while the controllable synthesis of different dimensional structured catalysts is still a great challenge, and the correlation between structure and performance, especially for the structural evolution during the electrochemical operation process, should be probed in depth. Hopefully, this effort could help understand the progress of dimensional engineering of Ir-based catalysts in OER catalysis and contribute to the design and preparation of novel efficient Ir-based catalysts.
Collapse
Affiliation(s)
- Chunyan Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Fulin Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| |
Collapse
|
9
|
Lin Y, Dong Y, Wang X, Chen L. Electrocatalysts for the Oxygen Evolution Reaction in Acidic Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210565. [PMID: 36521026 DOI: 10.1002/adma.202210565] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Indexed: 06/02/2023]
Abstract
The well-established proton exchange membrane (PEM)-based water electrolysis, which operates under acidic conditions, possesses many advantages compared to alkaline water electrolysis, such as compact design, higher voltage efficiency, and higher gas purity. However, PEM-based water electrolysis is hampered by the low efficiency, instability, and high cost of anodic electrocatalysts for the oxygen evolution reaction (OER). In this review, the recently reported acidic OER electrocatalysts are comprehensively summarized, classified, and discussed. The related fundamental studies on OER mechanisms and the relationship between activity and stability are particularly highlighted in order to provide an atomistic-level understanding for OER catalysis. A stability test protocol is suggested to evaluate the intrinsic activity degradation. Some current challenges and unresolved questions, such as the usage of carbon-based materials and the differences between the electrocatalyst performances in acidic electrolytes and PEM-based electrolyzers are also discussed. Finally, suggestions for the most promising electrocatalysts and a perspective for future research are outlined. This review presents a fresh impetus and guideline to the rational design and synthesis of high-performance acidic OER electrocatalysts for PEM-based water electrolysis.
Collapse
Affiliation(s)
- Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Yan Dong
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Xuezhen Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| |
Collapse
|
10
|
Edgington J, Seitz LC. Advancing the Rigor and Reproducibility of Electrocatalyst Stability Benchmarking and Intrinsic Material Degradation Analysis for Water Oxidation. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Jane Edgington
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Linsey C. Seitz
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
11
|
Controllable Construction of IrCo Nanoclusters and the Performance for Water Electrolysis. Catalysts 2022. [DOI: 10.3390/catal12080914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Finding a suitable catalyst is an important research direction in hydrogen (H2) production from water electrolysis. We report a synthetic method to obtain IrxCo/C clusters by polyol reduction. The catalyst is small in size and can be evenly distributed. The Ir3Co/C cluster catalyst had very good activity under acidic conditions. The overpotential of the best-performing Ir3Co/C cluster for the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) is only 290 mV and 91 mV when 10 mA cm−2 and 100 mA cm−2. The catalyst performance may be improved because of the synergistic effect and the small size of the prepared catalyst, which accelerates proton transfer. This approach offers a strategy to reduce costs while improving catalytic activity.
Collapse
|
12
|
Sen R, Das S, Nath A, Maharana P, Kar P, Verpoort F, Liang P, Roy S. Electrocatalytic Water Oxidation: An Overview With an Example of Translation From Lab to Market. Front Chem 2022; 10:861604. [PMID: 35646820 PMCID: PMC9131097 DOI: 10.3389/fchem.2022.861604] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/30/2022] [Indexed: 12/03/2022] Open
Abstract
Water oxidation has become very popular due to its prime role in water splitting and metal–air batteries. Thus, the development of efficient, abundant, and economical catalysts, as well as electrode design, is very demanding today. In this review, we have discussed the principles of electrocatalytic water oxidation reaction (WOR), the electrocatalyst and electrode design strategies for the most efficient results, and recent advancement in the oxygen evolution reaction (OER) catalyst design. Finally, we have discussed the use of OER in the Oxygen Maker (OM) design with the example of OM REDOX by Solaire Initiative Private Ltd. The review clearly summarizes the future directions and applications for sustainable energy utilization with the help of water splitting and the way forward to develop better cell designs with electrodes and catalysts for practical applications. We hope this review will offer a basic understanding of the OER process and WOR in general along with the standard parameters to evaluate the performance and encourage more WOR-based profound innovations to make their way from the lab to the market following the example of OM REDOX.
Collapse
Affiliation(s)
- Rakesh Sen
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
| | - Supriya Das
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
| | - Aritra Nath
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
| | - Priyanka Maharana
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
| | - Pradipta Kar
- Solaire Initiative Private Limited, Bhubaneshwar and Kolkata, India
| | - Francis Verpoort
- Solaire Initiative Private Limited, Bhubaneshwar and Kolkata, India
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
- Center for Environmental and Energy Research, Ghent University Global Campus, Incheon, South Korea
- *Correspondence: Francis Verpoort, ; Pei Liang, ; Soumyajit Roy,
| | - Pei Liang
- Solaire Initiative Private Limited, Bhubaneshwar and Kolkata, India
- *Correspondence: Francis Verpoort, ; Pei Liang, ; Soumyajit Roy,
| | - Soumyajit Roy
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
- Solaire Initiative Private Limited, Bhubaneshwar and Kolkata, India
- *Correspondence: Francis Verpoort, ; Pei Liang, ; Soumyajit Roy,
| |
Collapse
|
13
|
Su H, Yan S, Zhao C, Peng P, Jin L, Li S, Pang S. One‐Step Fabrication of High‐Performance Energetic Metal‐Organic Framework [Cu(atrz)
3
[NO
3
]
2
]
n
Films and its Tunable Crystal Structure. PROPELLANTS EXPLOSIVES PYROTECHNICS 2021. [DOI: 10.1002/prep.202100054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hui Su
- School of Materials Science & Engineering Beijing Institute of Technology Beijing 100081 PR China
- State Key Laboratory of Explosion Science and Technology Beijing Institute of Technology Beijing 100081 PR China
- The System Design Institute of Mechanical-Electrical Engineering Beijing 100854 PR China
| | - Shi Yan
- State Key Laboratory of Explosion Science and Technology Beijing Institute of Technology Beijing 100081 PR China
| | - Chaofeng Zhao
- School of Materials Science & Engineering Beijing Institute of Technology Beijing 100081 PR China
| | - Panpan Peng
- School of Materials Science & Engineering Beijing Institute of Technology Beijing 100081 PR China
| | - Liang Jin
- DongGuan Polytechnic, Songshan Lake High-tech Industrial Development Zone Guangdong 523808 PR China
| | - Shenghua Li
- School of Materials Science & Engineering Beijing Institute of Technology Beijing 100081 PR China
| | - Siping Pang
- School of Materials Science & Engineering Beijing Institute of Technology Beijing 100081 PR China
| |
Collapse
|
14
|
Over H. Fundamental Studies of Planar Single-Crystalline Oxide Model Electrodes (RuO2, IrO2) for Acidic Water Splitting. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01973] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Herbert Over
- Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, 35392 Giessen, Germany
| |
Collapse
|
15
|
Edgington J, Schweitzer N, Alayoglu S, Seitz LC. Constant Change: Exploring Dynamic Oxygen Evolution Reaction Catalysis and Material Transformations in Strontium Zinc Iridate Perovskite in Acid. J Am Chem Soc 2021; 143:9961-9971. [PMID: 34161089 DOI: 10.1021/jacs.1c04332] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While iridium-based perovskites have been identified as promising candidates for the oxygen evolution reaction (OER) in proton exchange membrane (PEM) electrolyzer applications, an improved fundamental understanding of these highly dynamic materials under reaction conditions is needed to inform more robust future catalyst design. Herein, we study the highly active SrIr0.8Zn0.2O3 perovskite for the OER in acid by employing electrochemical experiments with in situ and ex situ characterization techniques to understand the dynamic nature of this material at both short and long time scales. We observe initial intrinsic OER activity improvement with electrochemical cycling as well as an initial increase of Ir oxidation state under OER conditions via in situ X-ray absorption spectroscopy. We discover that the SrIr0.8Zn0.2O3 perovskite experiences an OER-induced metal to insulator transition (MIT) with extensive electrochemical cycling, caused by surface reorganization and changes to the material crystallinity that occur with exposure to an acidic and oxidizing environment. Our novel identification of an OER-induced MIT for iridate perovskites reveals an additional stability concern for iridate catalysts which are known to experience material dissolution challenges; this work ultimately aims to inform future catalyst material design for PEM water electrolysis applications.
Collapse
Affiliation(s)
- Jane Edgington
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Neil Schweitzer
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3113, United States.,Center for Catalysis and Surface Science, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Selim Alayoglu
- Center for Catalysis and Surface Science, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Linsey C Seitz
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
16
|
Electrocatalysis for the Oxygen Evolution Reaction in Acidic Media: Progress and Challenges. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104320] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The oxygen evolution reaction (OER) is the efficiency-determining half-reaction process of high-demand, electricity-driven water splitting due to its sluggish four-electron transfer reaction. Tremendous effects on developing OER catalysts with high activity and strong acid-tolerance at high oxidation potentials have been made for proton-conducting polymer electrolyte membrane water electrolysis (PEMWE), which is one of the most promising future hydrogen-fuel-generating technologies. This review presents recent progress in understanding OER mechanisms in PEMWE, including the adsorbate evolution mechanism (AEM) and the lattice-oxygen-mediated mechanism (LOM). We further summarize the latest strategies to improve catalytic performance, such as surface/interface modification, catalytic site coordination construction, and electronic structure regulation of catalytic centers. Finally, challenges and prospective solutions for improving OER performance are proposed.
Collapse
|
17
|
An L, Wei C, Lu M, Liu H, Chen Y, Scherer GG, Fisher AC, Xi P, Xu ZJ, Yan CH. Recent Development of Oxygen Evolution Electrocatalysts in Acidic Environment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006328. [PMID: 33768614 DOI: 10.1002/adma.202006328] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Indexed: 05/28/2023]
Abstract
The proton exchange membrane (PEM) water electrolysis is one of the most promising hydrogen production techniques. The oxygen evolution reaction (OER) occurring at the anode dominates the overall efficiency. Developing active and robust electrocatalysts for OER in acid is a longstanding challenge for PEM water electrolyzers. Most catalysts show unsatisfied stability under strong acidic and oxidative conditions. Such a stability challenge also leads to difficulties for a better understanding of mechanisms. This review aims to provide the current progress on understanding of OER mechanisms in acid, analyze the promising strategies to enhance both activity and stability, and summarize the state-of-the-art catalysts for OER in acid. First, the prevailing OER mechanisms are reviewed to establish the physicochemical structure-activity relationships for guiding the design of highly efficient OER electrocatalysts in acid with stable performance. The reported approaches to improve the activity, from macroview to microview, are then discussed. To analyze the problem of instability, the key factors affecting catalyst stability are summarized and the surface reconstruction is discussed. Various noble-metal-based OER catalysts and the current progress of non-noble-metal-based catalysts are reviewed. Finally, the challenges and perspectives for the development of active and robust OER catalysts in acid are discussed.
Collapse
Affiliation(s)
- Li An
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chao Wei
- School of Materials Science and Engineering Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Min Lu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hanwen Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yubo Chen
- School of Materials Science and Engineering Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Energy Research Institute@NTU, ERI@N, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, 639798, Singapore
- The Cambridge Centre for Advanced Research and Education in Singapore, 1 CREATE Way, Singapore, 138602, Singapore
| | - Günther G Scherer
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, 758307, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 758307, Vietnam
| | - Adrian C Fisher
- The Cambridge Centre for Advanced Research and Education in Singapore, 1 CREATE Way, Singapore, 138602, Singapore
- Department of Chemical Engineering, University of Cambridge, Cambridge, CB2 3RA, UK
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zhichuan J Xu
- School of Materials Science and Engineering Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Energy Research Institute@NTU, ERI@N, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, 639798, Singapore
- The Cambridge Centre for Advanced Research and Education in Singapore, 1 CREATE Way, Singapore, 138602, Singapore
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering Peking University, Beijing, 100871, China
| |
Collapse
|
18
|
Kasibhatta KRD, Madakannu I, Prasanthi I. Hetero Atom Doped Graphene Nanoarchitectonics as Electrocatalysts Towards the Oxygen Reduction and Evolution Reactions in Acidic Medium. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01834-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
On the limitations in assessing stability of oxygen evolution catalysts using aqueous model electrochemical cells. Nat Commun 2021; 12:2231. [PMID: 33850142 PMCID: PMC8044118 DOI: 10.1038/s41467-021-22296-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/09/2021] [Indexed: 11/09/2022] Open
Abstract
Recent research indicates a severe discrepancy between oxygen evolution reaction catalysts dissolution in aqueous model systems and membrane electrode assemblies. This questions the relevance of the widespread aqueous testing for real world application. In this study, we aim to determine the processes responsible for the dissolution discrepancy. Experimental parameters known to diverge in both systems are individually tested for their influence on dissolution of an Ir-based catalyst. Ir dissolution is studied in an aqueous model system, a scanning flow cell coupled to an inductively coupled plasma mass spectrometer. Real dissolution rates of the Ir OER catalyst in membrane electrode assemblies are measured with a specifically developed, dedicated setup. Overestimated acidity in the anode catalyst layer and stabilization over time in real devices are proposed as main contributors to the dissolution discrepancy. The results shown here lead to clear guidelines for anode electrocatalyst testing parameters to resemble realistic electrolyzer operating conditions.
Collapse
|
20
|
Dhawan H, Secanell M, Semagina N. State-of-the-Art Iridium-Based Catalysts for Acidic Water Electrolysis: A Minireview of Wet-Chemistry Synthesis Methods : Preparation routes for active and durable iridium catalysts. JOHNSON MATTHEY TECHNOLOGY REVIEW 2021. [DOI: 10.1595/205651321x16013966874707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With the increasing demand for clean hydrogen production, both as a fuel and an indispensable reagent for chemical industries, acidic water electrolysis has attracted considerable attention in academic and industrial research. Iridium is a well-accepted active and corrosion-resistant
component of catalysts for oxygen evolution reaction (OER). However, its scarcity demands breakthroughs in catalyst preparation technologies to ensure its most efficient utilisation. This minireview focusses on the wet-chemistry synthetic methods of the most active and (potentially) durable
iridium catalysts for acidic OER, selected from the recent publications in the open literature. The catalysts are classified by their synthesis methods, with authors’ opinion on their practicality. The review may also guide the selection of the state-of-the-art iridium catalysts for
benchmarking purposes.
Collapse
Affiliation(s)
- Himanshi Dhawan
- Department of Chemical and Materials Engineering, University of Alberta 12th Floor, Donadeo Innovation Centre for Engineering, 9211 - 116 Street, NW Edmonton, Alberta, T6G 1H9 Canada
| | - Marc Secanell
- Department of Mechanical Engineering, University of Alberta 10-203 Donadeo Innovation Centre for Engineering, 9211 - 116 Street, NW Edmonton, Alberta, T6G 1H9 Canada
| | - Natalia Semagina
- Department of Chemical and Materials Engineering, University of Alberta 12th Floor, Donadeo Innovation Centre for Engineering, 9211 - 116 Street, NW Edmonton, Alberta, T6G 1H9 Canada
| |
Collapse
|
21
|
|
22
|
Craig MJ, Barda-Chatain R, García-Melchor M. Fundamental insights and rational design of low-cost polyoxometalates for the oxygen evolution reaction. J Catal 2021. [DOI: 10.1016/j.jcat.2020.11.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Chatterjee S, Intikhab S, Profitt L, Li Y, Natu V, Gawas R, Snyder J. Nanoporous multimetallic Ir alloys as efficient and stable electrocatalysts for acidic oxygen evolution reactions. J Catal 2021. [DOI: 10.1016/j.jcat.2020.11.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Salimi P, Najafpour MM. A Simple Method for Synthesizing Highly Active Amorphous Iridium Oxide for Oxygen Evolution under Acidic Conditions. Chemistry 2020; 26:17063-17068. [PMID: 32852097 DOI: 10.1002/chem.202000955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/17/2020] [Indexed: 11/09/2022]
Abstract
Water splitting for hydrogen production has been recognized as a promising approach to store sustainable energy. The performance of this method is limited by the oxygen-evolution reaction. Herein, an approach for synthesizing a highly active oxygen-evolving catalyst by a one-step, low-cost, environmentally friendly, and easy-to-perform method is presented, which works by using iridium metal as the anode at a relatively high potential. The obtained IrOx /Ir interface showed an overpotential of 250 mV at 10 mA cm-2 in 0.1 m HClO4 and remained stable under electrochemical conditions. The IrOx that was mechanically separated from the surface of IrOx /Ir metal after operation showed a threefold increase in activity compared to the current benchmark IrO2 catalyst. Various characterization analyses were used to identify the structure and morphology of the catalyst, which suggested nanosized, porous, and amorphous IrOx on the surface of metallic Ir. This synthetic approach can inspire a variety of opportunities to design and synthesize efficient metal oxide-based electrocatalysts for sustainable energy conversion and utilization.
Collapse
Affiliation(s)
- Payam Salimi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731, Zanjan, Iran
| | - Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731, Zanjan, Iran.,Centre of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731, Zanjan, Iran.,Research Centre for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731, Zanjan, Iran
| |
Collapse
|
25
|
Etzi Coller Pascuzzi M, Velzen M, Hofmann JP, Hensen EJM. On the Stability of Co
3
O
4
Oxygen Evolution Electrocatalysts in Acid. ChemCatChem 2020. [DOI: 10.1002/cctc.202001428] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Marco Etzi Coller Pascuzzi
- Laboratory of Inorganic Materials and Catalysis Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Matthijs Velzen
- Laboratory of Inorganic Materials and Catalysis Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Jan P. Hofmann
- Laboratory of Inorganic Materials and Catalysis Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
- Surface Science Laboratory Department of Materials and Earth Sciences Technical University of Darmstadt Otto-Berndt-Strasse 3 64287 Darmstadt Germany
| | - Emiel J. M. Hensen
- Laboratory of Inorganic Materials and Catalysis Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
26
|
Hubert MA, Patel AM, Gallo A, Liu Y, Valle E, Ben-Naim M, Sanchez J, Sokaras D, Sinclair R, Nørskov JK, King LA, Bajdich M, Jaramillo TF. Acidic Oxygen Evolution Reaction Activity–Stability Relationships in Ru-Based Pyrochlores. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02252] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- McKenzie A. Hubert
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Anjli M. Patel
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Alessandro Gallo
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Yunzhi Liu
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Eduardo Valle
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Micha Ben-Naim
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Joel Sanchez
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Dimosthenis Sokaras
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Robert Sinclair
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jens K. Nørskov
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Laurie A. King
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, U.K
| | - Michal Bajdich
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Thomas F. Jaramillo
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
27
|
Back S, Tran K, Ulissi ZW. Discovery of Acid-Stable Oxygen Evolution Catalysts: High-Throughput Computational Screening of Equimolar Bimetallic Oxides. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38256-38265. [PMID: 32799519 DOI: 10.1021/acsami.0c11821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Discovering acid-stable, cost-effective, and active catalysts for oxygen evolution reaction (OER) is critical since this reaction is a bottleneck in many electrochemical energy conversion systems. The current systems use extremely expensive iridium oxide catalysts. Identifying Ir-free or less-Ir containing catalysts has been suggested as the goal, but no systematic strategy to discover such catalysts has been reported. In this work, we perform first-principles-based high-throughput catalyst screening to discover OER-active and acid-stable catalysts focusing on equimolar bimetallic oxides with space groups derived from those of IrOx. We develop an approach to evaluate acid-stability under the reaction condition by utilizing the Materials Project database and density functional theory (DFT) calculations. For acid-stable materials, we further investigate their OER catalytic activities and identify promising OER catalysts that satisfy all the desired properties: Co-Ir, Fe-Ir, and Mo-Ir bimetallic oxides. Based on the calculated results, we provide insights to efficiently perform future high-throughput screening to discover catalysts with desirable properties and discuss the remaining challenges.
Collapse
Affiliation(s)
- Seoin Back
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Kevin Tran
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh 15213, Pennsylvania, United States
| | - Zachary W Ulissi
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh 15213, Pennsylvania, United States
| |
Collapse
|
28
|
Feng Q, Zou J, Wang Y, Zhao Z, Williams MC, Li H, Wang H. Influence of Surface Oxygen Vacancies and Ruthenium Valence State on the Catalysis of Pyrochlore Oxides. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4520-4530. [PMID: 31895533 DOI: 10.1021/acsami.9b19352] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Proton exchange membrane (PEM) water electrolysis is a promising energy storage solution by electrochemically splitting water into hydrogen fuel and oxygen. However, the sluggish kinetics, high operating potential, and corrosive acidic environment during the oxygen evolution reaction (OER) require the use of scarce and costly Ir-based oxides, tremendously hampering its large-scale commercialization. Hence, developing active and stable anode catalysts with reduced precious-metal usage is desperately essential. For the first time, we report a group of Y2-xBaxRu2O7 pyrochlore oxides and employ them in acid OER and PEM electrolyzers. We reveal the mechanism for the promoted OER performance of Ba-doped Y2Ru2O7 in which partially replacing Y3+ by Ba2+ in Y2Ru2O7 greatly facilitates the hole-doping effect, which generates massive oxygen vacancy and multivalence of Ru5+/Ru4+, thus boosting the OER performance of Y2-xBaxRu2O7. This work provides an effective method and paradigm for improving the electrocatalytic property of pyrochlore oxides.
Collapse
Affiliation(s)
- Qi Feng
- School of Materials Science and Engineering , Harbin Institute of Technology , Harbin 150001 , China
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Hydrogen Energy , Southern University of Science and Technology , Shenzhen 518055 , Guangdong , China
| | - Jiexin Zou
- Department of Mechanical and Energy Engineering , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Yajun Wang
- Department of Mechanical and Energy Engineering , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Zhiliang Zhao
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Hydrogen Energy , Southern University of Science and Technology , Shenzhen 518055 , Guangdong , China
| | - Mark C Williams
- Department of Mechanical and Energy Engineering , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Hui Li
- School of Materials Science and Engineering , Harbin Institute of Technology , Harbin 150001 , China
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Hydrogen Energy , Southern University of Science and Technology , Shenzhen 518055 , Guangdong , China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power , Shenzhen 518055 , China
| | - Haijiang Wang
- Department of Mechanical and Energy Engineering , Southern University of Science and Technology , Shenzhen 518055 , China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power , Shenzhen 518055 , China
| |
Collapse
|