1
|
Wei Y, Zhu Z, Pan J, Zhang Y, Zhang W, Lu Z. Tailored Noble Metal Nanoarrays via Nanoxerography. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:7251-7258. [PMID: 40077961 DOI: 10.1021/acs.langmuir.4c03865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Noble metal nanoarrays have become essential in fields such as bioanalysis, catalysis, and optoelectronics. Their unique properties, often tuned through precise control of the size, morphology, and metal composition, have driven significant advancements. This research introduces atomic force microscopy (AFM)-assisted nanoxerography as a versatile technique for fabricating customizable noble metal nanoarrays. By integrating nanoxerography with in situ growth and annealing, we demonstrated precise control over spot dimensions, structural features, and metal diversity. The nanoscale precision of AFM scanning enables the creation of arbitrary patterns and the hybridization of various materials. The high tunability and efficiency of nanoxerography provide promising avenues for advancing applications of noble metal nanoarrays across diverse scientific application.
Collapse
Affiliation(s)
- Ying Wei
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Zhouzhou Zhu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Jiahao Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yuchen Zhang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Weihua Zhang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Zhenda Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| |
Collapse
|
2
|
Zhu Z, Hu X, Wei Y, Pan J, Lu Z. Probing Single-Particle Electrocatalytic Stability: Electrogenerated Chemiluminescence Imaging of Nanoparticle Array. J Phys Chem Lett 2024; 15:12228-12233. [PMID: 39632687 DOI: 10.1021/acs.jpclett.4c03226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Understanding the stability of single nanoparticles is crucial for optimizing their performance in various applications, including catalysis. In this study, we employed electrochemiluminescence (ECL) imaging to investigate the temporal stability of individual Au and Pt nanoparticles within precisely engineered arrays. Our results reveal significant differences in the stability of Au and Pt NPs. While both exhibit initial decay due to diffusion limitations, Au NPs undergo more rapid degradation, attributed to surface oxidation and detachment. In contrast, Pt NPs demonstrate much better stability with little surface oxidation. This study provides valuable insights into the fundamental behavior of single-NP electrocatalysis and highlights the potential of ECL imaging as a powerful tool for unraveling the complex dynamics of nanoscale systems.
Collapse
Affiliation(s)
- Zhouzhou Zhu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Xiangfu Hu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Ying Wei
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Jiahao Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Zhenda Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| |
Collapse
|
3
|
Xing X, Zhou Y, Wei Y, Zhang Y, Man Z, Zhang W, Lu Z. Patterning of Molecules/Ions via Reverse Micelle Vessels by Nanoxerography. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37296516 DOI: 10.1021/acsami.3c03341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Precise patterning of molecules/ions in the nanometer scale is a crucial but challenging technique for the fabrication of advanced functional nanodevices. We developed a robust method to print molecules/ions into arbitrarily defined patterns with sub-20 nm precision assisted by reverse micelles. The reverse micelle, serving as a nano-sized vessel, can load molecules/ions and then be patterned onto the predefined positions by electrostatic attraction. The number of molecules/ions on each spot, the spot spacing, and pattern shapes can be flexibly adjusted, reaching 10 nm position accuracy, 30 nm spot size, and 100 nm spot spacing (>250,000 DPI). Then, water-soluble dye molecules, protein molecules, and chloroaurate ions were loaded in the micelles and successfully patterned into nanoarrays, which provides an important platform for the convenient, flexible, and robust fabrication of functional molecule/ion-based nanodevices, such as biochips, for high-throughput and ultrasensitive analysis.
Collapse
Affiliation(s)
- Xing Xing
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
- School of the Environment, Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Yao Zhou
- School of Physics, Nanjing University, Nanjing 210023, China
| | - Yelu Wei
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yuchen Zhang
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Zaiqin Man
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Weihua Zhang
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
- College of Chemistry, and State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Zhenda Lu
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
- College of Chemistry, and State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
- School of the Environment, Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Wei Y, Zhang Y, Pan J, Chen T, Xing X, Zhang W, Lu Z. Plasmon-Enhanced Electrochemiluminescence at the Single-Nanoparticle Level. Angew Chem Int Ed Engl 2023; 62:e202214103. [PMID: 36331900 DOI: 10.1002/anie.202214103] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Plasmon-enhanced electrochemiluminescence (ECL) at the single-nanoparticle (NP) level was investigated by ECL microscopy. The Au NPs were assembled into an ordered array, providing a high-throughput platform that can easily locate each NP in sequential characterizations. A strong dependence of ECL intensity on Au NP configurations was observed. We demonstrate for the first time that at the single-particle level, the ECL of Ru(bpy)3 2+ -TPrA was majorly quenched by small Au NPs (<40 nm), while enhanced by large Au ones (>80 nm) due to the localized surface plasmon resonance (LSPR). Notably, the ECL intensity was further increased by the coupling effect of neighboring Au NPs. Finite Difference Time Domain (FDTD) simulations conformed well with the experimental results. This plasmon enhanced ECL microscopy for arrayed single NPs provides a reliable tool for screening electrocatalytic activity at a single particle.
Collapse
Affiliation(s)
- Ying Wei
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
| | - Yuchen Zhang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
| | - Jiahao Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
| | - Tian Chen
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
| | - Xing Xing
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
| | - Weihua Zhang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
| | - Zhenda Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
5
|
Humbert M, Hernandez R, Mallet N, Larrieu G, Larrey V, Fournel F, Guérin F, Palleau E, Paillard V, Cuche A, Ressier L. Large-scale controlled coupling of single-photon emitters to high-index dielectric nanoantennas by AFM nanoxerography. NANOSCALE 2023; 15:599-608. [PMID: 36485024 DOI: 10.1039/d2nr05526k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Improving the brightness of single-photon sources by means of optically resonant nanoantennas is a major stake for the development of efficient nanodevices for quantum communications. We demonstrate that nanoxerography by atomic force microscopy makes possible the fast, robust and repeatable positioning of model quantum nanoemitters (nitrogen-vacancy NV centers in nanodiamonds) on a large-scale in the gap of silicon nanoantennas with a dimer geometry. By tuning the parameters of the nanoxerography process, we can statistically control the number of deposited nanodiamonds, yielding configurations down to a unique single photon emitter coupled to these high index dielectric nanoantennas, with high selectivity and enhanced brightness induced by a near-field Purcell effect. Numerical simulations are in very good quantitative agreement with time-resolved photoluminescence experiments. A multipolar analysis reveals in particular all the aspects of the coupling between the dipolar single emitter and the Mie resonances hosted by these simple nanoantennas. This proof of principle opens a path to a genuine and large-scale spatial control of the coupling of punctual quantum nanoemitters to arrays of optimized optically resonant nanoantennas. It paves the way for future fundamental studies in quantum nano-optics and toward integrated photonics applications for quantum technologies.
Collapse
Affiliation(s)
- Mélodie Humbert
- Université de Toulouse, LPCNO, INSA-UPS-CNRS, 135 avenue de Rangueil, F-31077 Toulouse Cedex 4, France.
- CEMES-CNRS, Université de Toulouse, CNRS, UPS, 29 rue Jeanne Marvig, 31055 Toulouse Cedex, France
| | - Romain Hernandez
- Université de Toulouse, LPCNO, INSA-UPS-CNRS, 135 avenue de Rangueil, F-31077 Toulouse Cedex 4, France.
- CEMES-CNRS, Université de Toulouse, CNRS, UPS, 29 rue Jeanne Marvig, 31055 Toulouse Cedex, France
| | - Nicolas Mallet
- LAAS-CNRS, Université de Toulouse, CNRS, UPS, 7 avenue du Colonel Roche BP 54200, 31031 Toulouse Cedex 4, France
| | - Guilhem Larrieu
- LAAS-CNRS, Université de Toulouse, CNRS, UPS, 7 avenue du Colonel Roche BP 54200, 31031 Toulouse Cedex 4, France
| | - Vincent Larrey
- Université Grenoble Alpes, CEA, LETI, 17 Avenue des Martyrs, F-38000 Grenoble, France
| | - Frank Fournel
- Université Grenoble Alpes, CEA, LETI, 17 Avenue des Martyrs, F-38000 Grenoble, France
| | - François Guérin
- Université de Toulouse, LPCNO, INSA-UPS-CNRS, 135 avenue de Rangueil, F-31077 Toulouse Cedex 4, France.
| | - Etienne Palleau
- Université de Toulouse, LPCNO, INSA-UPS-CNRS, 135 avenue de Rangueil, F-31077 Toulouse Cedex 4, France.
| | - Vincent Paillard
- CEMES-CNRS, Université de Toulouse, CNRS, UPS, 29 rue Jeanne Marvig, 31055 Toulouse Cedex, France
| | - Aurélien Cuche
- CEMES-CNRS, Université de Toulouse, CNRS, UPS, 29 rue Jeanne Marvig, 31055 Toulouse Cedex, France
| | - Laurence Ressier
- Université de Toulouse, LPCNO, INSA-UPS-CNRS, 135 avenue de Rangueil, F-31077 Toulouse Cedex 4, France.
| |
Collapse
|
6
|
Humbert M, Hallez Y, Larrey V, Fournel F, Palleau E, Paillard V, Cuche A, Ressier L. Versatile, rapid and robust nano-positioning of single-photon emitters by AFM-nanoxerography. NANOTECHNOLOGY 2022; 33:215301. [PMID: 35105827 DOI: 10.1088/1361-6528/ac50f1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Atomic force microscopy (AFM) nanoxerography was successfully used to direct the assembly of colloidal nanodiamonds (NDs) containing nitrogen-vacancy (NV) centres on electrostatically patterned surfaces. This study reveals that the number of deposited NDs can be controlled by tuning the surface potentials of positively charged dots on a negatively charged background written by AFM in a thin PMMA electret film, yielding assemblies down to a unique single-photon emitter with very good selectivity. The mechanisms of the ND directed assembly are attested by numerical simulations. This robust deterministic nano-positioning of quantum emitters thus offers great opportunities for ultimate applications in nanophotonics for quantum technologies.
Collapse
Affiliation(s)
- M Humbert
- Université de Toulouse, INSA-UPS-CNRS, LPCNO, 135 avenue de Rangueil, F-31077 Toulouse Cedex 4, France
- CEMES-CNRS, Université de Toulouse, CNRS, UPS, 29 rue Jeanne Marvig, 31055 Toulouse Cedex, France
| | - Y Hallez
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - V Larrey
- Université Grenoble Alpes, CEA, LETI, 17 Avenue des Martyrs, F-38000 Grenoble, France
| | - F Fournel
- Université Grenoble Alpes, CEA, LETI, 17 Avenue des Martyrs, F-38000 Grenoble, France
| | - E Palleau
- Université de Toulouse, INSA-UPS-CNRS, LPCNO, 135 avenue de Rangueil, F-31077 Toulouse Cedex 4, France
| | - V Paillard
- CEMES-CNRS, Université de Toulouse, CNRS, UPS, 29 rue Jeanne Marvig, 31055 Toulouse Cedex, France
| | - A Cuche
- CEMES-CNRS, Université de Toulouse, CNRS, UPS, 29 rue Jeanne Marvig, 31055 Toulouse Cedex, France
| | - L Ressier
- Université de Toulouse, INSA-UPS-CNRS, LPCNO, 135 avenue de Rangueil, F-31077 Toulouse Cedex 4, France
| |
Collapse
|