1
|
Wang Y, Zhao R, Ackermann L. Electrochemical Syntheses of Polycyclic Aromatic Hydrocarbons (PAHs). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300760. [PMID: 36965124 DOI: 10.1002/adma.202300760] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have surfaced as increasingly viable components in optoelectronics and material sciences. The development of highly efficient and atom-economic tools to prepare PAHs under exceedingly mild conditions constitutes a long-term goal. Traditional syntheses of PAHs have largely relied on multistep approaches or the conventional Scholl reaction. However, Scholl reactions are largely inefficient with electron-deficient substrates, require stoichiometric chemical oxidants, and typically occur in the presence of strong acid. In sharp contrast, electrochemistry has gained considerable momentum during the past decade as an alternative for the facile and straightforward PAHs assembly, generally via electro-oxidative dehydrogenative annulation, releasing molecular hydrogen as the sole stoichiometric byproduct by the hydrogen evolution reaction. This review provides an overview on the recent and significant advances in the field of electrochemical syntheses of various PAHs until January 2023.
Collapse
Affiliation(s)
- Yulei Wang
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammanstraße 2, 37077, Göttingen, Germany
| | - Rong Zhao
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammanstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammanstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
2
|
Tran VV, Nguyen DD, Hofmann M, Hsieh YP, Kan HC, Hsu CC. Edge-Rich Interconnected Graphene Mesh Electrode with High Electrochemical Reactivity Applicable for Glucose Detection. NANOMATERIALS 2021; 11:nano11020511. [PMID: 33671450 PMCID: PMC7922656 DOI: 10.3390/nano11020511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 11/18/2022]
Abstract
The development of graphene structures with controlled edges is greatly desired for understanding heterogeneous electrochemical (EC) transfer and boosting EC applications of graphene-based electrodes. We herein report a facile, scalable, and robust method to produce graphene mesh (GM) electrodes with tailorable edge lengths. Specifically, the GMs were fabricated at 850 °C under a vacuum level of 0.6 Pa using catalytic nickel templates obtained based on a crack lithography. As the edge lengths of the GM electrodes increased from 5.48 to 24.04 m, their electron transfer rates linearly increased from 0.08 to 0.16 cm∙s−1, which are considerably greater than that (0.056 ± 0.007 cm∙s−1) of basal graphene structures (defined as zero edge length electrodes). To illustrate the EC sensing potentiality of the GM, a high-sensitivity glucose detection was conducted on the graphene/Ni hybrid mesh with the longest edge length. At a detection potential of 0.6 V, the edge-rich graphene/Ni hybrid mesh sensor exhibited a wide linear response range from 10.0 μM to 2.5 mM with a limit of detection of 1.8 μM and a high sensitivity of 1118.9 μA∙mM−1∙cm−2. Our findings suggest that edge-rich GMs can be valuable platforms in various graphene applications such as graphene-based EC sensors with controlled and improved performance.
Collapse
Affiliation(s)
- Van Viet Tran
- Department of Physics, National Chung Cheng University, Chiayi 621, Taiwan; (V.V.T.); (D.D.N.); (H.-C.K.)
| | - Duc Dung Nguyen
- Department of Physics, National Chung Cheng University, Chiayi 621, Taiwan; (V.V.T.); (D.D.N.); (H.-C.K.)
- Center for High Technology Development, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Mario Hofmann
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan;
| | - Ya-Ping Hsieh
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan;
| | - Hung-Chih Kan
- Department of Physics, National Chung Cheng University, Chiayi 621, Taiwan; (V.V.T.); (D.D.N.); (H.-C.K.)
| | - Chia-Chen Hsu
- Department of Physics, National Chung Cheng University, Chiayi 621, Taiwan; (V.V.T.); (D.D.N.); (H.-C.K.)
- Correspondence: ; Tel.: +886-5-272-0411 (ext. 66305)
| |
Collapse
|
3
|
Singh V, Gupta N, Hargenrader GN, Askins EJ, Valentine AJS, Kumar G, Mara MW, Agarwal N, Li X, Chen LX, Cordones AA, Glusac KD. Photophysics of graphene quantum dot assemblies with axially coordinated cobaloxime catalysts. J Chem Phys 2020; 153:124903. [PMID: 33003752 DOI: 10.1063/5.0018581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report a study of chromophore-catalyst assemblies composed of light harvesting hexabenzocoronene (HBC) chromophores axially coordinated to two cobaloxime complexes. The chromophore-catalyst assemblies were prepared using bottom-up synthetic methodology and characterized using solid-state NMR, IR, and x-ray absorption spectroscopy. Detailed steady-state and time-resolved laser spectroscopy was utilized to identify the photophysical properties of the assemblies, coupled with time-dependent DFT calculations to characterize the relevant excited states. The HBC chromophores tend to assemble into aggregates that exhibit high exciton diffusion length (D = 18.5 molecule2/ps), indicating that over 50 chromophores can be sampled within their excited state lifetime. We find that the axial coordination of cobaloximes leads to a significant reduction in the excited state lifetime of the HBC moiety, and this finding was discussed in terms of possible electron and energy transfer pathways. By comparing the experimental quenching rate constant (1.0 × 109 s-1) with the rate constant estimates for Marcus electron transfer (5.7 × 108 s-1) and Förster/Dexter energy transfers (8.1 × 106 s-1 and 1.0 × 1010 s-1), we conclude that both Dexter energy and Marcus electron transfer process are possible deactivation pathways in CoQD-A. No charge transfer or energy transfer intermediate was detected in transient absorption spectroscopy, indicating fast, subpicosecond return to the ground state. These results provide important insights into the factors that control the photophysical properties of photocatalytic chromophore-catalyst assemblies.
Collapse
Affiliation(s)
- Varun Singh
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, Illinois 60607, USA
| | - Nikita Gupta
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, Illinois 60607, USA
| | - George N Hargenrader
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, Illinois 60607, USA
| | - Erik J Askins
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, Illinois 60607, USA
| | - Andrew J S Valentine
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | - Gaurav Kumar
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Michael W Mara
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Ave., Lemont, Illinois 60439, USA
| | - Neeraj Agarwal
- School of Chemical Sciences, UM DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina, Santacruz (E), Mumbai 400098, India
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | - Lin X Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Ave., Lemont, Illinois 60439, USA
| | - Amy A Cordones
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Ksenija D Glusac
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, Illinois 60607, USA
| |
Collapse
|